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We discuss in detail photon propagation within a medium. The results are then used to calculate
the cross section of the photoproduction of pseudoscalars within the stellar medium in the most
general case when the pseudoscalar has an appreciable mass and the photon is also massive due to
matter effects. We discuss the Compton-type and the Primakoff-type processes, including the in-

terference of them. Finally, we use the cross section to estimate the solar energy leakage due to ax-

ions. This produces bounds on the axion parameters which are discussed.

I. INTRODUCTION

It is generally agreed that the most elegant sofution of
the strong CP problem is through the spontaneous break-
ing of a new global chiral symmetry. ' The Weinberg-
Wilczek axion, which assumes that the Peccei-Quinn
symmetry breaks at the weak scale, has been ruled out ex-
perimentally. If one raises the symmetry-breaking scale
to a much higher value the resulting axion is extremely
weakly coupled to the ordinary matter. It is then
effectively invisible in all laboratory experiments and only
astrophysical considerations can constrain its parameters.

If axions exist, stars will lose energy by producing ax-
ions which subsequently come out of the stellar medium.
For the main-sequence and red-giant stars, the mecha-
nisms mostly responsible for this energy loss are the
Compton-type process shown in Fig. 1 and the
Primakoff-type one shown in Fig. 2. Only at higher tem-
peratures and densities other axion production process-
es ' such as the annihilation channel e++e ~@+a,
plasmon decay y ~~y+a, or more exotic axion brems-

J' Q

strahlung processes such as e+(Z, A)~e+(Z, A)+a, or
n +n~n +n +a, etc. , come into play where a is an ax-
ion, (Z, A) a nucleus, and n is a neutron.

In this paper, we calculate the energy loss of the Sun
owing to the photoproduction of axions through the
Compton- and the Primakoff-type processes. We deter-
mine the cross section due to the processes in the most
general case when the axion has an appreciable mass and
the photon also acquires a mass due to the plasma effects
inside the stellar core. In doing this, we also include the
interference between the two processes, an effect not dis-
cussed by previous authors. ' We show in detail how to
take into account the matter effects in the stellar core in
determining the cross section.

We organize the paper as follows. In Sec. II we ana-
lyze the plasma effects due to the interaction among pho-
tons and a dense electron gas in the stellar core and show
how only the transverse photons acquire a mass given by
the plasma frequency and that the longitudinal-photon
contributions are suppressed in the case of interest, i.e.,
when the temperature of the heat bath is much larger
than the plasma frequency. In Sec. III we show how to
take into account the possibility of producing a real, lon-
gitudinal photon in the intermediate state of the
Primakoff-type process. Then in Sec. IV we compute the
photoproduction cross section of any pseudoscalar parti-
cle in stellar core. We find the cross section of the pro-
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FIG. 1. The Compton-type diagrams for photoproduction of
pseudoscalars.

FIG. 2. The Primakoff-type diagram for photoproduction of
pseudoscalars.
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cess without any assumption about the smallness of the
mass of pseudoscalar. Applying these formulas to the
case of light axions, we compute the solar energy loss due
to axion emission in Sec. V. Demanding that this energy
loss is not larger than the observed solar luminosity, we
obtain a general bound on a combination of the axion pa-
rameters. In Sec. VI we discuss the implications of these
bounds on axion models. We also discuss the bounds on
models involving Majorons ' in that context.

II. PHOTON PROPAGATOR WITHIN A MEDIUM

In a vacuum, the Primakoff term of the photoproduc-
tion cross section has a logarithmic singularity in the lim-
it in which the axion mass m, is neglected. This effect is
important since m, is very small compared to the other
mass scales involved. However, as emphasized by Fukug-
ita, Watamura, and Yoshimura, if the plasma effects in
the stellar interior are included, the photon effectively ob-
tains a mass and the logarithm will be cut off at m . This
produces important corrections, as we will see. The con-
ventional wisdom is to include the plasma effects by in-
troducing the effective photon mass in the propagator.
Since the discussion of plasma effects in luminosity calcu-
lations appears to be scattered in the literature, ' ' in
this section we include a careful discussion of the same
for completeness.

