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We study the classical solutions of bosonic superconducting strings for quartic and Coleman-
Weinberg effective potentials. We map the parameter space of solutions, and discuss and quantify
back reaction of the charged condensate upon the vortex. We address the issue of the critical
current and the quench transition. We consider static loop configurations in which electromagnet-
ic stresses balance the loop string tension. Such static loops are shown to exist only in a very
small region of the parameter space. We also give accurate results for the energy per length of a
nonsuperconducting gauged string for arbitrary ratio of Higgs-boson to vector mass.

I. INTRODUCTION

Recently there has been considerable interest in super-
conducting cosmic strings. First proposed by Witten,'
they are cosmic strings endowed with dynamical proper-
erties which allow an effective Higgs-boson mechanism
for electromagnetism to occur on the string. There are
several novel ways in which such objects might be
detected,? or have substantial effects on the formation of
structure in the early Universe.’ Superconducting
strings are of two varieties: fermionic or bosonic. In the
fermionic case, superconductivity arises because of the
occurrence of charged Jackiw-Rossi zero modes which
effectively behave as Nambu-Goldstone bosons in 1+1
dimensions and give a longitudinal component to the
photon field on the string. In some sense, this is a “nat-
ural phenomenon” in that it relies only upon certain sys-
tematic conditions being met, e.g., the presence of
charged fermions with particular couplings to the vortex
Higgs field. The rest is guaranteed by topology,
anomalies, index theorems, and the like.

Bosonic superconductivity requires that some charged
field develop a VEV (vacuum expectation value) in a re-
gion transversely localized on the string. This is a
dynamical effect and must be engineered (in the scalar
potential) to occur. It then becomes of interest to in-
quire how natural the phenomenon is: i.e., does one
have to fine-tune the parameters to have such a conden-
sate form, or is the parameter space where it occurs
“large”? Furthermore, interesting dynamical questions
arise: e.g., what determines the saturation (or critical)
current and does the string undergo a first- or second-
order phase transition when the critical current is ex-
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ceeded and the superconductivity quenches? Are there
solutions with and without significant back reaction of
the charged condensate upon the vortex itself? Can a
superconducting cosmic-string loop with a sufficiently
large current and attendant electromagnetic field energy
become stabilized against its string tension; i.e., is there
a stable “floating solution”?*> The latter question is a
very delicate one because it involves the various parame-
ters of the theory in a nontrivial way, and it is the ques-
tion which led us to initiate the present study.

The aim of this paper is to give a comprehensive
analysis of the microphysical phenomenon of bosonic su-
perconducting strings. We do this by the use of accurate
variational solutions for the various scalar and vector
fields, an approach which significantly reduces the num-
ber of degrees of freedom and makes the analysis tract-
able. In the cases where we have direct comparison with
analytic or very accurate numerical results there is excel-
lent agreement between those results and ours. In short,
we trust the results of our variational calculation.

The paper is organized as follows: In Sec. II, by using
a variational analysis, we accurately calculate the energy
per length of an ordinary (i.e., nonsuperconducting)
cosmic string for arbitrary ratio of Higgs-boson to vec-
tor mass, and address the question of which regions of
parameter space (for the scalar potential) permit bosonic
superconducting cosmic strings; in Sec. III we study the
dynamics of bosonic superconductivity; in Secs. IV and
V we address the questions of critical currents and the
possibility of floating or static solutions; in Sec. VI we
translate our analysis from the natural space of dimen-
sionless parameters we introduce to the parameters of
the scalar potential; in Sec. VII we summarize our work
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and make some concluding remarks. In Table I we sum-
marize the dimensionless parameters we introduce to
simplify our analysis, and in Table II we summarize the
constraints which must be satisfied for a bosonic super-
conducting vortex solution to exist. A summary of this
work is published elsewhere.®

II. VARIATIONAL ANALYSIS OF BOSONIC
SUPERCONDUCTING COSMIC STRINGS

Vortices arise when the first homotopy class I1,(G /H)
associated with a symmetry breaking G — H is nontrivi-
al. Typically I1,(G /H) is the set of integers correspond-
ing to the winding numbers of scalar field configurations.
The simplest realization of this is the breaking of a U(1)’
symmetry by a complex scalar field. If the U(1) sym-
metry is gauged we have a Nielsen-Olesen flux tube;’ if
not, we have a global or ‘“axion” string.8 For even the
simplest quartic potential admitting symmetry breaking
and flux tubes the classical profile of the solution is not
completely known, nor would its knowledge be expected
to be of great utility. There have been previous studies
which obtain exact® or very accurate!®!! results, and we
will compare our results to these to test our variational-
Ansatz approach. However, in the application to boson-
ic superconducting strings' no such results exist, and we
must test our variational Ansatz by checking the stability
of our results when additional terms are added to the
Ansatz.

