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Long-distance-physics approach to the Dm and D'm decays of B mesons
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A nonperturbative algebraic approach to nonleptonic weak interactions is applied to the newly
observed B~D~ and D m decays. Crude estimates of the branching ratios for these decays are
compared with experiments.

Recently, the ARGUS and CLEO Collaborations have
started to obtain information on exclusive nonleptonic
decays of 8 mesons. ' The reported branching ratios
seems to be smaller by more than an order of magnitude
than the values predicted by the method based on the
naive spectator modelz with the factorization (or
vacuum-insertion) approximation.

We have recently developed a nonperturbative algebra-
ic approach to nonleptonic weak interactions which deals
with long-distance physics in earnest but also maintains a
close contact with quark-line diagrams and applied it suc-
cessfully to nonleptonic weak decays of E and D
mesons. The method may be viewed as a kind of syn-
thesis, from a new perspective, of the two once popular
approaches: current algebra and broken Qavor symme-
try.

In this Brief Report, we discuss a crude application of
the method to the B~D m and D'ndecays. . The
theoretical framework and method are the same as used
in Refs. 3-5. See also Ref. 6 in which we have given a
comprehensive and detailed review on our algebraic ap-

proach.
First, we extrapolate the amplitude of the weak, three-

pseudoscalar-meson process such as 8—+De decays in-
volving a n meson, P, (p, )~Pz(pz)+m(q), to a slightly
unphysical point, where we evaluate the amplitude rather
easily by taking a limit q~O in the infinite-momentum
frame (IMF) of the decaying particle (i.e., p, =pz~ ov ).
This procedure efFectively achieves the limit q„~O
(@=0,1,2,3} without assuming the masslessness of the m

meson. However, the term such as (q.p, ) can now
remain finite in the above limiting procedure. Then we
can write the amplitude approximately as
M(P, ~Pztr)=Mac(Pi~Pzn')+Ms(P, ~Pzm). The
equal-time-commutator (ETC) part

METc(Pi ~Pztr)= —(t /f ~)(Pz I [V,H. ] I Pi &

is the same as in the old soft-pion extrapolation, but now
has to be evaluated in the IMF. (We consider always the
infinite-weak-boson-mass limit). The surface term which
was dropped in the old soft-pion approximation but now
survives can be expressed as

Ms(P, ~Pz~):— lim t [(f ) 'q„T„]
o Pi

=(i/f ) g[(mz —mi)/(m„—rni)](Pz
~

A
~

n )( ~nH
~
Pi )

(2)+ g [(mz —mi)/(mt mz)](—Pz (
H„(1)(l

(
A (P, )

I

Here T„=if d x(Pz(pz)
~
TIA„"( ),xH (0)]

~
Pi(pi))e 'e". A„(x) denotes the axial-vector current which transforms

like m, and f the decay constant of the n. meson. The summation g is extended over all the possible on mass sh-el!-
single-particle hadron states. In (1},we have already used the well-known commutation relation

[A,H ]=[V,H ] . (3)

where A and V~ denote the axial-vector and vector charges with the flavor a ( A = A
&

i Az, etc.). —
We apply the same technique again to the quasi-two-body decay, P, (p, )~V(pz)+~(q), where V denotes a vector

meson. Then the amplitude is written as M(Pi ~ Vm') =METc(Pi Vm. )+Ms(Pi Vm. ), where

MErc(Pi ~V~) = (t /f )( V
~ [V„-,H—) ~

Pi ),
Ms(P, ~Vm)=(i /f ) g [(mi, m, )/(m—„m, )]( V

~

—A„~ n ) (n
~
H~

~
Pi )

+ g [(mi —m, )/(mt —mi, )](V
)
H„)1)(l [

A
( P, )

I
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(~+ ~H'~K+&=(p' ~H.'~K'+&, .
(~+ [H (K'+)=(p+ )H )K+), etc. ,

(K iH iD )=(K' [H iD' )q o,
(K JH JD' )=(K [H [D ), etc. ,

(8)

(9)

from the levelwise realization of asymptotic-flavor sym-
metry in chiral algebras such as

[[H, A ],Att]=[[H, V ], Vp] (10)

(a=n+, P=n and a=@, P=n+ for H~=Hs;
a=K+, P=nanda=. m, P=K+ for H =H ); and

(~+ ~H ~K+)=k(~+ ~H'[K'+)

&K [H [D &=+&K [H [D ), etc. ,

ko ——+&1/2(n.
[

A
)
po),

from the same level realization of

[H~, A ]=[H~, V ],

(12)

(13)

where ko is the universal fraction of the ground-state-
meson contribution to the left-hand side (LHS) of (13)
sandwiched between two appropriate ground-state-meson
states. For details see Refs. 5 and 6.

