PHYSICAL REVIEW D

VOLUME 37, NUMBER 10

15 MAY 1988
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A primordial net bosonic charge is introduced in the context of the bulk-viscosity-driven
inflationary models. The analysis is carried through a macroscopic point of view in the framework
of the causal thermodynamic theory. The conditions for having exponential and generalized
inflation are obtained. A phenomenological expression for the bulk-viscosity coefficient is also de-

rived.

I. INTRODUCTION

Recently, increasing attention has been paid to the
bulk-viscosity phenomenon associated with the
inflationary models of the Universe.! ~® In fact, the effect
of bulk viscosity in an expanding universe is to reduce the
equilibrium pressure. So, it is natural to ask if this effect
could be strong enough to make the effective pressure
negative. As is well known, this is the key condition for
inflation.

Thermodynamic states with negative pressure are
metastable and are not excluded by any law of nature. In
general, these states are connected with phase transitions
(for example, in an overheated van der Waals liquid’) and
for certain physical systems the occurrence of negative
pressure seems to be inevitable.® ! These systems are
hydrodynamically unstable for bubbles and cavity forma-
tion and spontaneous collapse could also be expected.’
However, in the cosmological context, some new features
must be added. In fact, as was shown by Whittaker,!! in
a stressed self-gravitating fluid described by general rela-
tivity, the pressure also contributes to the effective gravi-
tational mass. If this contribution is negative it will act
repulsively, accelerating the cosmic expansion. There-
fore, a fluid out of thermodynamic equilibrium with nega-
tive effective pressure provides an alternative mechanism
for inflation.

More recently some authors'? claimed that the bulk
viscosity could not drive inflation. They remarked that
in the framework of kinetic theory, the pressure is always
non-negative. Hence, it is important to know under
which conditions the kinetic approach can be applied to
the early Universe, in particular, at the epoch of the
spontaneous symmetry breaking (SSB) of the grand
unified theory'® (GUT).

A coherent kinetic theoretic treatment can be accom-
plished only if the system in question presents a sufficient
dilution degree. The validity of such an approximation
depends on the ratio A /L, where A is the mean free path
and L is the mean interparticle distance. By using
A=(on)~! and L=~n'"1"? where o is the interaction
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cross section and n is the number density, this ratio is
easily estimated at the GUT era. By virtue of asymptotic
freedom we have o ~a?/T?, where a=} is the unified
coupling strength. Now, to prevent the system from
becoming diluted, we assume the existence of a primordi-
al bosonic charge that initially will be in the Bose-
Einstein condensed ground state. The term ‘“‘charge” is
simply the difference between boson and antiboson num-
bers.'*!5 So, n~q+N,T> where g is the net bosonic
charge density and N, =(172/30)(2gb+% > 8s) where
8y and g, denote the number of effectively massless bo-
sonic and fermionic degrees of freedom, respectively.
Therefore, it follows that

-2/3

i‘.za-ZN‘—Z/} 3
N,T

I (1.1

Now considering that at T~10'"* GeV the total number
of particle species is =150, we have N, =50. So, if the
Universe is symmetric (¢ =0) then A/L =100 and the
dilute-gas approximation is a good one. In this case, as
shown by Pacher, Stein-Schabes, and Turner!? the bulk
viscosity cannot drive inflation. However if, for instance,
g >10°T3 then A/L <10~!. In this case, their arguments
are no longer valid since the continuum GUT is dense
and consequently the kinetic approach cannot be applied.