Let q" be momentum of the propagating photon and
u" the four-velocity of the center of mass of the medium
in which the propagation takes place. In the covariant a
gauge, the tree-level photon propagator is given by i 6„„,
where

b,„(q)= 1

q

pqv
gPv 2

q
(2.1)

The quantum corrections induce a self-energy ~„for the
photons. It is transverse because of gauge invariance:

q "m.„„(q)=q "m„(q)=0 . (2.2)

It is convenient to define the following tensors which are
orthogonal to q":

g pv—=gpv—
qpqv

q

(q u)q„
q

(q u)q„
uv-

q

(2.3)

1—(q-u)

In absence of any medium, u" and hence Q"" cannot be
defined, and so the vacuum polarization is proportional
to g„v,which is why the photon is massless in the vacu-
um. Within a medium, however, the most general form
of n„„(q)satisfying Eq. (2.2) is given by

~„„(q)=~,R„„+~,Q„„, (2.4)

where R„=g„,—„Q„„andnr and a&are functions .of
the Lorentz-invariant quantities q and q.u. The full
photon propagator is iD„,where

D„.=(S„„'+~„,)
'—

2 2—Kz- q —77L

(1—a)q„q„
(2.5)

The quantum correction to the free Lagrangian of the
electromagnetic field is given by —,

' 3"~„A. Using Eq.
(2.4) and comparing with the momentum-space Lagrang-
ian in a medium, we can identify the dielectric and the
magnetic permeabilities of the medium by

1TLe=1— 1—=1+
p

(q u)
777

q

(q u) —q
(2.6)

In the astrophysics literature, it is customary to denote e
by c& and define

HATT

e, =1-
(q u)

(2.7)

qoE'f =q transverse modes

a=0 longitudinal modes .
(2.8)

This equation gives the dispersion relations for the trans-
verse and the longitudinal photons, which we write down
more explicitly in what follows.

For a nonrelativistic gas,
2

COp

Et =E'=1
2

qo
(2.9)

so that @=1. Here cop is the plasma frequency For a.
nondegenerate gas of electrons, the value of cop can be
calculated by simple considerations:"

2
COp = n, e

me
(2.10)

Substituting Eq. (2.9) in Eq. (2.8), we obtain the following
dispersion relations for transverse and longitudinal
modes:

~r(q) =~p+q2 2 2 2 2 (2.11)

Thus the transverse modes have a particlelike dispersion
with the effective mass given by

2 2m =COpy (2.12)

The longitudinal photon, on the other hand, does not
have a particlelike dispersion at all. However, although
it looks strange, it is well known that for propagation of
waves in a medium, one gets in general dispersion rela-
tions which are not particlelike. For example, for pho-

Using these as the independent objects rather than s and

p makes the equations look much simpler, as we will see
below.

For convenience, from now on we go to the rest frame
of the heat bath so that u"=(1,0) and q u=qo. The
poles of D„„ofEq. (2.5) occur when either m.r or n.r
equals q . In the notation of Eqs. (2.6) and (2.7), these
conditions are
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nons in a crystal lattice, the so-called optical branch has
the energy almost independent of the momentum, ' just
like the second equation in Eq. (2.11).

Using Eq. (2.12) in conjunction with Eqs. (2.7) and
(2.9), we can now write down the propagator in Eq. (2.5)
in terms of the photon mass:

1 1

q 6' B(q e)
[qo —~i(q)]

~qp qo =coL (q)

+nonsingular terms .

D„(q)= —
2 (g„„+u&u+),1

q2 m2 P~
r

where

(2.13)

Using Eq. (2.16) and equating the residues obtained in the
two methods, we get

2mr

qp —mr2 2 (2.14)

In Eq. (2.13) we have dropped the terms involving q or
q, . This amounts to choosing the Feynman gauge. It is
easy to see that such terms do not contribute to the ma-
trix element for photoproduction of pseudoscalars since
the propagator connects to conserved currents in Fig. 2.