(ii) Broken-SUf(4) parametrization for the asymptotic
matrix elements of H:

(K(K ')
~

H
~

D(D') )

=(U„IU„,)V2(n(p)
~
H~

~

K(K.') ), etc. ,

(m(p)+
~

H
~

F(F')+)
=( U„IU„,)(m(p)+

~

H
~

K(K'}+), etc.

(14)

(15}

The above relations, (14) and (15), are obtained by us-

ing asymptotic SUf(4) symmetry from the realization of

Thus, we can describe the whole amplitudes in ques-
tion in terms of asymptotic on-mass-shell two-particle ma-
trix elements of H and A . Our next task is to investi-

gate the constraints on these asymptotic matrix elements
ofH .

Constraints on asymptotic ground-state-meson matrix
elements of H can be obtained from commutation rela-
tions involving A, V, and H . See Refs. 5 and 6 for
details. Here we list only the constraints which will be
used in this paper.

(i) The asymptotic
~

b, l
~

=—,
' rule, its charm counter-

part, and the SU(6)- and SU(8)-like asymptotic con-
straints:

&
~+

I H.' I
K(K')+ )+&'2(~0

~
H.'

~

K(K')'& =0, etc. ,

(6)

(K )H~ [ D(D ) )+(m'+ [H )
F(F )+)=0, etc. ,

(7)

the following constraint algebra involving the SUf(4)
charge VD, which is valid in the framework of QCD and
electroweak theories:

[H, VDO] = ( U„ /U„, )H (16)

Here U„and U„, denote the elements of the
Kobayashi-Maskawa matrix indicated by their sub-
scripts, and all the above matrix elements of H and H
are evaluated in the IMF. H =H(0, —) with DC=0,
hS= —1 (strangeness changing but charm conserving),
and Hc=H( —,—) with b C =hS = —1 (strangeness and
charm changing}. Equations (14}and (15) are valid up to
the neglect of inter-SUf (4)-multiplet mixing in the
theoretical framework of asymptotic SUf (4}symmetry.

As is clear from (14) and (15},asymptotic SUf(4) sym-
metry can bridge, through the constraint algebra (16), the

~

b, l
~

=—,
' rule found for the asymptotic two-particle

ground-state-meson matrix elements of H„such as (6} to
its charm counterpart of H~ such as (7).

For the study of the matrix elements of H:—H
(58 = —1, b, C=1) responsible for the processes
8 cd~D+n, D'+n, etc., we here use the same pro-
cedure [based on asymptotic SUf(5) rotation] as used in
(ii), instead of using the procedure of level realization of
flavor symmetry in chiral algebras [which can be carried
out within the framework of SUf(4)] presented in (i).
Namely, we use in place of Eq. (16) the algebra

[H, V-O] =( U,b/U„) IH
S

(17)

=(U,~IU„)(K(K ')
i
H

i
D(D') ),

g(n(p)
~
H~

~
B,(B,') )

=(U,b/U„)(~(p)+
~

H
~

F(F')+),

(18)

(19)

where CP in variance is, of course, assumed and
H =H +H should be understood.

Since we are dealing with a very large symmetry break-
ing, although we always work only in the asymptotic lim-
it, we have taken the following simple prescription to
cope with the further possible e8'ect of symmetry break-
ing, i.e., the intermultiplet mixings (i.e., mixings between
the ground states under consideration and their radially
excited states, etc.), which may play an appreciable role
for SUf(N) with N )4. (Actually our mixing parameters
are always defined at q =0. There is thus a subtle
diS'erence from those obtained by diagonalizing the mass
matrices. ) For heavy mesons, the relative spacing be-

Here the notations concerning the 8 mesons are as fol-
lows: 8„=(bu), 8 d (bd), B——, =(bs), 8, =(bc), and
their antiparticles. By sandwiching Eq. (17) between the
states (D(D')

~

and
~

K(K ') ) and (F(F')+
~

and

~

n(p)+ ) with infinite momenta, we obtain constraints on
the asymptotic matrix elements of H using asymptotic
SUf(5) for the matrix elements of the SUf(5} generator
V p'.

