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We study the production of large-scale (-Mpc) magnetic fields in inflationary Universe models.
The magnetic fields produced are uninterestingly small unless the conformal invariance of the elec-
tromagnetic field is broken. Once the conformal invariance is broken, a mechanism akin to "su-
peradiabatic amplification" can operate and lead to sizable primeval magnetic fields. We consider
three ways of breaking the conformal invariance: through gravitational couplings of the photon;
through the coupling of the photon to a charged massless, nonconformally invariant scalar field;

and through the anomalous coupling of the photon to axions. The primeval magnetic fields which
result can have astrophysically interesting strengths, but are very model dependent.

I. INTRODUCTION

Today, magnetic fields are present throughout the
Universe and play an important role in a multitude of as-
trophysical situations. Our Galaxy and many other
spiral galaxies are endowed with coherent magnetic fields
(ordered on scales & 10 kpc} with typical strength'
-3X10 6, or energy density relative to the cosmic
microwave background radiation (CMBR): r = (B /
8')/pr=(B/3. 2X10 G) —1. The magnetic field of
our Galaxy plays an important role in the dynamics of
the galaxy —confining cosmic rays, transferring angular
momentum away from protostellar clouds so that they
can collapse and become stars (without the loss of angu-
lar momentum, protostellar clouds would collapse to a
low-density, centrifugally supported, unstarlike state);
magnetic fields also play an important role in the dynam-
ics of pulsars, white dwarfs, and even black holes. Else-
where in the Universe, magnetic fields are known to exist
and be dynamically important —in the intracluster gas of
rich clusters of galaxies, in quasistellar objects (QSO s),
and in active galactic nuclei. Finally, we mention a very
exotic (but topical} "use" for primeval magnetic fields:
primeval magnetic fields are necessary to initiate substan-
tial currents in superconducting cosmic strings2 [if such
objects exist, they may have important consequences for
the Universe —production of ultrahigh-energy (UHE)
cosmic rays, and possibly the initiation of structure for-
mation ]. (The origin and importance of cosmic magnet-
ic fields is discussed in Refs. 5 and 6, and has also recent-
ly been reviewed by Rees. )

How do these ubiquitous cosmic magnetic fields arise?
Many astrophysicists believe that galactic magnetic fields
are generated and maintained by dynamo action (where-
by the energy associated with the differential rotation of
spiral galaxies is converted into magnetic field energy, see
Refs. 5 and 6). The dynamo mechanism is only a means
of amplification and dynamos require seed magnetic
fields. If a galactic dynamo has operated over the entire
age of the galaxy ( —10 G yr}, it could have amplified a

seed field by a factor of exp[0 (30)], implying that a seed
magnetic field -3)& 10 ' G is required. Some astrophy-
sicists believe the galactic magnetic field owes its ex-
istence to primeval magnetic flux trapped in the gas that
collapsed to form the galaxy; in this case the primeval
field strength required is much greater —at least the field
strength that is observed today, -3X 10 G.

Harrison' has proposed a mechanism for producing
the small seed field required for the galactic dynamo,
wherein the relative motions of protons and electrons in-
duced by vorticity present prior to decoupling produce
primeval currents and magnetic fields —of course, this
presupposes the existence of primeval vorticity. Other
more exotic scenarios have also been suggested (see Refs.
7, 11, 12, and references therein). A fair summary of the
present situation is to say that no compelling mechanism
has yet been suggested for the origin of the essential
primeval magnetic fields.

Since the Universe through most of its history has been
a good conductor (see the Appendix), any primeval, cos-
mic magnetic field present will evolve conserving magnet-
ic flux: Ba -const', or pa cca (a =the cosmic scale
factor), so that the dimensionless ratio r =(B /8m)/p„
remains approximately constant and provides a con-
venient invariant measure of magnetic field strength. '

(Here and throughout we will use const' to indicate an ar-
bitrary constant whose actual value is not relevant. }

Now consider the primeval flux, characterized by r, re-
quired for the purposes previously discussed. A pregalac-
tic, cosmic magnetic field which collapses with the gas
that forms the galaxy increases in strength as

[ps,&/p«, (t)], owing to flux conservation [here p«, (t) is
the average cosmic mass density at time t]. Since

p„,(t) cca and p, pt/„,(t )=o10 today (t =to}, it
follows that the strength of the magnetic field trapped in
the galaxy is Bs,&=10 [a(tf ~ t,, )/a(t )] oB„,«;„or
8, &

-3r' )& 10 G. From this relationship we obtain
r=10 to seed the galactic dynamo, and r=10 to
seed the galactic magnetic field itself and avoid the neces-
sity of a galactic dynamo. A primeval flux strength
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r & 10 ' is required to induce astrophysically interesting
currents in superconducting cosmic strings.

We believe that inflation' ' is a prime candidate for
the production of primeval magnetic fields for four
reasons.

(1) Inflation provides the kinematic means of produc-
ing very-long-wavelength effects at very early times
through microphysical processes operating on scales less
than the Hubble radius. A given Fourier component (la-
beled by its comoving wavelength A, or wave number
k:—2n/A, and normalized so that A, is the physical wave-
length today, i.e., a«d,„——1} crossed outside the Hubble
radius N [ =45+In(A /Mpc)+2 ln(Mi4)/3+in( Tin)/3]
e-folds before the end of inflation' (see Fig. 1). Here M"
is the vacuum energy density during inflation with
M =M,410' GeV, and TRH ——T&010' GeV is the reheat
temperature. Since an electromagnetic wave with kpQy,

H ' has the appearance of static E and B fields, very-
long-wavelength photons (A,zi,„,&~H ') can lead to
large-scale magnetic fields (which then becoine current
supported).

(2} Inflation provides the dynamical means of exciting
these long-wavelength electromagnetic waves: de Sitter-
produced quantum-mechanical (QM) fluctuations excite
modes with A, ~i, , SH ', the energy density in the mode
with A, ~i,„,—H is dpldk —H .

(3) During inflation (and perhaps most or all of reheat-
ing) the Universe is devoid of charged plasma and is not a
good conductor, so that magnetic flux is not necessarily
conserved and r can increase.

(4) Classical fluctuations with wavelengths ~H ' in
massless, minimally coupled fields can grow "superadia-

In (length

xcitation

TOT

N(X)

t

INFLATION

o
1

(1st honzon

p(X)
0

cf'oss)ng)

4
TR„

l

In (o(t))
RO „=-= MD

o& (2nd horizon crossing )

(6 eV)

FIG. 1. Schematic summary of the evolution of the mode
with wavelength A,. The Universe is assumed to proceed
through inflation, reheating (RH), radiation domination (RD),
and matter domination (MD), during which H
~ const'(inflation), a ' (RH), a (RD), and a ' (MD) ~ The phys-
ical wavelength [:a(t)A]star—ts out s, ubhorizon-sized and then

crosses outside the Hubble radius N(k) e-folds before the end of
inflation, at which time it is assumed to freeze in as a classical
fluctuation. The conductivity of the Universe becomes high

(u, /K ~ 1) some time during reheating, after which
Ba -const' (or pz ~ a ). The fluctuation reenters the horizon
when a(t) =a2.

batically" (Refs. 16 and 17), i.e., have their energy density
(=kdp/dk in mode k) decrease only as -a, rather
than the usual -a ("adiabatic" result).