The problem at hand now is to find the wave functions
of the transverse and longitudinal photons. Writing the
wave function in the form

&o
l

A "(x}
I
q~&=V'i', i.«q~)e "" (2.15)

we determine Xq& by looking at the residue of D„„atthe
poles, which are given by the dispersion relations. The
polarization vectors satisfy

2

g e„(qA,)e„(qA,) = —R„,,
A. =1

e„(q3 )e„(q3 ) = —Q„„.
Starting from the definition

(2.16}

&0
l T[A&(x)A„(y)]l

0) =i f e 'i'" 'Di„(q)d4q, .(„)

1
Dpy(q) l i phd, Qg

——y & icy(q&)e„(q~)
q p

—cog+1 6

(2.18)

(2.17)

and following a standard analysis, ' one gets the one-
photon contribution as

2coT(q) =1 for A, =1,2,
B(qoe, )

Bqo qo ——cur(q)

2ai, (q)
(2.20)' —1

1—q
2

mr
N3 ——

q
a(q'e)

~qo

m
g e„(qA,}e„(qA.) = —g„„+u„u„
r Q

(2.21)

where the right-hand side is the same as that of the first
equation in Eq. (2.16). We have merely expressed it in
the rest frame of the heat bath and dropped the terms in-
volving q„and q since the coupled current is conserved.

III. THE IMAGINARY PART
OF THE PHOTON PROPAGATOR

qo ——co~(q )

The second equality in both cases is the result for a non-
relativistic gas, obtained by using Eqs. (2.9) and (2.11).

Therefore, the wave function for longitudinal photons
has a multiplicative factor [1—(q /m r )] ', which
means that

l qL l
(mr. For transverse photons there is

no such restriction, so that
l qr l

—T, the temperature of
the heat bath. This means that the contribution from the
longitudinal photons to the axion production cross sec-
tion is suppressed relative to that from the transverse
photons by powers of m IT. These powers turn out to
be large due to the strong

l q l
dependence. Since the ax-

ions are produced mainly at the stellar core and for our
cases of interest T„„»m r, we can neglect the contribu-
tion of the longitudinal photons altogether. We can
therefore take the external photon polarization sum as

r

where, for A, =1,2, coi ——coT, and for A, =3, coi ——coL [see
Eq. (2.11)). The residue at qo=coi is then just %~i/2coi.
On the other hand, we can start from Eq. (2.5}, use Eqs.
(2.6) and (2.7) to express the denominators in terms of s
and c, This gives, for the denominators,

For a main-sequence star such as the Sun we may
neglect axion bremsstrahlung, plasmon decay, and the
e+e annihilation processes. ' The dominant process is
photoproduction, represented in the diagrams of Figs. 1

and 2.

1

—q +qpe,
1

B(qoe, )
[qo —~T(q}]

Bqp qo
——cuT(q)

e(p)+y(k)~e(p')+a (k'), (3.1)

a being the axion field. The interaction Lagrangian of the
axion is

+nonsingular terms, X=igaeys+ ,'ae„i aF""F ~ . — (3.2)

(2.19)
However, if we start calculating the amplitude of Fig. 2
by using this Lagrangian and the photon propagator of
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Eq. (2.13), we immediately face a problem. This arises
since the quantity 2), defined in Eq. (2.14), develops a
singularity within the allowed kinematical region. Since
this term owes its origin to the Q„„term of Eq. (2.5), the
correct thing to do here is to include the imaginary part
of the denominator of that term, i.e., the imaginary part
of n-L, in the propagator. Physically, this means that we
include the possibility that in Fig. 2, the internal line cor-
responds to a real, longitudinal photon. Instead of Eq.
(3.1), the actual process is now described by

2 2
qp

m +i e'

%=2 2 2
qp —m +iq p6'

(3.9)

IV. PHOTOPRODUCTION CROSS SECTION
OF PSEUDOSCALARS WITHIN A MEDIUM

We will use this modified propagator in the next section
to calculate the cross section.

yT(k)~a(k')+yL(q),

followed by

e(p)+yL, (q)~e(p'),

(3.3)

(3.4)

We calculate the cross section in the rest frame of the
heat bath, in which u"=(1,0). In that frame p" is not
necessarily (m„0),but is true to a good approximation
and we use it. The usual Mandelstam variables for the
process are

where all the particles are on their mass shells. The
reason that (3.4) can go through with a longitudinal pho-
ton and not with a real transverse one is to be found in
the unusual dispersion relation for the longitudinal pho-
tons.