S

g(D(D')o
~

H
~
B~(B ') )
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tween neighboring states becomes much narrower com-
pared with light meson cases.

This additional effect of symmetry breaking [i.e., a pos-
sible leakage (at q ~0) to the excited states] through the
flavor-SUf(5) charges V-tt, V, V-o, and V has been

Q

parametrized in a simple way in (18) and (19) by a
universal leakage factor g (0& g & 1). For simplicity, we
have, however, neglected in this paper the corresponding
smaller leakages through the SUf(3) and SUf(4) charges
Vz and VD. We have written, for the asymptotic matrix
elements of VB's, instead of their value l in the exact
SUf (5}symmetry limit,

(Bd
/

V-o/K )=(8,
f
V-o/F )=(Bd

/
V /tr+)

=&8;i V,.iD-)=g. (20)

By combining (7), (18},and (19), we obtain the bottom
counterpart of the

~
51~ = —,

' rule for the asymptotic
two-particle ground-state-meson matrix elements of8:

&D'~ a.'~ 8'„&=+&D"
~

H'~ 8')
(n' (H (8, )=+(m (H (8,' &, etc.

(22)

Equation (21), which is the bottom counterpart of the
asymptotic

~
b I

~

= —,
' rule for the two-particle matrix ele-

ments of H, can be associated with the same type of
quark-line diagrams responsible for the asymptotic

~

EI
~

=—,
' rule, Eq. (6), and its charm counterpart, Eq.

(7). The diagrammatical statements of all these three
constraints (the annihilation diagram} + (the W-exchange
diagram) =0.

We now discuss the rates of the 8~De and D'~ de-
cays in comparison with the K&~~+~ decay, since this
route seems least ambiguous at present. For the
Ez ~~++ decay, we have obtained a simple result: '

M(Ks~m+n)=i (2f ) '&. 2(tr+
~

H
~

K+ )

x(1+0.2+ ) . (23)

In deriving (23), we have chosen the positive sign in (11).
The ellipsis represents the small contribution of the
neglected excited states, which can involve the

~

b,I
~

=—,
'

rule-violating term. The term 0.2 expresses the fact that
even the most important ground-state-meson contribu-
tion to the surface term Ms is only 20%%uo relative to METC
and the excited-state contribution can be neglected safely.

In the present case of Bd[„]~Deand D'm, the contri-
bution of excited states will be estimated crudely to be at
most 30% later. Under the simplifying approximation in
which the contribution of excited states is neglected,

(D(D'} ~H )Bd(Bd) &+&@(p) )H IiB,(8,*) )=0.
(21}

As mentioned before, we can also derive (21}through the
level realization procedure in the framework of only
asymptotic SUf (4) symmetry.

From (7), (9), (11), (18), and (19), we also obtain a bot-
tom counterpart of the SU(6)-type relation

METC and Mz for the B„~D~ decay are given by,
through (1) and (2),

METC(8 ~D tr )= (i/f )(D
~

H
~

8 tt )

and

(24)

Msi
= '(B„~D n )=(ilf )(ma —mtt )/(mme —m )

N d

x &D'~ H.'~ 8,"&

x&8,"~ ~., ~8„-& . (25)

In (25), the asymptotic matrix elements of A +,
(8 d ~

A + ~
8„)can be evaluated, by realizing the con-

straint algebra [V-o, A +]=0 using asymptotic SUf(5)

symmetry, to be

~i&8,"I~, ~8„-&=&~+
I
~, lp'&= —a. (26)

We expect that this is a reliable result, since the con-
straint algebras used involve the SU(2) axial-vector
charges A, which apparently have small asymptotic ma-
trix elements between the ground-state mesons and their
radially excited states. Indeed, the constraint algebras,
[ V~0, A + ]=[Vs 0 A + ]=0, produce a surprisingly

well-satisfied mass formula, mB+ —mB ——m
p

m using

asymptotic SUf (5).
With the bottom counterpart of the

~

EI
~

= —,
' rule, Eq.