Haber and Weldon'*!® showed that the condensation
critical temperature in a relativistic ideal Bose-Einstein
gas is given by

T,=(3g/m)'"?, (1.2)

where m is the mass of the particles. In fact, the formula
above is valid only for T >>m but it will be sufficient for
our qualitative arguments. These authors also observed
that if the bosons are massless the critical temperature T,
is infinite and so all the net charge will be in the Bose-
Einstein condensed ground state. This result is important
in what will be proposed ahead. Note that before the
GUT phase transition the leptoquark gauge bosons are
massless; thus all bosonic charge excess will be in the
condensed phase. So, even when the charge density is
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high this avoids the possibility of a superclosed universe.
During the phase transition these gauge bosons acquire a
mass of the order of the GUT energy scale. As a conse-
quence, the critical temperature T, in Eq. (1.2) will fall to
some finite value depending on the magnitude of the pri-
mordial charge. For a high value of this charge, the criti-
cal temperature T, can be higher than the Universe tem-
perature T. So, just after the onset of the phase transition
it is possible for the superheavy bosons to be in the con-
densed phase. In this case, another kind of phase transi-
tion should occur in virtue of the cosmic expansion.
Note from (1.2) that T, scales with R ~3/? whereas in an
adiabatic expansion, the Universe temperature T scales
with R ! (R is the scale factor). Therefore, as the expan-
sion proceeds, T, decreases faster than T and the decon-
densation process will be in course. This second phase
transition could occur at the end of inflation and the pos-
sible formation of vortex lines (as in superfluid helium)
could be relevant for the structure of the Universe.'’

If the charge excess is associated with the Higgs parti-
cles some aspects of the above discussed qualitative pic-
ture must be modified. In this case, for example, Bose-
Einstein condensation and spontaneous symmetry break-
ing can occur simultaneously but independently. More-
over, studying Bose-Einstein condensation in the
Weinberg-Salam model Kapusta'® showed that the transi-
tion temperature is raised. In principle, analogous results
could be derived for other gauge theories. This would be
interesting for our scenario since the irreversibilities are
expected to be more relevant if the GUT scale parameter
is higher.! We remark that, in general, the chemical po-
tential acts effectively as a symmetry-breaking parame-
ter.'®* However, its introduction does not imply the ex-
istence of an effective potential that necessarily produces
a large cosmological constant. In the following we shall
consider only the bulk-viscosity effect. However, as will
be seen at the end of Sec. II, the main results could be ex-
tended to include a cosmological constant by assuming
that it is not dominant during the process.

Our present knowledge of the GUT continuum is still
quite limited, thus a thermodynamic approach might give
a major flexibility to the model. Details of the micro-
scopic theory will not be taken into consideration in this
paper.

In a previous paper? some results uniting inflation and
bulk viscosity were obtained in the framework of a
“‘quasistationary” or first-order relativistic theory of dis-
sipative processes. This terminology has been largely
adopted because the quadrivector entropy flux contains
only first-order terms in deviations from equilibrium.
This paper made use of the Eckart-Weinberg!>?° formu-
lation (the Landau and Lifshitz?! approach is also includ-
ed in the above category). As is well known, these
theories contain several undesirable features. They lead
to parabolic differential equations and so admit super-
luminal velocities for heat flow and viscosity propaga-
tions. In addition, the theory is unstable and there is no
well-posed initial-value problem for rotating fluids.??
Now, besides introducing a chemical potential associated
with a possible bosonic primeval charge, we reanalyze the
bulk-viscosity-driven inflationary scenario in the context
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of a nonstationary (or transient) relativistic thermo-
dynamic theory. This theory was developed by Miiller?
and Israel®* and solves the above cited problems present
in the first-order theory. More details will be given in
Sec. II.

We outline this paper as follows. Section II establishes
the conditions for having exponential or generalized?>?¢
inflation and the framework of our approximations are
presented. In Sec. III we obtain from a thermodynamical
point of view the expression for the bulk-viscosity
coefficient, the entropy production, and the duration of
inflation.

II. CONDITIONS FOR INFLATION

We start supposing that ab initio the Universe had a
net bosonic charge. Moreover, as is usual in the
inflationary models, we assume first that some region of
the Universe with the size about the horizon distance was
hot (T > Tgyr) and cooled to the GUT critical tempera-
ture before recollapsing and second that this region was
sufficiently homogeneous and isotropic such that the
Robertson-Walker (RW) metric is a good approximation.