There are, however, nontrivial obstacles to overcome.
A pure U(1) gauge theory with the standard Lagrangian

'F„—F"" is conformally invariant (and not like a
minimally coupled field), from which it follows that 8 al-
ways decreases as 1/a (or pit-8 ~a ), irrespective of
plasma effects. During the de Sitter phase of inflation,
the total energy density in the Universe, p„„is dominat-
ed by vacuum energy po=M ~const' and therefore the
energy density in any magnetic fields produced during
inflation, relative to p„„is greatly suppressed. To be pre-
cise, the primeval field energy produced yields a disap-
pointing r =pa(k)/p =10 '

kM~, independent of TRH
and M [here pit(k) =k dptt /dk]. Thus the conformal in-
variance of electromagnetism must be broken to produce
appreciable primeval magnetic flux. (We are quick to
point out that nature shows no sign of being conformally
invariant. ) In this paper we study a number of ways of
doing this: (i} explicitly break the conformal invariance
of U(1) through gravitational couplings, such as
RA A",R „A"A"; (ii) R „t,„F""F"/m, R „F""F'/
m, or RF" F„„/m (here m is some mass scale
squared, as required by dimensional considerations; such
terms arise due to one-loop vacuum-polarization effects
in curved spacetime' ); (iii) couple the photon to a
charged field which is not conformally coupled; (iv)
through the anomalous coupling of the photon to the ax-
ion.

Possibility (iii) in many respects is the inost attractive
possibility, but is computationally the most challenging.
Our preliminary results suggest that it is promising, but
we have not completed our analysis.

Possibility (i) is perhaps the least attractive possibility,
as such terms explicitly break U(1) gauge invariance by
giving the photon a mass squared of the order of H (al-
though at a level which is far below detectability); here
H=(da/dt)/a is the expansion rate of the Universe.
Computationally it is the most tractable, and with such a
term primeval fields with strength as large as r —10
can be generated, with a spectrum, r(A)cc A, ",, where n is
model dependent and can be either positive or negative.

There is good theoretical motivation' for (ii), and with
a mass scale as small as the electron mass. Unfortunate-
ly, for the scales of astrophysical interest, A. -Mpc, the
primeval fields produced are typically small, r ~ 10

The outline of our paper is as follows. In Sec. II we
consider possible gravitational couplings of the photon
and compute the primeval fields which result; in Sec. III
we consider the coupling of the photon to a nonconfor-
mally invariant, massless charged scalar field and to ax-
ions; we summarize our work in Sec. IV. In the Appen-
dix we discuss the effects of the conductivity of the
Universe.

II. GRAVITATIONAL COUPLINGS
IN ELECTRODYNAMICS

Here we study the production of large-scale magnetic
fields in inflationary universe models due to the direct
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coupling of the gravitational and electromagnetic fields.
We first consider additional terms in the Lagrangian of
the form RA and R„„A"A (where R is the curvature
scalar and A " is the electromagnetic potential). These
terms give the photon an effective, time-dependent mass.
At first sight, this is quite repulsive: gauge invariance (or
equivalently charge conservation) is broken. Yet these
terms do not lead to any effects which contradict
present-day observations or experiments. The photon
mass that arises due to these terms is m -R' where
R ' —H. The photon mass today would be
m&-H«d, ~

—10 eV, well below present limits to the
photon mass: mr &3X10 eV (Ref. 19). Charge non-
conservation would only manifest itself on scales of the
horizon or larger ( & H ' —10 cm), but again, this is an
effect which has no observable consequences (that we can
think of). Of course, neither the R A nor R„,A "A"
terms would affect the propagation of photons outside
massive bodies as both of these terms vanish in vacuum.
Finally, one might worry about corrections these terms
would introduce to the equation of state in a radiation-
dominated Universe. These corrections are of order
H /T -T /mp~, and are negligible for temperatures
where the evolution of the Universe is relatively well un-
derstood (e.g., nucleosynthesis, recombination, etc.).
Thus these terms cannot spoil successful predictions
made using the standard Maxwell equations. However,
during the de Sitter and reheating phases in an
inflationary universe, the RA terms have a dramatic
effect on photons whose wavelengths are greater than the
horizon. If certain conditions on the coefficients of these
terms are met, then the amplitude of the fluctuations in
the A" field can grow while outside the horizon, leading
to significant large-scale magnetic fields.

We also consider terms of the form RF (F"' is the
electromagnetic field-strength tensor) in all possible in-
variant combinations of R, R„,and R„&,with F„.The
coefficients of these terms must have dimension (mass)
Such terms have the virtue of being explicitly gauge in-
variant and thus are far more palatable. Furthermore,
there is some indication that these terms are present in
the complete theory of quantum electrodynamics in
curved space. Drummond and Hathrell, ' for example,
have calculated an effective Lagrangian for QED in
curved space to one loop. Their expression for the La-
grangian contains all possible RF terms, and the
coefficients of these terms are all O(m, ), where
m, =0.511 MeV is the electron mass (the electron being
the lightest charged particle). (It is not clear, however,
whether their work is directly applicable to the problem
at hand. ) For definiteness though, we take the
coefficients of the additional terms to be of the form
const'/m, where the dimensionless constants are of order
unity. At early times, when R ' —H —p,'„/m p&

»10 "mp& (in a radiation-dominated Universe this cor-
responds to T» 10 GeV), these terms dominate the usu-
al F„F" term, while at late times, when
R ' &&10 "mp~, these terms are negligible. In a model
Universe filled with a perfect fluid having an equation of
state p =yp, with ——,

' & y & ——,
' (i.e., so-called power-law

inflation ), the amplitude of fluctuations in the A" field
outside the horizon grows. But as will be discussed
below, it is difficult to find a scenario using power-law
inflation in which the amplitude of the large-scale fields is
large enough to be astrophysically interesting.