(21},asymptotic SUf (5) parametrization, Eq. (26), and the
approximations

mB mB mB —mB + mD D +&
2 2 2 2 2 2 2
Bc Bd ~ u

(27)

where we have chosen the positive sign in (22).
Exactly the same procedure as used in deriving (28)

yields

M(8 d +D+m ) =(i/f—)(D
~

H
~
Bd )(1 H/~2) . —

The relative size of the surface term to the ETC term,
r—:Ms /METC, is thus estimated to be r' = '(8 d~D n)- —v'1/2H. =0.7, in the approximation in
which only the ground-state contribution is retained.
Here we have chosen the positive sign in (22) and used
the value H=(n.

~

A
~ p )=—1.0 obtained from the

value 1 (p~2n ),„~t=160 MeV, using PCAC (partial con-
servation of axial-vector current) with hard-pion extrapo-
lation.

As a matter of fact, r' = '(8 d ~D+n ) given above
coincides approximately with the value of ko given by
(12). Therefore, the contribution of excited states to Ms
(Bod~D+m ) amounts roughly to [using the general

(2)]
~

(excited states)(8 Q D+~—
) (

( 1

we obtain

M(B„~D m )=(ilf )(m ~H~ ~Bc )(1 H/~2), —

(28}
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=0.3, since the masses of bottom mesons are much
larger than the bottomless meson masses. Therefore, the
error caused by the neglect of excited meson contribution
to Ms will not be very crucial (at most, of the order of
60% errors in the rate). Thus, by using (6), (14), and (18),
we finally get

~

M(B z~D+m )/M(Ks~m+n )
~

=2
~

U,b/U„,
~

/g. In order to compare our result with
experiment, we use the present estimates'

~
U,b ~

=0.059
and

~ U„,
~

=0.225 and also I (K&~sr+a ),„&,-0.77
X 10' sec '. The lifetime of 8 z meson w(8 z ) is not yet
precisely known. Recent measurements" show that it is
of the same order of magnitude as the b-quark lifetime'
r(b),„z,

——(1.21+0.15)X10 ' sec measured in the 8

meson semileptonic decays. The value of the "leakage"
factor g is also still unknown. For a reasonable value of
g, /=0. 5, we obtain 8 (8 &

~D+m' ) = 1 X 10,which is
compatible with experiment. ' For a crude estimate of
/ =0.5, see Ref. 12.

Comparing (28) and (29) and using (21), we have

~
M(B„~D n )/M(B e~D+n )

~

=1 in the present
approximation. Neglecting the small difference of
phase-space volumes between the two decays, we then ob-
tain 1 (B„~D sr ) =I (B &

+D+—m ).
We next study the B &~D*+m and B„~D' ~ de-

cays. By using the bottom counterpart of the
~

b,I
~

= —,
'

rule in (4) and (5), we obtain

METC(8 g~D +1r )=(i lf )(D
~
H~

~

8 g )

Ms
= '(8 &~D"+m )=(ilf )[(m, ms—)/(mn —ms )](D'+

~

2 + ~D )i(D ~H ~8 &),

(30)

(31)

and a similar result for the B„~D' ~ decay.
Again using the same procedure as the B~Dn decays,

we obtain

8 (8 g ~D+n )=B(B„~Dn ) =(8 ~ +D'+n —)

=8 (B„~D'+n ) (33)

M(B g~D'+m' ) =M(B„~D' n )

(32)
choosing the positive sign in (22).

Here, we compare the B &~D'+m decay with the
8 z ~D+nFrom. .(29) and (32) we can predict in our
approximation B(8z~D'+m )=8(Bz~D+m ), in
dependently of the factor g, neglecting the small phase-
space volume difference. Therefore, we find within a fac-
tor 2 or so

when we assume ~(B z ) =r(8„). The result on
8(8 &~D'+n ) seems to be compatible with the new
data' obtained by the CLEO group, ' (0.35+0.14
+0.11)%, and the value of ARGUS group (0.2720. 14
+0.10)%.

In conclusion, we have presented a perhaps feasible
scenario for the 8 Demand D'n. .decays from a long-
distance-physics approach.
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