In order to evaluate the imaginary part of mL, we first
note, from Eq. (2.6), that

s=(p+k) =m, +2m, co+mr,

t =(k —k') =q

u = (p —k') =m, —2m, co'+ m, ,

(4.1)

ImnL(qo, q) = q Ime—= qs' . — (3.5)

me m, f d p~f(r,p), (3.6)
p// p//

——m qo/ / q (

The imaginary part of the dielectric constant is responsi-
ble for the reversible energy loss in a collisionless plasma,
a phenomenon known as Landau damping. It is calculat-
ed in standard textbooks' and is given by

where co and co' stand for the photon and the axion ener-
gies, respectively. The amplitude is written as

M =M)+M2, (4.2)

where the terms on the right-hand side are the contribu-
tions from Figs. 1 and 2, respectively. Thus, using the
Dirac equations for the spinors u (p) and u (p'), we can
write

where f(r, p) is the distribution function of the electrons
in phase space, p~~

is the component of the electron
momentum p parallel to the direction of q, and the in-
tegral is over the components orthogonal to p~~. Since
T«m„ the distribution function f is given by the
Maxwellian form

and

Mi — e"u(p—')( Ag 'y„—Byqlt! ')ysu(p)

M2 —— iCe"[u—(p')y u(p)]

x (g "+u 'u "2))e„„2k k '~,

(4.3)

(4.4)

f(r, p)=n, (r)(2n.m, T) r exp( —p /2m, T) . (3.7)

Using this, we obtain
1/2

7T qpm y me
E'

3/2 2
pme

2
I q I

'T .
(3.8)

Following the same steps as in Sec. II, we can now write
the photon propagator in the form of Eq. (2.13), where
now we should replace Eq. (2.14) by

where 2) has been defined in Eq. (3.9) and we have intro-
duced the shorthand notation

s —m e

eg
27

u —m e

4ve

t —m 2
r

(4.5)

The cross section will involve (
~

M
~

), where the angu-
lar brackets denote an averaging over the initial spin po-
larizations and summing over the final ones. Carrying
out this separation, we obtain, for the pure Compton pro-
cess,

(
~

M
~

) =(A +B )[(s m, )(m, u)+—2m, m, +—m, mr]+2AB[(s —m, )(m, —u)+m, (s+u) —m, ]

2 —(A +B )[(s —m, )(m, —u) —4m, m, +m, m ]

—B2(m,2+m, u) (t 2m—, )(m,—+m, —u)+(s —m, —m, )
me
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+ AB [m, (t —2m, }+(m,+m, —u) —2m, m, ] (4.6)

The interference term is given by

(M*,Mz+c. c. ) = —2m, C(A +B) 2m, m ——,'(m +m, t)z—

and finally the Primakoff term is

4m, m
+ I

k x k'
I

' ReS+
e y(s —m —m } —4m me y

(4.7)

( IMz I
) =C t[mrm, ——,'(mr+m, t) ]—

Since

tm
+2m,'Ik&&k I' 1+2RW+ I& I'+

e y(s —m —m ) —4m me y

(4.8)

(s —m —m )
2 2 2

1c = e y

4m,
2—m
y 7 (4.9)

I
kXk'

I
=m, mr —,'(t m, ——mr )—— [(s —m, )(m, —u)+mrm, ],

4m,
(4.10)

and in the definition of 2), we can substitute qo= —t/2m, and
I q I

=(t /4m, ) —t, Eqs. (4.6)—(4.8) give (
I
M

I ) in

terms of the Mandelstam variables.

For the sake of convenience, we now define the dimensionless variable x as follows:

m, +m t=x(s m—, )—, m, u=(1 ——x)(s —m, ) .

The differential cross section is then given by

(4.11)

s —mdcT e

«16~Iz
where

I'= [s —(m, +mr )'][s —(m, —m )'] .

(4.12)

(4.13)

This gives the differential cross section for the most general case where both the axion mass and the photon mass are
nonzero. '

To obtain the total cross section cr, one needs to integrate Eq. (4.12) over x. The limits of this integration, found from
kinematics, are given by

x& &x &x2

with

(4.14)

xi z
——

t (s —m, +mr )(s —m, —m, )+ [(s —m, +mr ) —4sm ]' [(s —m, +m, ) —4sm, ]'~
) . (4.15)