A. Preliminaries

Before discussing the production of large-scale magnet-
ic fields we review some properties common to both
inflation and power-law (or generalized) inflation (PI).
We consider spatially flat Friedmann-Robertson-Walker
(FRW) cosmologies where the stress energy is described
by a perfect fluid with an equation of state p =yp. We
take the line element to be given by

2 dt +—a (t)(dx +dy +dz ),
ds

a (rt)( —di) +dx +dy +dz ),
(2.1)

where t (i)) is the clock (conformal) time. In what fol-
lows, an overdot will always indicate a derivative with
respect to conformal time, and p„,will always refer to
the total energy density of the Universe. We use units
where kz ——c=fi=1 and 6=m&~, where the Planck
mass m p~

——1.22)& 10' GeV. Physical length scales
(those measured by meter sticks) are related to comoving
length scales by (physical length scale) =a(t) X (comoving
length scale); in addition, we normalize our comoving
scales such that today (physical scale) =(comoving scale),
i.e., a„d,„——l. A given Fourier component (or "scale")

will be labeled by its comoving wavelength A. or its
comoving wave number k =2ir/A, .

The physical size of the presently observed Universe
(H ' = 10 h 'cm =3000 h 'Mpc; where H = 100
h km sec 'Mpc ' is the present value of the Hubble pa-
rameter) scales as a, whereas the size of a "causal
domain" (i.e., Hubble-sized region, size -H ) scales as
H ' ~ a "+ ' . During either the radiation- or matter-
dominated phases of the standard big-bang model, the
Hubble radius H ' grows faster than the size of the
presently observed Universe (as a and a ~z, respectively).
Put another way, when we consider early times, the
comoving volume which contains the presently observed
Universe was comprised of many causally distinct re-
gions. This is the celebrated "horizon problem. " In or-
der to arrange that the region corresponding to the
present Hubble volume was once subhorizon sized, we re-
quire that for some period of time in the early Universe,
the Hubble radius grows more slowly than a, i.e.,( 3

It is then possible that the region corresponding
to the Universe today was, at some time in the past, con-
tained within a causal region. Moreover, other astro-
physical scales A, also begin subhorizon sized, exit the
horizon during inflation (first horizon crossing), and then
later reenter the horizon (second horizon crossing) during
the radiation- or rnatter-dominated phases. Second hor-
izon crossing for the region corresponding to the present-
ly observed Universe occurs, by definition, today (see Fig.
1). (Although not always technically correct, we will use
interchangeably the terms "Hubble radius" and "hor-
izon"; we will always precisely mean Hubble radius. )
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We need to specify the epoch (time and temperature) at
which a given length scale crosses back inside the horizon
(i.e., has a physical length -H ') during the
postinflation era. It is straightforward to calculate that

73 eV/AM, A, & 12 h Mpc,
T„,„()t.}=

860 h eV/A, M, A, ~ 12 h Mpc,
(2.2)

where A,M
—=A. /Mpc. The two regimes correspond to

scales which reenter the horizon before and after the
epoch of equal matter and radiation densities (T,q ——6
h eV and t,q

-3X 10' h sec). During the radiation-
dominated epoch T= 1 MeV(t/sec) '~, and it also fol-
lows that for those scales

th„-2g 10 seek, M, . (2.3)

Let us also review some pertinent aspects of inflation. '

During inflation the Universe is in a nearly de Sitter (dS)
phase during which the total energy density, pt t po
=M"=Horn p, , is approximately constant. After the de
Sitter phase follows the reheating (RH) epoch in which
the energy density is dominated by the coherent oscilla-
tions of the scalar field responsible for inflation and

p„,cc a . During reheating, the temperature T( =pr
where p& is the energy density in light particles produced
by the decay of the coherent oscillations) decreases froin
(TaHM)'~ at the beginning of reheating to TaH at the
end of the reheating, when p„,=p and the energy densi-

ty in coherent oscillations begins to decrease exponential-
ly. ' Reheating is followed by the usual radiation-
dominated (RD) and matter-dominated (MD) phases of
the standard big-bang model. It is straightforward to
show that the cornoving length scale A, crossed outside
the Hubble radius during inflation (i.e., aA, =H ')N(A, )

e-folds before the end of inflation, where'

N(A, ) =45+ lnAM, +—,
' ln(M~4)+ —,

' ln(T, O) (2.4)

and M =M, 410' GeV, Tgg = T&010' GeV. Setting
A, =3000 Mpc, it follows that N must be greater than
about 53+"ln terms" in order that a subhorizon-sized re-

gion will grow to a size larger than the presently observ-
able Universe by the present epoch.

In constructing an acceptable inflationary model one
must satisfy two basic constraints on M and TRz. First
graviton production leads to the constraint that'
H/mp~ &10, or equivalently that po=M &10 mp~.
This is necessary so that long-wavelength gravitational
waves produced during inflation and just entering the
horizon today do not distort the microwave background
beyond the present limits of isotropy. Next, we require
that M, TRz ~ 1 GeV, which ensures that the Universe is
RD by the epoch of primordial nucleosynthesis, so that
the successful predictions of primordial nucleosynthesis
are not upset. Baryogenesis probably provides an even
more stringent constraint on M and TR~; however, at
present it is not possible to be more quantitative. The
production of adiabatic (and perhaps even isocurva-
ture ) density perturbations also provides a very impor-
tant and stringent constraint on inflationary scenarios.
Although ensuring that adiabatic density perturbations

are consistent with the isotropy of the microwave back-
ground and/or galaxy formation tends to lead to models
with low RH temperatures, this consideration does not
directly constrain M and TRz in a simple way.

For generalized inflation, the equation of state during
the period of quasi-inflation is p =yp with —1(y & ——,',
and the total energy density varies as a "+~'. A
cornoving length scale A, crosses outside the Hubble ra-
dius when the energy density is

p (A, )/m —(3 9X IQ )"1 "(Mlm )

TRH lm Pl (2.5)

where x=3(1+y)/(1+3y), M is the energy density at
the end of power-law inflation, and T„„is the energy
density at the beginning of the usual radiation-dominated
epoch. Note that x (0 for —1 (y & ——,'. Consideration
of graviton production requires p„,(A, ) to be less than
about 10 m p] on the scale of the present Hubble radius
(the graviton constraint also applies to power-law
inflation ), and the following constraint follows:

+ + +min (2.6a)

or

y & y,„=(x;„—3)/(3 —3x;„)= —0.86,

where

(2.6b}

x;„=—0.27[1—0. 14 ln(M &~ )]/[1+0.012 in(M, ~ )

+0.00621n(T, O)] .