In the early times the contributions of the spatial cur-
vature were negligible. Then, to describe the geometry of
the model during the inflation, we can use the flat RW
metric

ds*=—dt’>+ R (1)X(dx*+dy>+dz?), 2.1)

where R is the scale factor.

We will work in the framework of a charged relativistic
simple fluid.?’ The functional dependence of the entropy
flux vector S%is

ST=SATH Jr) , (2.2)

where T#* is the energy-momentum tensor and J* is the
charge flow vector defined by

Jh=qu* , 2.3)

where u* is the velocity of the comoving observer. The
Lorentz invariance of the theory places a severe restric-
tion on the form of T in local equilibrium; that is,

T* =putu* 4 ph** | (2.4)

where h#**=gF* 4 y#yu* is the projection tensor, p is the
energy density, and p is the equilibrium pressure. Any
other term in the above T# represents a nonequilibrium
process.

In a spatially homogeneous and isotropic spacetime the
only irreversible process that can appear in the energy-
momentum tensor is the bulk viscosity 7 so out of equi-
librium we have

T* =putu*4(p +mh** . 2.5)

In the background (2.1) the energy-conservation law
and charge-conservation law are given by

p'+(p+p+m)0=0 (2.6)

and
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q'+q6=0, 2.7)

where 6=3R'/R is the scalar expansion and a prime
means a time derivative.

In such a background the entropy flux vector S* of the
first-order thermodynamics is the same function of the
equilibrium theory, but in the second-order thermo-
dynamics S* has its functional form changed and in gen-
eral depends on the nonequilibrium terms that appear in
the energy-momentum tensor.?*?’ In the present case S*
is given by

SH= qo—ai ut (2.8)

2T

where o is the equilibrium specific entropy (entropy per
unit of charge), T is the temperature, and a is a
coefficient to be determined.

The specific entropy obeys the equilibrium Gibbs law??

Tdo=d(p/q)+pd(1/q). 2.9

Now we are ready to obtain the phenomenological rela-
tions which ensure the growth of the entropy. Taking the
divergence of S* given by (2.8) we have, in the second-
order approximation,

SHo—_ —7;-(9+om') .

» 2.10)

We used Egs. (2.6), (2.7), and (2.9) and the supposition
that the time derivative of the coefficient a is of first or-
der. Observe that 7, 0, and T' are of first order because
they vanish in equilibrium.

The second law of thermodynamics (S¥,,>0) will be
satisfied if 7 is given by [see Eq. (2.10)]

T=—§0+arm'), (2.11)

where the positive coefficient of proportionality £ is the
bulk-viscosity coefficient present in the first-order theory,
and a=r7/§, where 7 is the bulk relaxation time. Note
that in the second-order approximation a transient term
appears which can guarantee the causality of the theory.

We suppose that soon after the GUT phase transition
holds the usual equation of state

p=ly(D-1]p,

where 7 is the “adiabatic index.” In fact, in the thermo-
dynamic derivation of the above equation the ¥ parame-
ter is held constant.?® However, for a more realistic
treatment, the y index could be a slowly varying temper-
ature function.’®3! Moreover, the choice of the above
equation of state will permit us to use the simple-fluid ap-
proximation to the material content which has more than
one component.

Let us now obtain the conditions for inflation. We will
use the Gibbs-Duhen equation

(2.12)

dp=qodT+qdu, (2.13)
where
u=(p+p)/q—To (2.14)

is the relativistic bosonic chemical potential. In order to
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guarantee the non-negativity of the particle and antiparti-
cle number u must satisfy | pu| <m, where m is the mass
of the bosons.!* We will also use the Einstein field equa-
tion

2
p=R"_ 8w (2.15)
R 3myp

where mp =1.22X 10'° GeV is the Planck mass.
Now, using (2.12)-(2.15) we have

£9

-y H' _1 _
P

vy H 2

y_ T
Y T

g_ I

u T , (2.16)

where y'=T'(dy/dT) and p'=T'(3u/dT), +q'(du/
dg)r. The above equation generalizes the expression (13)
of Ref. 4. We remark that in the cited paper the chemi-
cal potential was incorrectly associated with the massless-
to massive-boson transition. In fact, the chemical poten-
tial is a state variable associated with the existence of a
conserved charge in the system. It vanishes if the net
charge is zero.