We begin with a variational study of the usual nonsu-
perconducting vortices (of both varieties) for their own
sake; then we will use our approximate vortex solutions
to study bosonic superconductivity. The Lagrangian
density that describes the interactions of a U(1)’ charged
scalar field ® in a general potential V4 (®) takes the
form

Lo=—3F, F"+(D,®)"(DtD)— V4 (D), 2.1

where D, =d,—igd,, F,,=0,4,—08,4,,A4, is the
U(1)" gauge field, and g is the charge of the & field.
With cylindrical symmetry the Hamiltonian (per unit
length in the z direction) is
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Throughout we use units where #=c =kz=1 and
e’=47ma,,, and henceforth we use H to designate a
Hamiltonian per unit length. Here B’ is the magnetic
field associated with the vortex. To study the global
case we set ¢ =0 (whence B’'=0). Following the stan-
dard conventions we write ® (and other complex scalar
fields) as

D=($;+i$,)/V2,

where ¢, and ¢, are real fields. Note that this conven-
tion (the factor of 1/V'2) is used so that the quantum
theory has the usual equal-time commutation relations.

(2.3)

Although our analysis will be classical, it is important to
track the 1/V'2 factor in order to compare with other
results.

The general vortex solution has the form

b= ‘/LEP( rem,
where P(r) is real, and U minimizes the potential
V(v)=Vq(ve'/V'2) [we distinguish between the poten-
tial V¢ (®) for the complex field and the potential V(v)
for the real component to preserve consistency with the
standard normalization conventions]. Requiring ® to be
single valued upon traversing a circular path restricts
the possible changes in phase, i.e., Ay=2#7N, where N is
an integer. We may then take the phase of ¢ to wind
uniformly over the path: n=N6. At the boundaries we
have P(r—w)—1 and P(r—0)—O(r!¥!). Also, in
the gauged case we have Ay(r— oo)—N/qr and
A;,(r—>0)—>0(r).

Now, P(r) can in principle be determined from the
equations of motion associated with Eq. (2.1) (Refs. 11
and 12), but it is simpler to adopt a variational ap-
proach. Using a combination of powers of exponentials
of the form e ™*" one can always engineer a function
with the above short- and long-distance limits required
for P(r). For example, for | N | =1 we choose

P(r)=(1—e=").

(2.4)

(2.5)

We shall consider the case | N | =1 throughout the rest
of this paper. This is the simplest choice for N, and in
the gauged case there is a large portion of parameter
space (corresponding to vortices that exhibit type-II su-
perconductivity in the Ginzburg-Landau theory:'* b <2,
see next section) in which a vortex with | N | >2 is un-
stable and decays into | N | =1 vortices.!! Later we ar-
gue that global strings with | N | >2 are unstable, which
further motivates restricting our analysis to |N | =1
vortices. The case where | N | >2 gauged vortices are
stable is currently under study,'* and may have interest-
ing cosmological consequences.

A. The global case

Adopting expression (2.5) as a variational Ansatz we
find the expectation of the Hamiltonian in the ungauged
U(1)’ case, expanding in powers of e ~*/, to be

(Hy)=1m2+mv o(pu, M)+ V()(7RY)
+27rf°°rdr V'(v)(—ve ~H")
0
+2m fowrdr%V"(v)(vze‘z’")+ S (2.6)

or, upon performing the integrations in the potential
terms,

(Hy)=1mv +mvl4(u,A)+V(v)(wR2)
@ _1ynynylnl
yr S (—1D)"Vi(p)

n=1

n’nly? @7

Here 7R2 is the infinite area normal to the z axis and
this term, which acts as a cosmological constant is the



dominant contribution to the energy. Hence the varia-
tional calculation for v requires that v=0, where
V'(7)=0, and the vanishing of the effective cosmological
term requires as usual that V(7)=0. The term I4(u,A)
is logarithmically divergent in the global case with A
representing a large-scale cutoff. Upon varying with

respect to u the A dependence disappears and one has
ol y(p, )
oA 1 . (2.8)
o | S PR

So upon variation of Eq. (2.7) we obtain the extremal
solution for u:
(=" —2ying)
.“2:4 2 2 ’
n=2

n°n!