2s s —m e

So far, we did not make any assumption about the mass of the axion. For the rest of the calculation, we assume
m, «m„m . Notice that the couplings g and x, and hence the quantities A, B, and C defined in Eq. (4.5), depend irn-
plicitly on the scale of the Peccei-Quinn symmetry breaking and therefore on the axion mass. Thus, to obtain the lead-
ing contributions in the present limit, we can set m, =0 after factoring out the coupling constants. We thus obtain for
the pure Compton term

2

( IM, I') =( g)'
(s —m, —m ) —4m, m

whereas the interference term is

x(s —m, ) —m

2(1—x) 2m
(4.16)

(M;Mz+c c )=8(eg) .X. —,'x—
1 —x

and the Primakoff term

4m, m

(s —m, ) (s —m, —mr ) —4m, m
(4.17)
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( ~M2
~

)=32(eg) X i
kxk'i' 1+2ReB+ /X) /'+2 2tmr

8m, (t —m ) (s —I,—m ) —4m, m
(4.18)

where we have introduced the dimensionless ratio

zm,x= (4.19}

the protons. Demanding that the resulting energy loss I.
be less than the observed solar luminosity, we obtain

g~(1.3x102O+6.9x102oX+1.4x102sX2) &1 . (5.5)

In the next section, we apply these formulas to calculate
the energy loss of the Sun owing to axion photoproduc-
tion.

This puts conservative bounds on the parameters g and g
and therefore on the axion models, which we discuss in
the next section.

V. SOLAR ENERGY LEAKAGE
DUE TO PSEUDOSCALAR EMISSION

Assuming spherical symmetry, the solar energy leak-
age due to axion emission is given by

Ro
L =4m f dr r n, (r)

0
1/2

z2

m& dN N X

(5.1)

where the differential cross section do/dx has been ex-
pressed as a function of x and co in Sec. IV. The axion en-

ergy is given by

2m
cv'=( I —x) to+

2me
(5.2)

using Eq. (4.1). The expression under the square root in
Eq. (5.1) is the velocity of the photon, which need not be
unity in the solar medium. The photon spectrum,
dn /dc@, is given by the Planck distribution formula

de r
77

(5.3)

To obtain the electron density distribution function, we
just assume that the Sun is composed solely of hydrogen
and helium. Then

n, (r)=n „„„(r)=[I+XH(r)],p(r)
2m'

(5.4)

where the hydrogen abundance function XH ( r ) and the
density profile function p(r) are found in standard
tables. '

We can now carry out the integration in Eq. (5.1).
However, before doing so, there is one point worth not-
ing. There are protons in the Sun, and the axions can
also be photoproduced off them. The amplitude for the
Compton-type term involving the protons will be
suppressed by the proton propagator. The Primakoff-
type term, on the other hand, involves the photon propa-
gator. Its contribution therefore is almost the same no
matter whether the fermion line in Fig. 2 is an electron
for a proton. Therefore, after performing the numerical
integration in Eq. (5.1} using the formulas in Sec. IV, we
just double the pure Primakoff term to take account of

VI. BOUNDS ON AXION PARAMETERS

In a general axion model, the parameters g and 7 are
independent and only the combination given in Eq. (5.5}
is bounded. In the literature, often some extra assump-
tion is introduced ' before obtaining the upper limits for
each of them. While the resulting bounds are true in
specific axion models, it is conceivable that one can ar-
range models which avoid the bounds. Therefore, we try
to keep our discussion as model independent as possible.

Hermiticity of the axion-electron and the axion-photon
interaction terms in the Lagrangian demand reality of
both g and X. From Eq. (5.5), which involves an expres-
sion quadratic in X, it is easy to deduce the condition for
the reality of 7 to be'

g2&7 7)(10 (6.1)

Similarly, we can rewrite Eq. (5.5) in terms of vm, and P
only, eliminating g using Eq. (4.19}. Demanding the real-
ity of 7 from that expression, we obtain

(zm, ) & 7. 1 x 10 (6.2)

However, by adjusting the sign of the real field a in Eq.
(3.2},we can always choose g to be positive. The sign of v
(and therefore of X) is then undetermined. In Fig. 3 we
show which region of the range of the coupling parame-
ters is ruled out by the constraint in Eq. (5.5). If one
wants to find the bounds on the scale of symmetry break-
ing, one will have to invoke the details of a model con-
necting the couplings with the scale.