From (2.16) we see that the condition for exponential
inflation (H'=0) is given by

Yy T |\_pq g T (2.17)
vy T vp|uw T

We must impose
B9 (2.18)
144

to ensure the non-negativity of the entropy [see Eq.
(2.14)]. Observe that for an ideal Bose gas of particles of
mass m this relation is automatically satisfied because
p>mg>pgandy>1.

From (2.17) we see that there are several possibilities
for having exponential inflation: When =0 we have the
condition In(y /T)=const, that was obtained in Ref. 4.
Seemingly this case is not physically accomplished, as for
p=0 the system will not be dense.

When pu+0 the following cases are readily obtained:
(a) y=aT and p=pBT where a and f3 are constants; (b)
p=const and

Y|k | T 2.19)
Y vp | T

or equivalently dy /dT =qo /p; (c) Yy =const and
E_hore | T (2.20)
Iz ug | T

ordu/dT=—o.

Cases (a) and (b) can represent a fluid that changes its
type as the temperature varies. For example, while the
bosons acquire mass during the GUT phase transition,
the equation of state of the fluid could change from radia-
tionlike toward dustlike and after the boson decay return
to radiationlike again. In case (c), during inflation, the
chemical potential increases as the temperature de-
creases.

On the other hand, from (2.14) the condition for gen-
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eralized inflation (R"”"/R >0 or H> —H'/H >0) now
takes the form

y_ I

R" v
—_ >
Y T

0.
R~ 20y—1) >

_ﬂ[}_{_f_
vplp T

(2.21)

It can also be shown that the condition (2.17) for ex-
ponential inflation does not change if one includes a
cosmological constant A in the Einstein equation. How-

ever, the condition for generalized inflation (2.21)
changes to
R _ v |j__A
R 7 2y—-1 3HR
Vo I VAR A T I DTS A B
vy T | yp|pn T

(2.22)

III. THE BULK-VISCOSITY COEFFICIENT,
ENTROPY PRODUCTION, AND THE DURATION
OF INFLATION

Let us obtain the bulk-viscosity coefficient in the ex-
ponential inflation case. Substituting p’'=0 in (2.6) and
using (2.12) we have

T=—Yp . (3.1)

Using the above equation in the constitutive equation
(2.11) we obtain

§=E , (3.2)

Y

where £, ;=yp/3H is the bulk-viscosity coefficient of the
quasistationary theory.>? Note that except for case (c),
there is a transient term in addition to the expression of
the quasistationary theory. We can also express £ as a
function of temperature. For example, for case (a) we
have

7T’
T

EaxT |1+ . (3.3)

In the present model the temperature variation is not
determined by the dynamical equations. In fact, the
equations of motion are fully satisfied by the condition
p'=0 and by the relation (3.1) in the exponential inflation
case, while the variation of the temperature depends on
the details of the transition between the phase where the
bosons are massless and the phase after when they ac-
quire mass.

Let us analyze the entropy production during the
inflationary period. In the nonstationary thermodynamic
theory the physical entropy density is given by (2.8)
(s =—S*u,), so

T772

26T -

s=qo0—

(3.4)
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Using Egs. (2.14), (3.1), (3.2), and the charge-conservation
law, we obtain from (3.4) that