(2.9)

where ¥ solves V'(7)=0 (note that the n =1 term in the
series is then zero).

The dominant contribution to the energy per length is
typically the angular contribution I,, which is easy to
calculate for arbitrary N. We take

¢=~‘j—§(l—e"’”)’vew9 (2.10)
as our Ansatz. For uA >>1 we have
A (l—e )N
I,=N? [ == gy = N?In(ud) . 2.11
o=N fo 5 dy n(uA) ( )

We then see, in our variational approximation, that the
ratio of the energy per length of a vortex with vorticity
| N | to that of | N | vortices with unit vorticity (vorti-
city is conserved) is ~ | N |, and the decay into |N |
vortices each of unit vorticity is energetically favorable
for vortices with | N | >2.

Therefore, upon substituting Eq. (2.9) into Eq. (2.7)
the mass per unit length of the | N | =1 vortex takes the
form

(Ho)=[3+TIg(p,A)]n0?

~[3+ In(gAr)}mp ? (2.12)

[note the normalization conventions chosen here are the
standard ones; if one normalizes (®)=v’ then one ob-
tains, for the logarithmic contribution to the energy per
unit length, 2 In(uA)mrv?].

Typically u is of order the mass of the Higgs boson at
the minimum of the potential. For example, choosing
the usual form for the scalar potential,

Ap | @ % 3m§

- 2 2
Vo(@)=—mys | P |+ 3 g (2.13)
whence
2.2 4 4
m v AoV 3myg
=— 2.14
V(v) 5 + 4 + e ( )
yields 7 2=3!m3 /A4 and we find
1 - =Y T =2 Ay
2 V'(©)  20V'"(T) " vV"(D) ~0.62m% . (2.15)
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B. The gauged case

In the case where U(1)' is gauged we obtain the expec-
tation value of the Hamiltonian:

(He)=1m?+mv o(u,v)+{B"*/2) +V(v)(wRY)
+2 [ rdr V'()(—ve )
0

+2m fowrdr%V”(v)(vze_z’"H- e, (2.16)

where the difference with the global case is the nontrivial
dependence in Ig(,u,v)+(B'2/2) upon v/u, and it is
not possible to write a systematic solution for u. Here
(B'*/2) represents the magnetic field contribution.
We now extend our variational analysis by making an
Ansatz for the gauge field:
—hry2
A= (1—e™™) ’
qr
where A is another variational parameter. This Ansatz
for Ay corresponds to a magnetic flux tube of width
~h~! and total flux 27/q. It is now convenient to
define the dimensionless parameters:

(2.17)

2 2 2 2
a="2 b=i‘1%=—6f—=2m—y, s=£, @1
M me ® my

where my is the physical mass of the Higgs particle
(my=Vv2mg), and my=gqvU is the vector-boson mass.
For b >2 (b <2) the vortices correspond to type-I (type-
II) superconductivity in the Ginzburg-Landau theory.
Physically, the width of the vortex is ~u~!'~Va mg!,
and s is ~(width of the magnetic flux tube)/(width of
the vortex).

Using our previous Ansatz for ® and our Ansatz for
the gauge field we readily find the angular integral con-
tribution to the energy per length:

34(s +4)%2s +3)4s +2)8
2M(s +2)(s + 1)¥s +3)®

Iy=G(s)=1In (2.19)

Of course, there is no large-distance logarithmic diver-
gence here since the gauge field cancels the contribution
of the Higgs field at large distances. The contribution to
the energy from the scalar potential is found to be
(89/288)77 2a, and the energy in the magnetic field is
given by
521009

B'2> 470 “In(3)

—_— )= (2.20)
( 2 abs?
Collecting terms, the energy per length of the gauge vor-
tex is

41n(3)

abs?

89
*t 2887 |

(Hp)=m0? |1 +G(s)+ 2.21)

where 7 is determined by V'(7)=0, and as before
V(v)=0. From Eqgs. (2.21) and (2.18) we obtain the vari-
ational equations

9G(s) 89a _
s 144s

(2.22)
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ggﬁ—(S/abs3)ln(%)=0 ,
os
by varying with respect to the parameters u and A, re-
spectively. Subtracting these equations gives the simple
relation

(2.23)

2,25 1152 9
a‘sb=1321n(3) .