Note that the upper bound to y decreases with increasing
x;„and approaches —1 for x;„~0and approaches

3
for x;„~—~ . The largest plausible upper limit to

y obtains for M = TR~ =1 GeV: y,„=—0.50.
In this paper we will be concerned, for the most part,

with the evolution of fluctuations in the electromagnetic
field whose wavelengths are much greater than the hor-
izon. Recall that a given mode starts with subhorizon
size (aiL&H ' or k ~aH}, crosses outside the horizon
during inflation, and during the subsequent RD or MD
phase crosses back inside the horizon (see Fig. 1). It is
well known that for a minimally coupled scalar field in de
Sitter space, there are fluctuations in that field with ener-

gy density corresponding to that of a thermal bath at the
Gibbons-Hawking temperature, H/2n. (Refs. 25 and 26).
We will make the seemingly reasonable assumption that
this result holds for all massless fields during an
inflationary phase and in particular, for the electromag-
netic field (although to our knowledge, this is an
unverified assumption ). Thus a given inode will be ini-
tially excited when it is subhorizon sized, during the de
Sitter epoch associated with inflation. In particular, this
implies that at first horizon crossing, p( k =aH )lp„,
=(H/mp~) =(M/mp&) . Here p(k) is the energy densi-

ty in the kth mode: p(k) =k dpldk. Further, we assume
that after a given mode crosses outside the horizon, it can
be treated classically, i.e., obeys its classical equations of
motion. In essence we are assuming that a given mode is
excited quantum mechanically while it is subhorizon
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sized and then as it crosses outside the horizon "freezes
in" as a classical fluctuation. (We use the same strategy
for power-law inflation; see Ref. 20.)

cc)g+k uk+ 2 mg —0,np
(2.16)

B. RA terms

Consider the Lagrangian

F"" —R—A ——R A "A",
4 pV 2 2 fLV

(2.7)

where A" and F"' are the electromagnetic potential and
field-strength tensor. The equations of motion for the
photon field are

V"F„—bR A „—cR",A„=O,
B„F,„+Bg„„+B„F„„=0,

(2.8)

(2.9)

where all spatial derivatives are with respect to the
comoving coordinates. To study these equations we write
them in terms of the electric and magnetic fields where

0 —E„—E —E,
'

E„O —8
pv= E 8„

E, 8 —8„0
Using the fact that R =a /a + (d /a ) (no sum on i) and
R =6a /a we can recast Eqs. (2.8) and (2.9) as

(2.10)

1 8 2 n A
a E—VgB — =0,

a2 ~g a

1 B
a B+VxE=O,

g BY/

where
2

(2.11)

(2. 12)

~ ~ ~ ~

n:—g 6b—+c —+
a a

a
(2.13)

Note that n is a constant whenever a(q) varies as a power
of g, which occurs in all cases of interest to us. Taking
the curl of Eq. (2.11) and using Eq. (2.12) to eliminate E
we find

a2
2a B—V B+ 2B=O .

a Bri
(2.14)

This equation is linear in B and can easily be expanded in
terms of its Fourier components. With the definition
Fl, (ri)=a fd x e'"*B(x,ri) we have

FI +k FI, + 2FI, ——0 . (2.15)

The quantity Fi, is a measure of the magnetic flux associ-
ated with the comoving scale A, -k '. The energy densi-
ty in the kth mode of the magnetic field is pz(k)
cc

~
FI,

~
/a, where as usual ps(k) =k dpi' /dk.

It is useful at this stage, to compare this equation with
the equation of motion for a massless scalar field which is
coupled to gravity through the usual gR P term
(X=—,'B&PB"P —,'gRP ). In—terms o—f co=a/ the equa-
tion of motion for the kth Fourier component is

where n —=g (6g —1)a /a, and as usual $1,(g)
= f d x e' "P(x,g). Note that p&(k) ~

~
co&

~

/a so

that there is a direct correspondence between col, and F&.
Moreover, if n = n

&
then Eqs. (2.15) and (2.16) are

equivalent. (A distinction one must keep in mind is that
F„carries a vector index while co„is a scalar quantity. )

The condition n =n
&

implies a relation between b, c, and
(though this relationship can be different during

different phases in the evolution of the Universe). We
note that for b = ——,

' and c =0, A" behaves as a minimal-

ly coupled scalar field ((=0), while for n =0 (the usual
gauge-invariant Maxwell theory), A" behaves as a con-
formally coupled scalar field (g= —,

' ).
For modes well outside the horizon, aA, &~H ' or

~ kryo ~

&&1, and we have that
~
Fi,

~

ccri * where

m+ ———,'(1+&1 4n—). During dS, a~ —1/Hori so that

a/a=2(a/a) =2/ri, n =12b+3c, and
~
F„~cca

During either RH or MD, when p ~a, we have that
a ccri, n=12b+6c, and

~
Fi, ~

o:a +— . During the RD
epoch, when p~a, we have that a ~g, n =c, and

~
F&

~

~ a —.Again we note that for b = ——,
' and c =0,

A" behaves precisely as a minimally coupled scalar field;

~
Fl,

~

o- a and p~ &x a
For n =0 (standard electromagnetic theory), or n& ——0

in the case of a scalar field, the energy density associated
with a given mode always decreases as a, just as one
would expect for a conformally coupled, massless field.
However, in the minimally coupled case, /=0 (and
n&lri = ii/a ) fo—r the scalar field or b = ——,', c =0 (and
n /ri = —ii/a ) for the electromagnetic field, the energy
density in a given mode only decreases as a when the
mode is well outside the horizon. That is, in the minimal-
ly coupled case the energy density in a superhorizon-sized
mode decreases less slowly than the usual -a (or "adi-
abatic result" ), by a factor of a . In the case of the gravi-
ton or a minimally coupled scalar field this is known as
"superadiabatic amplification" (Refs. 16 and 17). (The
equation of motion for gravitons, the tensor perturba-
tions of g„,is precisely that of a minimally coupled sca-
lar field. ) For (&0, the energy density decreases even
more slowly. Physically "superadiabatic amplification"
occurs because for g & —,', the field has a negative effective
mass-squared term which leads to an instability and "su-
peradiabatic" growth.

Once b and c are specified, it is easy to compute the be-
havior of Fl, as a function of a(ri). It is then straightfor-
ward to compute the amplitude of a given fluctuation and
the energy density associated with that fluctuation. Be-
fore doing so we must consider the effects of the conduct-
ing plasma in the Universe.