—#—;I,Oexp[—ﬂi(t —ty)],

s=T20-37H/2) (3.5)
where g, is the charge density in the beginning of the
inflationary period (¢t =t¢,). If 7=p =0 the result of Ref.
4 is reobtained, namely, s =yp/T =const. If 7' <0 then
the entropy density is an increasing function of time for
all cases (a)-(c). For cases (a) and (b) the last term of
(3.5) becomes negligible for At > H ~! [see the relation
(2.18)] while the duration of inflation is >>H ~!. The
second-order thermodynamic theory works well when the
second term in (3.4) is much smaller than the first one.
That happens when 7H << 1. The limit of validity of the
second-order theory occurs when the terms are of the
same order; that is 7H =1. In the last case the entropy
density would be small and the duration of inflation
should be too long in order to solve the flatness problem.
It is easy to estimate the duration of inflation in order
to solve the entropy problem in case (a) when 7 =0. As
R =R,exp[H (t —t,)] then
Sy

SR}

Atz—l—ln

3H ’ (3.6)

where S o is the entropy at the end of inflation, that is,
~10*”. Using H=~10" GeV, Ry=10"'2 GeV~!, and
yp/T =~10* GeV? it follows that

1081
1-37H/2

For 7=0 we have At~10"% sec. Observe that as s is
nearly constant, the Universe radius would increase by a
factor of 10%%; that is enough to solve the horizon, homo-
geneity, and isotropy puzzles.

In the present model, the entropy generation is con-
comitant with the inflation, differently from the vacuum-
pressure-driven inflationary models,>~3° where the en-
tropy is generated after inflation by a highly nonadiabatic
process. During the “slow rollover phase” of the new
inflationary universe, the temperature should decrease
10?8 times in order to maintain the radiation entropy con-
stant. Here, as the bulk viscosity continuously reheats
the medium, the temperature need not decrease so drasti-
cally.

As remarked in the Introduction, the material content
remains dense just while the charge density is >>T°.
Inflation dilutes any charge excess by a factor > 10%¢. So,
admitting that at the end of the inflationary phase the
system has diluted, the charge density will be > T} (we
are not taking into account the possible contributions of
monopoles, cosmic strings, etc., to enhance the number
density). Then, if the final temperature is not too low the
initial value of g will be very high and could turn the
model meaningless, since p could be greater than pp.
This problem arises due to the assumption that the gauge
bosons acquire mass ~10'* GeV instantaneously and
simultaneously. It can be avoided if at least one of these
conditions is relaxed during the phase transition.

We now use the limit of validity (m = T) of Eq. (1.2) to

At =10"1p GeV~!. (3.7)
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roughly estimate the final decondensation critical temper-
ature in the isothermal case. It is easy to see that if
q5= T3 then T,~T. Since the beginning of inflation T,
is a decreasing function of time, this estimate shows us
that the decondensation process will occur together with

the dilution process.

IV. CONCLUSION

In this paper we have considered the consequences of a
net bosonic charge present in the Universe during the
inflationary period. We have showed that even in the
realm of asymptotic freedom, the existence of a charge
can avoid the validity of the dilute-gas approximation at
the GUT epoch permitting the bulk viscosity to generate
inflation. We have discussed the presence of a Bose-
Einstein condensation during the GUT phase transition
and pointed out that, due to the Universe expansion,
another phase transition, representing the decondensa-
tion process, could occur.

The conditions for inflation have been obtained in both
the exponential and generalized case. The expression for
the bulk-viscosity coefficient that was previously derived
has been extended by using causal thermodynamic
theory. We have also showed that in the context of this
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theory the duration of inflation is longer. In the present
model inflation ends by dilution. As the Universe ex-
pands the charge density decreases and the ratio A /L be-
comes >>1. In this case bulk viscosity cannot drive
inflation anymore.

In the course of our investigation some simplifications
were performed. First, we have used a linear approxima-
tion in the thermodynamical phenomenological laws.
Second, we have used only one chemical potential; how-
ever, more than one charge could exist. Third, we have
described the primordial cosmic plasma as a simple fluid
with the equation of state given by (2.12). In fact, we
think that a more realistic treatment is necessary for a
full description of the Universe at those eras. Further in-
vestigations in this direction are being accomplished.
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