(2.24)

These equations can be solved by selecting a value for s,
solving for a in Eq. (2.22), and using the above relation
to obtain b. The energy per length of the vortex is easily
computed in this manner, and is plotted as a function of
b in Fig. 1. In addition we plot the parameters ¢ and s,
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FIG. 1. In (a) we show the energy per length of the gauged
vortex over the natural range of b=6q?/Ay=2m}/m}. Our
numerical results are well fit (to better than 5%) by energy per
length €=1.1975 26 ~%!%; here 5=1"6m2 /Ay is the VEV of
the real part of the ® field. For completeness, in (b) we show
the energy per length over an extended range in b. In (b), the
dashed curve indicates the energy per length computed with
our original Ansatze, cf. Egs. (2.5) and (2.17), while the con-
tinuation of the solid curve is the energy per length computed
with our modified, “large b” Ansitze. In the limit b— o,
€—2.470°/Inb  (modified Ansitze)) —m52/4 (original
Ansatze). Our modified Ansdtze demonstrate that €—0 as
b — o (albeit logarithmically).

as a function of b, in Figs. 2 and 3.

For b—0 (equivalent to ¢ —0), the energy per length
is dominated by the angular kinetic energy and varies as
Inb ! (as one would expect, since b,q —0 is equivalent
to the global string). We also see from Fig. 2 that
a=m?} /u® approaches the value we obtained in the glo-
bal case (a ~1.6), which is reassuring. In general, a is
of the order of unity. Near b ~ 1, where all the terms in
the Hamiltonian are important, we find agreement of our
results with those of others™!° to better than 2%. Over
the entire natural range of b (0.015b 100, to be dis-
cussed later) we find agreement of our results with the
semiquantitative results of Bogomol'nyi and Vain-
shtein,!! to the accuracy that comparison is possible
(~10%), giving us confidence that our energy per
length, and hence our variational analysis, is accurate.
As a further check we also added another term to the
scalar and vector field Ansatze; the energy decreased by
~1% for b ~1, and smaller changes were observed for
all other values of b.

The b— « limit requires more careful consideration.
Our Ansatz for ® does not allow for a variation in the
contribution of the radial kinetic energy per length; it is
a constant 70 2/4 per unit length. That the energy per
length € — 7 2/4 for b— o derives from this fact. This
fact gave us pause and led us to consider more general
forms for P(r). (Adding additional terms to the Ansatz
of the form r"e ™*" does not change the qualitative be-
havior in the b — « limit, only the coefficient of 70 2 for
the limiting value.)

We note that the form P(r)= A, Inr + A, over the in-
terval r=[r,,r,] [with P(r,)=0, P(r,)=1] leads to a ra-
dial kinetic energy per length E,=772/In(r,/r,); for
r, >>> 1 this contribution becomes logarithmically small.
(Of course, such an Ansatz does not satisfy the boundary
conditions at =0, o0, nor is its first derivative continu-
ous at r =r,r,.) This suggests that for b >>1, where we
have two disparate scales (mg I the size of the vortex,
and my'~b~"2mg!, the size of the flux tube), we
should consider different Ansatze. To study the behavior

10
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FiG. 2. The parameter a=m} /u2_ vs b for the gauged vor-
tex. The width of the vortex u~'~Vamg'.
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FIG. 3. The variational parameter s (=the ratio of the size
of the magnetic flux tube to that of the vortex) is shown vs b.

of € for b >>> 1 we take, as Ansatze,

Qly/al’ 0<y<01,
P(y)={0,[1+1In(y/a,)], a,<y<a,,
1-0,e™%, y>a,,

3(y/a;)*—2y/ay), O<y<as,

Ap=(gr)~'x
I, y>a,,
where
yErmq, ’

Q,=[1+In(a,/a;)+(ca)" 17",
Q2 EQlecaz/caz .

These Ansadtze and their first derivatives are continuous
and satisfy the appropriate boundary conditions at
r =0, . In addition, all the relevant integrations can be
performed analytically. The new variational parameters
are a,, a,, as, and c.