In a highly conducting plasma, one expects the mag-
netic flux through an arbitrary comoving loop to remain
constant. In the expanding Universe, this implies that
p~ ~a . This well-known result can be seen directly
from the Maxwell equations by including a current
source term l=o.,E and letting o,~~. We show this
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ps(k)

ptot ]

M
mp)

(2.17)

During the rest of the dS, ps(k) cc a 'i'+ ' while the to-
tal energy density of the Universe pfot po M ~const'.
During RH, for T ~ T„p~(k)~ a''t ', while the energy
density of the Universe, p„,~ a . For T T„

for our modified Maxwell equations in the Appendix.
Here we simply summarize the conclusions reached in

the Appendix. The conductivity of the Universe is pro-
portional to the temperature of the charged particles
present. During the de Sitter phase, the temperature is
exponentially small and the conductivity is negligible.
During reheating the coherent oscillations of the inflating
field are converted into relativistic particles. Assuming
that a reasonable fraction of the particles produced are
charged, by the end of RH, the conductivity is very high
and, in fact, is the dominant effect for determining the
evolution of the magnetic field. We conclude that there is
some temperature T, , (MTitH)' ST, ~ TRH, at which
the plasma effects become dominant, and that for T ~ T, ,

pz necessarily evolves as ~ a . An exact calculation of
T, depends on the details of the reheating process. In
particular, one must track the number density of light,
charged particles during RH. In the Appendix we
estimate the value of T, . We find that
T, -m tn(( TR HM}' '

(TitHmpi) ] though we must
stress that this is only an order of magnitude estimate.
Although the details of reheating (e.g., what types of par-
ticles are created as the coherent oscillations decay, etc. )

are model dependent and hence uncertain, it seems very
certain that by the time the Universe becomes radiation
dominated ( T= TRH ) the conductivity will be very high.

We are now ready to calculate the energy density in
the kth mode of the magnetic field. Let
p—:m = —,'(1 —&1 48b —12c—) (m being evaluated in

the dS phase) and q=—m+ ———,'(1+&1—48b —24c ) (m+
being evaluated in RH). The exponents p and q corre-
spond to the fastest growing solutions for Fk in the dS
phase and RH, respectively. As discussed earlier we as-
sume that quantum fluctuations in the electromagnetic
field are excited during the de Sitter expansion and that
once these fluctuations cross outside the horizon, they
can be treated as classical fluctuations in the electromag-
netic field. At first horizon crossing (a =a, ), the ratio of
the energy density stored in the kth-mode magnetic field
fluctuation, p~(k), to the total energy density in the
Universe, p„„is given by

p~ ~a, due to the high conductivity of the Universe.
The invariant measurement of the magnetic flux on the
scale A, , r =pz ( k ) /p, is therefore

—2X(p +2)
mp)

—8q /3

4(q +2)/3 T 4(q + 1)/3
RH

mp)

(2.18)

where N(A, ) is the number of e-folds the Universe ex-
pands between first horizon crossing and the end of
inflation. The wavelength dependence of r in Eq. (2.18)
enters through N(A, ). Using Eq. (2.4) for N(A, ) we find

4(q —p) /3

1O25 )
—2IP + 2)

mp)
' —8q /3

mp)

2(2q —p)/3

mp)
g —2(p+2)

Mpc (2.19)

irrespective of whether Th„occurs during the RD or
MD phases.

Before evaluating r for different inflationary scenarios
(i.e., different choices of M and TRH) it is important to re-
call the two constraints to M and TRH discussed earlier.
First, production of very-long-wavelength gravitons dur-
ing the dS phase leads to distortions in the microwave
background; the requirement that these distortions not
exceed the present upper limits to the microwave anisot-
ropy leads to the constraint that M & 10 m p~. Second,
we require that M, TRH 1 GeV so the Universe becomes
RD before nucleosynthesis.

Using Eq. (2.19) one can determine the energy density
in the magnetic field on the comoving scale A, . To do so,
one must specify M, TRH, and p and q (or equivalently b

and c). We illustrate in Table I the range of results possi-
ble with a few examples. The measure of the magnetic
flux r =(ps Ipr) ~ i Mz„as well as p, q, M, TRH, and the
power-law exponent of the A, dependence of r are tabulat-
ed in Table I.

From Table I it is clear that there is a wide range of
choices for p and q (or equivalently, b, c), and M and TRH
such that the strength of the large-scale magnetic field
generated could be astrophysically interesting. The
growth in magnetic flux is analogous to the phenomenon
of "superadiabatic amplification, " and occurs because of
the appearance of an effective negative mass squared for
A" in its equation of motion in conformal coordinates.

TABLE I. Results for r =(ps Ip„)~, M~, the magnetic field energy density on a comoving scale of 1

Mpc, relative to the CMBR for the "RA" model. The dependence of r upon comoving scale A. is
r~A,

TRH (Gev)

lp'
l017

lp'
&017

m (Gev)

lp17

lp17

lp17

l pl7

r, (aeV)

l 012.3

lO"
ip12. 3

lO"

iogio(r)
l 1 M.

—57
—56
—13
—8

2.0
2.0
0.0
0.0
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One might wonder whether a more general Lagrangian
with a negative-mass-squared term for A" would lead to
a similar growth of magnetic flux. In principle the
answer is yes, but the problem is that the mass squared
must be large ( —m -H } during inflation and reheating
to be of use, and negligible today (

~

m
~

5 3 X 10 eV)
to be consistent with experimental limits to the photon
mass. For the case studied here —m -H for all times,
so that m is large enough to be of use during inflation,
and sufficiently small today (

~

m
~

-H —10 eV}. It is
clear, for example, that a constant mass cannot both be
large early on and small today. It is, of course, possible
that some other mechanism might generate a large nega-
tive effective mass squared for the photon early on, but
which is small today (e.g. , some kind of unusual spon-
taneous symmetry breaking}.

R =gap„,(1—3y)/m pi,
R 0= 4m'p~o~(1+3y)/m p

R'; =4mp„,(1—y)/m fq,

R '0; ———4mp„,(1+3y)/3mpi,

(2.24)

calculating one-loop vacuum-polarization diagrams in
curved space. Since their results are probably not applic-
able for the case of interest to us, R jm, ~~1, we will
leave b, c, and d as arbitrary parameters.

We will study Eq. (2.22) in an FRW background
spacetime with p =yp for which it follows
that p ~ a '~+r'~

&
«~+r]~[~+3r' anPtot I Ptot

o: a "+r' . The curvature tensors are functions of time
only and the nonzero components are given here in terms
ofp„,and y:

C. RF terms
R'~;j ——8mp„,/3mp~, i&j

(2.25)

We now consider the coupling of gravitational and
electromagnetic fields through terms in the Lagrangian of
the form RF . The most general Lagrangian containing
such terms can be written

& F FP~+.+g (2.20)

where, as previously discussed, we take the dimensional
quantity in the coupling constant of the additional terms
to be the electron mass. The equations of motion, found
by varying the action with respect to A ",are

V"F„„+ V"[bRF„„+,'c(R „Fq, R—gq„)—

+dR "„gq„]=0 . (2.22)

These equations were studied by Drummond and
Hathrell' who computed the coefficients b, c, and d by

I

Xg = — ( bRF„„F"'+cR„,F""F"„+dR „„q„F""F"),
4m,

(2.21)

where i,j= 1,2, 3 are spatial indices. Here and
throughout this subsection, there are no implicit sums
over spatial indices.