For example, if we consider the emission of a Majo-
ron ' from the Sun, we put ~=0 since the Majoron arises
out of the spontaneous breaking of a nonanomalous sym-
metry. In this case, the only bound is the vertical asymp-
tote of Fig. 3 which almost coincides with the bound in
Eq. (6.1). If, in addition, we assume that g is given by the
naive estimate m, /v this implies that v &5.8X10 GeV
for the scale v of the symmetry breaking that produces
the Majoron.

While this bound holds for the simplest version of the
singlet Majoron model, it is easy to construct models
which violate this naive estimate. For example, in the
so-called triplet Majoron model, the global symmetry
breaks at a very low scale v but the Majoron coupling to
the electron is given by g =m, v/(250 GeV) . The bound
on g thus implies an upper bound v ~ 10 MeV. For a Ma-
joron model in the context of left-right-symmetric models
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of electroweak interaction, ' there are also extra suppres-
sions to the naive coupling so that the scale U can be
much lower than the estimate given above.

%'e now consider the other extreme of the hadronic ax-
ion models. ' In these models, g~0 but ~ is finite. The
relevant bound is now given by the horizontal asymptote
in Fig. 3. With the bound in Eq. (5.5), this coincides with
the bound given in Eq. (6.2). Once again, if we assume
the naive estimate of a =e /16m u and m, u =f„m„,we
obtain U21. 1&(10 GeV for the scale of the Peccei-
Quinn symmetry breaking and m, S 12 eV for the axion
mass.

In the Dine-Fischler-Srednicki model, there are two
different SU(2)L doublets that break the Weinberg-Salam
symmetry. One of them develops a vacuum expectation
value (VEV) u„and gives mass to the up-type quarks.
The other, with VEV U&, is responsible for the masses of
the charged leptons and the down-type quarks. Denoting
the ratio u„/uz by y, one gets g=[2y /(y +1)](m, /u)
and Ic=(e N/16m u)[z/(1+z)], where z =m„(uu )
/mz (dcI ) and is usually estimated to be about 0.56. N is
the number of light flavor of quarks, which is taken to be
3. On top of that, the bounds by the previous authors as-
sume that y =1. This extra assumption relates g and ~
and thus one can constrain the parameter U. In a more
general situation, the bounds can be read from the graph
in Fig. 3, as we emphasize before.

In conclusion, we have shown in great detail how the
plasma effects in the stellar core affects photon propaga-
tion. Using this, we calculated the rate of solar energy
loss due to photoproduction of light pseudoscalars. This
yields bounds on pseudoscalar couplings as shown in Fig.
3. In specific Majoron or axion models, this produces
more specific bounds, which we have also discussed.
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Since T «m, everywhere in the Sun and the part of the
photon spectrum that contributes most to the cross sec-
tion is co-T, we see that x «1 for all parts of the in-
tegration range. Thus, in Eq. (5.2), we can put co'=co to
leading order. This gives
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lcm'

f dx cu =coo'
dx

where

(A2)
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—
I 3.0

—
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—
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Allowed
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(eg)
( „)4' 8X 4co

16% 3m m me e y

Substituting Eq. (A2) into Eq. (5.1), we can write
Ro

1.=4m f dr r n, (r)F(r),
0

where

dnrF(r)= f dco cocr
0 cf6)

(eg)2 4Z'6 y
5

16m 3m, o e"—1

872T4
+ f dy {lny —1)

m, 0 e~—1

(A3)

(A4)

I'&IO &

FIG. 3. The bounds on g vs sc obtained from Eq. (5.5). The
bounds are a little bit different depending on the sign of ~, but
that difference is unappreciable on the scale of this graph.

+ ln dy . (A5}
SX T 4T ~ y

0

It is customary to define e(r) by writing
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Ro
L =4' f dr r e(r)p(r) .

Using Eq. (5.4) we thus obtain

(A6)
a =g'(I+4X)(1.89X10 "MeV),

b=g X (2.36X10 MeV),

c=g X (4.24X10 ' MeV) .

(A9)

1+XH(r)
e(r) = F(r) .

2Plp
(A7}

The integrals in Eq. (A5) can be done easily. The one in-

volving the logarithm can be performed even with the
help of a pocket calculator. The others are given in terms
of the g functions and can be read from the tables. We

get

In Eq. (A9), an additional factor of 2 has been included in
the terms b and e to take into account of the photopro-
duction of axions off protons.