Using these Ansdtze, we find for b >>1 that the energy
per length is minimized for a,;~a;~b~'% and
a,~c=0(1). Thus for these Ansitze the characteristic
size of the vortex is ~a,mg ' ~my!, and that of the flux
tube is ~a3myg ' ~my !, just as expected. Moreover, the
radial kinetic energy per length

E,~752/In(a,/a,)~275%/1Inb ,

which —0 as b— . The total energy per length is (for
b>>1)

€ ~2.470%/Inb

(an analytic fit to the range 10°< b < 10'%),

Several points are to be noted. First, € —0 as b — 0,
albeit logarithmically. Second, the energy per length for
these Ansdtze is only lower than that of our previous
Ansatze (e~nv2/4 for b>>1) when Inb24Xx2.4, or
b>1.5x10% (For b < 10% the energy per length for the
new Ansatze is essentially identical to that of the old

Ansdtze.) A comparison of the energy per length com-
puted by the two different Ansadtze for b >>1 is shown in
Fig. 1(b). Although the energy per length —O0 as
b — w, the logarithmic approach to the limit makes this
a moot point for any physically reasonable, finite value
of b. For example, even for b=10'%, the energy per
length € is still ~0.0975 % vs 0.2570 % for our original
Ansatze. (The fact that the energy per length —O as
b— o has also recently been noticed independently by
Bennett and Turok.'%)

C. The superconducting condensate

The discussion of this subsection is independent of the
choice of a global or gauged vortex. We now consider
the bosonic superconducting cosmic strings which arise
in a U(1)® U(1)' gauge theory with the general scalar po-
tential' for which the Lagrangian density takes the form

L=Lo—1F,F*+(D,0)*(D*o)
——UU(O')—f|0'|2|(D|2 ’

where D, =d,—ied,, F,,=0,4,—08,4,, and 4, is the
U(1) gauge field. The field o carries U(1) (ordinary elec-
tromagnetic) charge e and no U(1)’ charge, the field ¢
carries no U(1) charge and U(1)' charge g (we have not
written the photon-vector potential explicitly). We now
obtain the Hamiltonian per unit length:

ﬁ=ﬁ¢+ﬁa+ff02” [7rdrdeje||o|?, @26

(2.25)

where
2 o |” |1 ’
~ T © g g .
HU-fO fo rdrdf ar + 30 —ieAgo
B2
+UU(0)+~2— (2.27)

For the moment we take the superconducting current to
be zero.

We presently assume that U, (o) is an unstable, quar-
tic scalar potential,

Ua(o)z——mf,(a|2+%|a|4, (2.28)
and the overall stability of the theory against the break-
ing of electromagnetism (far from the flux tube) is con-
trolled by this potential and the f |o |*|®|? term in
Eq. (2.25). The condition that U(1) remains unbroken
outside the flux tube is that fv%02/24U,(o) has no
global minimum for nonzero o (shortly, we will be more
specific). Nonetheless, the basis of bosonic superconduc-
tivity is that in the core region in which (®) —0 the f
term no longer stabilizes the o field, and it may be ener-
getically favorable for a condensate to form. Or course,
since {0 ) —0 as r — w0, it costs kinetic energy to allow
the o field to develop a nonzero condensate at » —0, and
a priori it is not clear whether the gain in potential ener-
gy wins out over the cost in kinetic energy.

To begin, we assume that the terms involving the o
field are sufficiently weak that they do not back react
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upon the & field, and the o condensate can be studied in
the fixed background of the @ vortex solution just dis-
cussed. We refer to this as the concrete-vortex approxi-
mation. Later we study the validity of this approxima-
tion.

With standard normalization we introduce the real
part of ¢ as Reo=u/V'2 and U(u)=U,(u/V'2). The
standard potential becomes

m? 5 Ajut
Ulu)= > u+ 4
We examine the properties of the equation of motion in
the absence of superconducting currents:

3

(2.29)

du 1 du . Agu
art t R T

r dr
At this point it is very useful to introduce dimensionless
parameters which rescale the various dimensionful pa-
rameters relative to the size of the vortex:

fl1®|%u=0. (2.30)