The nonstandard terms in Eq. (2.22) are formally of the
order of R/m, 2 relative to the usual V'"F„„term. Since
R =O(p„,/m f„),they dominate (are smaller than) the
usual V"F„„term for p„,& m f„m,= (10 GeV}
[p„,S(10s GeV)4]. Thus for R/m2»1 we can neglect
the usual V"F„„term in Eq. (2.22). Furthermore, in
evaluating the covariant derivatives, one finds that the
terms involving Christoffel symbols drop out and so we
have

8"[bRF„„+,'c(R„"F„—R,F „)+dR„—~"F„„]=0.

(2.26)

It also follows that the equations for A, ( k, ri )

= fd3k e'" *A;(x,ri) in the Coulomb gauge,

~B;A;=0, are

b[R(A;+k A;)+RA;]+ [(R o+R';)A;—+2R'(k A(+(R O+R ', )A, ]+2d(R 'O, A, +R'1, kA, +R '0;A;")=0.

(2.27)

We note that in de Sitter space (y= —1), Eq. (2.26)
reduces to

ponents of the curvature tensors in Eq. (2.27} we find

[6b(1—3y) —6cy —2d(1+3y)] A, +—A, =0,
po( 12b +3c +2d )(PF„=0, (2.28)

where, because Ho is a constant, the solutions are the
same as those found using the usual Maxwell equations in
flat space. This point was discussed by Drummond and
Hathrell. '

We are interested in modes well outside the horizon,
~
kg

~
&& 1, and so we can neglect terms of order k R A.

Using Eqs. (2.23)—(2.25) to evaluate the various com-
A;= A;(A, )

Ptot
(2.30a)

(2.29)

where s—:d lnp/d in'= —6(1+y)/(1+3y). The solu-
tions to this equation, which are independent of b, c, and
d, are A, =const' and
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A; = A;(A, )
1

' (7+9y)/2

+const', (2.30b)

where p«, (A, ) [A;(A, )] is defined to be the total energy
density [electromagnetic potential] when the scale
crosses outside the horizon during inflation and a =a, .
The constant term in Eq. (2.30b) leads to ps cca and is
therefore uninteresting for our purposes.

It is useful at this point to compare these results with
those for a free Maxwell field (i.e., b =c =d =0). For the
free field, Ai'cc(coski}, sinks) irrespective of the value
of kri, and which for

~
k2)

~
&&1, reduces to A"

cc(const', rl). (That the form of the solution is indepen-
dent of whether kg &1 or kgb 1 reflects the conformal
invariance of a free Maxwell field. ) During the de Sitter
eXPanSiOn, 2) cc —I /HOa and y = —1, and it iS eaSy tO See

that the results for the usual free Maxwell field and for
the RF coupled Maxwell field coincide, as was noted
above. One can see that for y & ——'„there is a growing
mode solution for A" which can quickly come to dom-
inate over the A "=const' solution. Thus, if we are to ob-
tain significant production of primordial magnetic flux
we are led to consider power-law inflation.

As discussed earlier, for acceptable power-law inflation
we must have

M
X

Cm mp)
(2.32)

Of course, y must satisfy y &y,„(M,T„H), and p«, (A, ) is
given in terms of p«, (3000), the total energy density
when the present Hubble volume crossed outside the hor-
izon during power-law inflation, by the expression

ptc, (A )/p„,(3000)= (3.8 && 10 )"A,

Bringing everything together we have

(2.33)

log&o=
3+5y 4

1+y log io[p«, ( 3000) /m pi ]

+15 +1.3 log, o(M/mp, )
7+9y 1 —3y
1+y 1+y

+6.6y —2y log, pA M~ C', (2.34}

in the magnetic field fluctuation with comoving wave-
length A, relative to the CMBR:

(g)
'

(g)
' 2(1+2@)/(1+r)

Ptot Ptot
4 2 2

mp) Cm mp)
( l —3y)/3(1+ y)

1 & y & ymax &

y,„=(xm;„—3)/(3 —3x;„),
(2.31a)

(2.31b)

where

x;„=0.135 1+0.51og&p
M

mp,

M TRH1+0.0221og &p +0.0111og ]p
mp) mp) y =y,„=(x;„—3 ) /(3 —3xm;„),

where

(2.35)

where y =3(3+5y }/( I +3y ) and C'= [(7+9y )/3(1
+y)]log, C.

We will now evaluate the energy density in large-scale
magnetic fields for different power-law inflationary
scenarios (i.e., different choices of M and y). It is both
difBcult and cumbersome to analyze the above expres-
sions in the general case and so we search for the "best
case scenario. " To begin we saturate the graviton con-
straint [Eq. (2.6)]: p„,(3000)/m p, =10 so that

and the plausible upper limit to y ax is ——0.5. We also
need to have ——,

'
& y & y ax to take advantage of the

growing mode solution.
We now calculate the energy density in large-scale

magnetic fields relative to the CMBR. For simplicity we
take TRH ——M. Relaxing this assumption does not quali-
tatively change our results. At first horizon crossing we
have ps/p«, (A, }=p«,(A, )/mpi for power-law inflation.
This is just the analogue of Eq. (2.17). During PI,
piilp«, cca "+ r'ccp,„"+' "+ ', Where We aSSume
that y & ——,

' and consider the fastest growing mode
of A ". This behavior continues until pt f

=max(Cm, m p, ,p, } where Cm, m pi is the energy density
at the time when the RF terms become subdominant
and p, ( &M ) is the energy density when the plasma
effects become important and freeze in the magnetic flux
present. Here C = [6b ( 1 —3y ) —6c) —2d ( 1+3y ) ]
[see Eq. (2.29)]. First, consider the case Cm, mpi ~M
(i.e., growth ceases before plasma effects become impor-
tant). Again, we compute r =pii/p~, the energy density

x;„=0.135[1+0.51ogio(M /m pi ) ]

&& [1+0.0331og,o(M/mpi)]

We then evaluate r =pz/py for values of M and y satisfy-
ing Eq. (2.35). Our results for r and the scaling of r with
A, are given in Table II.

The best case scenario gives r(1 Mpc)-10, ap-
parently far too small to be important for galactic
dynamos or other astrophysical effects. This failure illus-
trates a problem generic to the RF terms. On the one

—0.7
—0.65
—0.6
—0.55
—0.5

lO'
l07 I

io'
500

1

—80
—71
—68
—69
—76

2.7
1.6
0.0

—2.3
—6.0

TABLE II. Results for r=(ps/pr) ~, M~ for the "RF "
model. Again, r ~A,

log&o(r)
I 1 M
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hand, it is clear from Eqs. (2.30) that growth in the mag-
netic flux requires p„,to be changing rapidly (i.e.,
y » —1). On the other hand, we want fields to exit the
horizon during PI and reenter the horizon during the RD
or MD phase and this requires that during PI, H ~ p,'„is
not changing too rapidly (i.e., y & ——,'). Finally, there is

the fact that the RF terms are negligible for T &10
GeV. The end result, when all of the various constraints
are taken into account, is that the energy density in
large-scale magnetic fields arising from the RF terms is
small.