Equation (A8) can be used to put constraints on g and
7, although the results are more model dependent than
those based on the overall energetics. However, as an ex-
ample, consider the function e(r) at r =0. Using the
tables' to find the values of f', p, and XH at r =0, we ob-
tain from Eq. (A8) the inequality

e(r)= —,'(1+XH) af' +bi +cf' ln (A8)
(1+XH }p g (I+4X)(1.51X10 )+g X (7.92X10 )(I . (A10)

where f'=T/10 K, p is the density in units of glcm,
and the coefficients a, b, c are given by

The departure of this formula from Eq. (5.5) is a measure
of the importance of the plasma effects in the Sun. As ex-
pected, it is most prominent in the Primakoff term.

Permanent address: Inst. de Ffsica, Univ. Federal de Rio de
Janeiro. Rio de Janeiro 21945, Brazil.

tR. D. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
~S. Weinberg, Phys. Rev. Lett. 40, 223 (1978); F. Wilczek, ibid.

40, 279 (1978).
M. Dine, W. Fischler, and M. Srednicki, Phys. Lett. 104B, 199

(1981).
4M. Fukugita, S. Watamura, and M. Yoshimura, Phys. Rev. D

26, 1840 (1983).
5A. Pantziris and K. Kang, Phys. Rev. D 33, 3509 (1986).
J. B. Adams, M. H. Ruderman, and C.-H. Woo, Phys. Rev.

129, 1383 (1967).
7Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett.

988, 265 (1981).
G. Gelmini and M. Roncadelli, Phys. Lett. 998, 411 (1981).
H. A. Weldon, Phys. Rev. D 26, 1394 (1982).

~oV. N. Tsytovich, Zh. Eksp. Teor. Fiz. 40, 1775 (1961) [Sov.
Phys. JETP 13, 1249 (1961)];G. Beaudet, V. Petrosian, and E.
E. Salpeter, Astrophys. J. 150, 979 (1967); M. H. Zaidi, Nuo-
vo Cimento 40A, 502 (1965);J. F. Nieves, P. B.Pal, and D. G.
Unger, Phys. Rev. D 28, 908 (1983).

"See, e.g., N. W. Ashcroft and N. D. Mermin, Solid State Phys-
ics (Holt, Reinhart and Winston, Philadelphia, 1976), pp.
16-18. Their result differs from ours by a factor of 4m. This
is due to the difference of the units used.
See, e.g., Fig. 22.14 and related discussions in Ashcroft and
Mermin, Solid State Physics (Ref. 11).

&3See, e.g. , J. D. Bjorken and S. D. Drell, Relativistic Quantum
Fields(McGraw-Hill New York 1965)

t4See, e.g. , Eq. (30.2) of E. M. Lifshitz and L. P. Pitaevskii,
Physical Kinetics (Landau and Lifshitz course of Theoretical
Physics) (Pergamon, New York, 1981), Vol. 10. Their expres-
sion differs from ours by a factor of 4m because of the
difference of the units used.
In the limit m~ ~0, our definition of x coincides with that of
S. J. Brodsky, E. Mottola, I. J. Muzinich, and M. Soldate,
Phys. Rev. Lett. 56, 1763 (1986). Our final results for the in-

terference and the Primakoff terms also agree in that limit if
we identify their y with 2am, /g in our notation. In the pure
Compton term, their terms proportional to the axion mass

have a different sign than ours, but we believe that this is a
typographical error.

tsD. Clayton, Principles of Stellar Evolution and Nucleosyn

thesis, 2nd ed. (University of Chicago Press, Chicago, 1983).
We use the model of the Sun given in Table 6-6, p. 483.

~7Equation (5.5) can be interpreted as the statement that the
left-hand side of that equation is equal to some k which is
(1. Now we get an equation involving k. The condition that
the roots of P are real is g (7.7A, &(10 '. Equation (6.1)

merely strengthens this inequality.
A. Kumar and R. N. Mohapatra, Phys. Lett. 1508, 191
(1985); R. N. Mohapatra and P. B. Pal, University of Mas-
sachusetts report, 1987 (unpublised).

9D. B.Kaplan, Nucl. Phys. B260, 215 (1985).