2 12— am? S 2
a=m,/u‘=am,/mg ,

B=fv%/2u*=3af /Ay , (2.31)
_, uld,
g = 2 Yy =pur,

u

where the additional relations follow from substituting in

w*=m2% /a. The equation of motion now becomes

d’s 1 da g’
——+— - —G[BPY) —a]-—=
52 Ty dy [BP(y ]
As y—0 we find §—>3,+0(py2?). For y21 and
7 << 6(fB—a) we have 5 < Ky(yV f—a), and
e—2y(B—a)1/2
yVB—a
in the limit yV/B—a >>1. Here K, is a modified Bessel
function of zeroth order. We also note that for a=p
andy 21,5256/

To investigate the dynamics of the superconducting
condensate we make a variational Ansatz of the form

(2.32)

(2.33)

oC

o(t,z,r,0)= ﬂe K14 kr +K'P24K"r)e B
bk Vi

with four variational parameters o, k, k', and k"’ (note,
we do not endow o with vorticity, i.e., do /06=0). We
choose four variational parameters so that convergence
can be checked with the second- and third-order Ansatz.
This Ansatz has the correct short-distance limit and « !
represents the size of the o condensate. The fact that
the charged field o acquires a vacuum expectation value
in the core of the string signals that the string is super-
conducting and ¢(z,¢) is the massless mode which sup-
plies the longitudinal degree of freedom for the photon
on the string.

To describe the essential physics we find it useful to
consider a simple, truncated Ansatz

(2.34)

0

o bz
0(t,z,r,9)=—‘/—_2e_"’e’¢z" , (2.35)

with which we can discuss many results analytically.
We presently use this Ansatz and also make use of the
previously obtained profile for the vortex field ® to ob-
tain the expectation value for the Hamiltonian:

(H)=(Hg)+ im0}
7U(o,) wfvlod
K? 8«2

Here U is derived from U upon performing the cylindri-
cal integration normal to the string axis. If, for exam-
ple, U(u ) has the polynomial expansion

Flu/k) . (2.36)

Ulu)= 3 U,u", (2.37)
n even
then we have
. U,
Ulog)=2 3 —05- (2.38)

n even

The function F(x) represents the overlap of the @
profile turning on to its asymptotic value U over a dis-
tance scale ! from the flux tube and the o profile
turning off over a distance scale k~!. It takes the form

2 1
F(x)=1-— +
(14x/2?  (14x)?
4 3 2
—— x 3-{—6): -i—6x ’ (2.39)
XT4+6x°+13x°+12x +4

where x =p/k ~(width of the o condensate)/(width of
the vortex). We see that F(x) is positive over its range
and we further note the limits

F(x)=3x%/2 (0<x<0.5),

F(x)=x/3 (0.5<x<2), (2.40)
F(x)>1 (x—>x).
The full potential for both fields is
Ao | @
Voo(®,0)=—my |®|*+ q>|3r | —mj|o|?
A 3m}
2 4 2 2 @
AL NEIE o
. (2.41)
AoV
Vivu)=—miv?/2+ Z' —miu?/2
A ut 3m}
a 2.2 [
+g e /A+ 7y

Within our concrete-vortex approximation we will
now derive the constraints necessary for the existence of
superconducting vortices. First, the theory must be such
that far from a vortex the U(1)’ symmetry is spontane-
ously broken while the U(l) symmetry remains unbro-
ken; i.e., we desire the global minimum of Eq. (2.41) to
have (o)=0, (®)£0. The minima of V(v,u) are
determined by 8V /3u =3V /dv =0, and 3*V /3u?,8?V /
dv?>0. The potential ¥ (v,u) has three minima:

U% = 6’71%,//qu, u % ==(), l’l =0 5



v3=0, ui=6m2/A,, V,=3m&/2he—3m? /21, ;
2fml—A;m%/3)  , 2fmy—Aeml/3)

R VN I R Y Y
(miAhe—3mif)?

T 6o fE—Agh,/9)

3

The constant term in Eq. (2.41) was added so that the
energy of the desired global minimum [(o)=0,
(® )5£0; unbroken U(1), broken U(1)’] is zero. Further-
more, the condition that 9%V /0u2,0°V /0v%>0 at this
extremum requires 3fm2%/Ay>m2. The second
minimum [{(® ) =0, (o )s£0; broken U(1) and unbroken
U(1)] will be energetically disfavored if we require
mé /Ay>me /A,. Finally, consider the third minimum
[(®), (0 )50; broken U(1) and U(1)']. If f2—AgA,/9
is greater than O, then V; is manifestly positive, and so
this cannot be the global minimum. On the other hand,
if f2—AgA,/9<0, then V, is manifestly negative. In
order for this to be a physical solution v} and u3 must
both be positive; however, if fm2 <Aem2/3 (as re-
quired above so that the desired solution is a minimum),
u% is less than zero. In sum, we find that the necessary
and sufficient constraints for the global minimum to be
that with (® )0 and (o ) =0 are

mg my _
. > x (constraint 1) (2.42)
(] ('
and
3fmi
fii2= x ® >m? or B>a (constraint 2) . (2.43)
®