III. SCALAR AND AXION ELECTRODYNAMICS

In this section we discuss preliminary work on models
in which the electromagnetic field is coupled to other
nonconformal, matter fields. In particular we consider a
massless, charged scalar field, minimally coupled to both
gravity and the electromagnetic fields. Scalar electro-
dynamics in very special cosmological models has been
considered by a number of authors. Ford has studied
the stability of a charged scalar field in de Sitter space to
determine if an instability of the coupled system might
render de Sitter space unstable, and perhaps provide a
mechanism for canceling off any cosmological constant.
Here our hope is that the energy density in the minimally
coupled scalar field which in decreasing only as a will
couple into A " resulting in similar superadiabatic
amplification. We also consider the axion, which,
through the anomaly couples to E B. Thus the axion
field, too, could provide a source term for large-scale
magnetic fields.

The Lagrangian for massless scalar electrodynamics is

then be written as

Ak-2ea'k'I pk ~

(1+ek '4k), (3.5)

where in the above expression, we have dropped the vec-
tor index i. Neglecting the back reaction of the elec-
tromagnetic field on the scalar field, for

~
kri

~
&&1 we

have
~ pk ~

k =Ho, and it follows that

Ak -2ea kHO(1+ek A„}. (3.6}

We first study this equation to lowest order in e though
we will show in a moment that such an analysis is funda-
mentally Aawed. Keeping only the lowest-order term in
e, the current term, one finds that in dS, A& ~ lna+const'
and in RH, AI, ~a . This would imply that during
dS magnetic flux undergoes slow growth [pa /p„,
oc(lna) a ] and that during RH it undergoes rapid
growth: pa /p„,~ a . One might suppose that this indi-

cates an efficient transfer of energy from the scalar field
to the electromagnetic field during RH. However, if one
takes into account the second-order term in e, then the
solution is apparently Ak ———1/ek +(decaying terms).
We do not claim that this is indeed the correct solution
or even that it displays the gross features of the correct
solution. The appearance of the coupling constant in the
denominator suggests that nonperturbative effects are im-
portant and that a perturbative analysis may be Qawed.
We do believe that the scalar electrodynamic system is
potentially very interesting and we are currently studying
the full coupled equations of motion.

Next consider axion electrodynamics. For energies
well below the Peccei-Quinn symmetry-breaking scale f„
the effective Lagrangian for axion electrodynamics is

D„Q(D"$—)"—,'F„„F"',— (3.1) ,' d„88"8 ,—'F—„„F"'+g—,—8F„F"", (3.7)

(I}+2—P —V P= —g (2ieA;8;P+e A, A, P),
l

(3.3)

where, as before, we work in the Coulomb gauge,
Ao ——8; A; =0. The source term on the right-hand side of
Eq. (3.2) contains two terms; a term involving only the P
field and a charge density term which gives an effective
mass to the photon.

The coupled equations are difficult to solve as they are
nonlinear. We are interested in the evolution of a partic-
ular Fourier mode AI, of the electromagnetic field. The
kth Fourier component of a term such as P'8;P is

f d x e'"*P*d;/=i fd q q;Pk P . (3.4)

As a first approximation we replace this expression by

The equation of motion, for Ak with
~
kg

~
&&1 can

where for simplicity we are neglecting the P field's cou-
pling to other fields. We note that it is not necessary that
the ((} field be exactly massless; only that its mass be «H
during the epochs of interest (p„,& TaH ). The complex
scalar field P couples to electromagnetism through the
usual gauge covariant derivative, D„=B„ieA„—

The equations of motion in an FRW background are

A; —V A;=iea (Qr};P"—P'8;P) —2e a A;
~ P ~, (3.2)

where g, is a coupling constant of the order a, and the
vacuum angle 8=/, /f, (P, =axion field). The equations
of motion are

a E+VXB=g,(8B+V8XE),
a2 Bg

1 8
a B+VXE=O,

a~ Bg

8+2—0+k 0+g, a E 8=0 .
a

(3.8)

(3.9)

(3.10)

The axion field, as other scalar fields, will be excited in de
Sitter space, giving rise to (8 )-(Ho/f, ), which in

principle can act as a source term for the electromagnetic
field A". The coupled equations are difficult to solve and
at present we have not completed our analysis. We note
however that the model is similar to the RF models.
The current on the right-hand side of Eq. (3.8) which
could potentially be a source term for large-scale magnet-
ic fields, depends on derivatives of the axion field and we
must look for models in which 0 is rapidly changing.

IV. SUMMARY

The origin of the primeval magnetic flux required to
seed the magnetic fields which are so ubiquitous and so
important in the Universe today is still uncertain. A pri-
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mordial seed field on the scale of -Mpc as small as
r=10 might be sufficient, and primordial fields as
large as r =10 could be required, and could have other
interesting cosmological consequences, e.g., initiating
currents in superconducting cosmic string loops (if they
are indeed present). For four reasons inflation seems like
an ideal candidate mechanism for generating such large-
scale, primeval fields very early on. Again these reasons
are (i) inflation provides the kinematic means of produc-
ing very large-scale phenomena via microphysics operat-
ing on subhorizon scales (see Fig. 1); (ii) inflation,
through de Sitter-space-produced quantum fluctuations,
provides the means of exciting quantum fields, including
the electromagnetic field; (iii) inflation takes place before
the Universe is filled with a highly conducting, charged
plasma and so it is possible for the magnetic flux

(equivalently r) to increase; (iv) during inflation and
reheating, a mechanism akin to "super adiabatic
amplification" (Refs. 16 and 17) can enhance long-
wavelength modes (those with A, ~H ') relative to the
usual pz ~ a evolution.

The fundamental obstacle that one must face is the
conformal invariance of the free field Maxwell theory
[pure U(1) gauge theory]. Conformal invariance ensures
that pz ~a, irrespective of wavelength and plasma
effects. In this case the primeval flux produced is a disap-
pointing r =pz(k)/pr —10 '

A,&~„independent of M
and T&H. Such a primeval magnetic flux is apparently
very far from being of astrophysical or cosmological in-
terest.