For the potential given by Eq. (2.41), U(g,) is given
by

2 2 4
m,0ogp A'000

4 192

Our problem is thus the minimization of the energy per
length:

Ulog)=— (2.44)

7U(oy) wfvio}

2
+ F(u/k)
K2 8«2 H

ﬁ(UO,K)=—l'7T0'0+

A x208

T 2 2 2, X 0o

=— —Bx“F(x)—1]o
ylox"—Px Joo+ 192

(2.45)

Note that a nontrivial minimum will occur if the overall

coefficient of o is negative, or
ax?—pBx*F(x)—1>0 (constraint 3) . (2.46)

We can thus determine a lower limit to a. Using con-
straint (2) we have the condition

ax[1—-F(x)]—1>0. (2.47)
It is readily verified that the

max{x’[1—F(x)]} = lim x’[1-F(x)]=7,
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and thus the lower limit to a is

a>1. (2.48)

(It should be noted that in his discussion Witten con-
siders the limit A,~0 and a=p, and argues that the
solution exists because the two-dimensional Schrodinger
equation with negative-definite potential admits a nor-
malizable bound state (in the @ =/ limit this corresponds
to a negative coefficient to u? in the above potential).
Strictly speaking, however, the absence of the A, term
causes the overall theory to be unstable [constraint (1)
cannot be satisfied]. The region external to the vortex is
a false vacuum and o, grows without bound, eventually
expelling the ® field to infinity; the vortex ceases to ex-
ist. Therefore, the A, term must always be present at
some level and the normalization of o is always deter-
mined as above. Moreover, such a term is induced by
interactions and one cannot have the strict a=p case
without Coleman-Weinberg symmetry breaking by the o
field in far vacuum. Indeed, we see below that our varia-
tional calculation picks out the family of solutions with
a=p, except when a <1. Why is our result in apparent
conflict with the theorem that such solutions should al-
ways exist for any a including a—0? The answer is that
our variational Ansatz cannot probe the extreme weak
potential case. We will see, however, that we obtain
sufficient information about the parameter space that we
can infer its structure as a—0 by Witten’s analytic re-
sult.)

The extremal solution for o3 is

2
aé:z—;t‘li-[a—BF(x)—l/xz] , (2.49)
o
which is a valid solution provided it is positive. This is
just a restatement of constraint (3). Substituting the
solution for o} into Eq. (2.45) gives the energy per length
as a function of «,

2
Hx)=— 2 [ax2—Bx?F(x)— 1],

(2.50)
Ay x?
which leads to the extremal equation for «:
ax?—B[x%F(x)+x3F'(x)]+1=0 (2.51)

(note, H is manifestly negative at the extremal value for
03, so that the existence of a condensate does indeed
lower the energy per length of the vortex).

We have scanned over the parameter space defined by
a, B, and x for solutions consistent with constraint (2),
and constraint (3). The allowed solution space and the
width of the o condensate are shown in Figs. 4 and 5.
Our procedure consisted of choosing a value of B, solv-
ing for a using Eq. (2.51), and then scanning over values
of x, checking for consistency with the constraints. We
can also obtain the equation for the outer boundary of
solutions, parametrized by x, by setting 3=0:

B(x)=2/x3F'(x) ,
alx)=B(x)F(x)+1/x?*.