The key then is to break the conformal invariance of
electromagnetism. We have considered two mechanisms
in detail: (1) "RA terms" which explicitly break confor-
mal as well as gauge invariance; and (2) gauge-invariant
"RF terms, " which arise in any case from one-loop
gravitational corrections. Both possibilities are computa-
tionally straightforward to analyze. In case (1) the field
equations can be recast in a form analogous to those for a
massless, free scalar field, and the primeval fields which
can be generated (in a manner analogous to "superadia-
batic amplification" ) are substantial, easily as large as
r =10 . In the second case, amplification above the
'conformal result' only occurs for power-law inflation,
and the largest primeval magnetic flux produced is only
of order 10 (on the scale of 1 Mpc).

We also briefly discussed two other possibilities for
breaking the conformal invariance of electromagnetism:
(1) the addition of a massless, charged and non-
conformally coupled scalar field and (2) the coupling of
the electromagnetic field to an axion (via the anomaly).
While both of these possibilities seem on the face of it
more natural, the analysis is more difficult. Possibility (1)
seems very promising, and work is still in progress.

In sum, the generation of seed, primordial magnetic
fields through inflation still appears to be a very attrac-
tive possibility. However, because the seed fields which
result depend upon breaking conformal invariance and,
moreover, the details of how it is broken, at this time a
clean, definitive prediction does not seem possible. This,
of course, is in stark contrast to the predictions for the
resulting adiabatic density perturbations and gravita-

tional-wave perturbations and, is understandably some-
what disappointing. There is the hope that perhaps in
the not too distant future a unified theory of nature (e.g. ,
superstrings) could rectify this situation by making
definite predictions about the gravitational couplings of
all the quantum fields, thereby eliminating the arbitrari-
ness in the present calculation and making a definitive
prediction possible.
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APPENDIX

In this appendix we discuss in more detail the effects of
the conducting plasma in the Universe on the evolution
of cosmological magnetic fields. These effects are taken
into account by including, on the right-hand side of Eq.
(2.11), a current source term J=o,E, where o, is the
conductivity of the plasma and J is the ordinary current
(that measured in an orthonormal coordinate system).
Proceeding as we did before, we find, instead of Eq.
(2.15),

~ ~
2 nFk+k FI(;+ 2 Fp = ucaFk (Al)

For o, && 1/ i)-aH we find that BF/Bri ~0 and
F-const'. As discussed in the text this implies that
pii o: a (conservation of inagnetic flux).

Here we will estimate the conductivity 0., during the
RH, RD, and MD phases, with the purpose of demon-
strating that it is almost always very large. To do so, we
study the motions of charged particles under the
influence of an applied electric field E, and for simplicity,
we take into account only those scattering interactions
which significantly change the momenta of the charged
particles, thereby ignoring subtleties, e.g., multiple soft-
photon interactions at low teinperatures (i.e., Coulomb
scattering) which can in principle be as important, or
even more important than Thomson scattering. Our dis-
cussion here is only intended to give a rough estimate of
the conductivity in the early Universe, and to illustrate
that during the RD and MD epochs, and quite possibly
most of the RH epoch, the Universe was a highly con-
ducting plasma. A more detailed discussion of the elec-
trical conductivity in the early Universe can be found in
Harrison, ' and references therein.

First we calculate the conductivity o, during RH. As
noted, o., depends on the number density of charged par-
ticles n and therefore on the details of the reheating pro-
cess. In what follows we will make the seemingly reason-
able assumption that the number density of charged par-
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e neto, =min mo' m
(A2)

During RH, p„,~a and decreases from M to TRH
whereas the energy density in radiation, pz —T decreases
from (MTRH ) to T„H,and varies as t ', from which it
follows that p„,—T„„T'.During RH, n = T',
o =e /T [the cross section for interactions mediated by
a massless gauge boson, in which significant momentum
( —T) is transferred] and the particle inertia is T. Putting
all this together we find

T e mp] TRH
2 2

0., =min
2e T

(A3)

We define T, to be the temperature when the Universe
first becomes a good conductor, i.e., cr, =H. Using
H=T /TrtHm p, and neglecting numerical factors, we
find that T, =(mp~TttH)' . We note that T, & TRH so
that plasma effects should become important during RH.
Also, if T, &(T„HM)' (i.e., M &mp, T„„),plasma
effects should be important throughout RH. In sum-
mary, we have

T, =min[(TRHM)', (TRHmp])' ] . (A4)

Once again we caution that our estl. mate for T, is neces-

ticles n =pr/T; i.e., there are about as many charged par-
ticles around as there are other types of relativistic parti-
cles.

In an electrically conducting plasma, J=nev where v
is the mean velocity of the charged particles. Because of
the electric field E, charged particles acquire a drift ve-
locity v-eEr/m, where m is the inertia of the particles
(rest mass for a NR particle; energy for an ultrarelativis-
tic particle). The quantity r is the average time between
particle interactions, r = 1/n 0, where o is the interaction
cross section. It is important to note that if 1/no is
greater than the age of the Universe, t, then we should
take r=t W. e have that J=ne Erlm with r=min(1/
n o, t) giving

sarily dependent upon the details of RH; in particular,
upon the fraction of charged particles produced by the
decay products of the coherent oscillations.

Next consider RD. In the usual radiation-dominated
regime which follows reheating we can be fairly certain
that a fraction of order unity of the relativistic particles
present are charged. If not present initially, they will
quickly be produced by particle interactions. The con-
ductivity then will be very large: o., —T /e and

o,(ria)-o, /H-e (mp~/T) &&1.
After the epoch of e annihilation ( T-0. 1 MeV), the

only charged particles present are the —10 ' electrons
and ions (p, D, He, He, Li) per photon. The number
density of charged particles is n —10 ' T, and
o -o Ts, „„-e/m, /T . The conductivity is then
o, =10 ' m, /e . The measure of the conductivity,
o,ga —o, /H, is still very large: rr, t = 10
(m, mp~/e T ) &&1.

Finally, when the Universe becomes matter dominated
(T=T,q-6 eV) and when the electrons and ions re-
combine ( T——, eV), the residual ionization

[n& /ns-2X10 (Q~h) '=5X10 ] is sufficient

to keep the conductivity high. To be more specific:

H ' —10' sec(T/eV) . From this it follows that
o, —10 ' (m, /e ) and o, t)a=o, /H-10 (T/eV)

In sutn, from a temperature of T„„(andprobably as
high as T, ) there is every reason to believe that the
Universe was a highly conducting plasma so that
pz o:a for all modes irrespective of kg. From this it
follows that once the Universe first became highly con-
ducting, the magnetic flux which existed then is frozen in,
and the ratio r =ps(k)/p remains constant thereafter,
providing an invariant measure for any magnetic flux
created. (Of course, if the onset of high conductivity
occurs during RH, while the entropy is still increasing
and p ~a, r will decrease until the end of RH when
entropy production ceases and p~ ~a . Where neces-
sary, we have taken this into account. )
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