(2.52)
(2.53)

[Of course, constraint (1) must also be satisfied; this
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FIG. 4. The allowed a,f parameter space for superconduct-
ing solutions with the ordinary unstable scalar potential. The
region between the two solid lines is the allowed region
mapped out by our simple Ansatz; the dashed line is the upper
boundary obtained from our full four-parameter Ansatz. For
a> 10 the upper boundary from the full Ansatz is B~0.5a"%;
for a <10 the upper boundary is S~1.32a'%. Note that the
wedge of superconducting solutions is terminated by constraint
(1): a<a(b)(A,/Ay)'"*=(a/2y)'/2. The solid triangles indi-
cate regions of parameter space where the back reaction of the
o condensate on the vortex is significant (so defined by y > 1.2)
for y=10"%,10"%, and 105,

merely truncates the wedge of solutions in a-f space at
a=a(A,/Ae)"2]

The parameter space of solutions from the full Ansatz
(2.34) was also determined. This was done by looking
for a global minimum in the energy with ¢3>0 and
B>a. The outer boundary obtained using the full An-
satz is also shown in Fig. 4, and it is not significantly
different from the boundary determined by our truncated
Ansatz. We also note that while the energy given by the
full Ansatz (2.34) has converged to within a few percent,
our simple Ansatz can give an energy per length which
differs from that of the full Ansatz by ~50% for unfor-
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FIG. 5. The variational parameter x (=the ratio of the size
of the condensate to that of the vortex) is shown vs a. Solu-
tions with @ =g correspond to the right boundary (x ~2.5).

tunate choices of a and . However, both Ansatze yield
energies that agree to within a few percent near a=p,
which happens to be one of the most important regions
for the rest of this study. At this point we abandon the
more complicated Ansatz.

The line of solutions corresponding to a=p is already
known from Witten’s argument and it extends in reality
down to a=f=0. We see that the parameter space of
solutions is restricted for small @ and B and grows to the
indicated wedge for large values. Our definitions of a
and S8 have been very convenient because the allowed pa-
rameter space, in the concrete-vortex approximation, is
independent of whether or not the string is gauged.
[However, it should be mentioned that if m2 and f72/2
were normalized by mfp, instead of by our variational
parameter u?, global strings would have a fixed-wedge of
allowable parameter space while the gauge strings would
have a wedge of a size determined by the ratio of scalar
and vector-boson masses. The parameter space with this
normalization is obtained by the mapping (a,B)
—(a/a,B/a), where a can be obtained from Fig. 2 in
the gauged case, and a = 1.6 in the global case. We then
see, with this normalization, that the gauged and global
strings have the same available parameter space for
b =0.1, and for b % 0.1 the gauged parameter space can
be significantly larger than the global parameter space.]

In sum, for a superconducting solution to exist (within
the concrete-vortex approximation), a and S must be
within the allowed wedge (see Fig. 4) and constraint (1)
must be satisfied: m& /Ag>mi /A, or, equivalently,
a <a(A,/Ag)'/2. That is, for a specified value of A, /A,
the wedge of solutions terminates at a=a (1, /A4)'"%. In
Sec. VI we will discuss how one translates from the pa-
rameters a and B, which are computationally con-
venient, back to physical parameters in the scalar poten-
tial.

D. Back reaction onto the vortex

In the previous analysis we have viewed the ® back-
ground solution as fixed, i.e., the width of the vortex,
1~ is held fixed as a parameter determined from the
potential for ® alone. In this section we relax our
concrete-vortex approximation and vary the full Hamil-
tonian with respect to u to study the validity of this ap-
proximation. We also map out the regions of solution
space where there are significant deviations from our
concrete-vortex approximation; fortunately, they occupy
only a small fraction of the entire parameter space of
solutions. Since the full Hamiltonian depends upon
whether or not the string is gauged, we consider each
case separately.

1. The global case
The full Hamiltonian for the global string is

_ =2 o« _1\ns gl
(BY=T" a5 p(u)+ 27 3 ATV TW)
4 n=1 nZn!’uZ

2
—ﬂ[axz—BxZF(x)— 17%.

2
Ayx

(2.54)
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It is now useful to introduce a new variational parameter
which is the ratio of the value obtained in the concrete-
vortex approximation (=p,) to the true value of u. We
thus introduce

y=uo/tt ,
where (2.55)
© (_l)nvn—ZV[n](ﬁ)
He=43 o :
n=2 n-n!

Also, we define a’, B’, and x' to be ratios with p,, i.e.,
x'=p,/k=yx, and, correspondingly, a'=a/y?
B'=B/y% Removing overall constant factors and addi-
tive constants we have the variational Hamiltonian in y
and x":

(H)=—ny+y2/2— L [a'x2—B'x"?F(x' /y)—1].
X

(2.56)

We have also introduced the parameter y =3u3/v A,;
note the ratio u,/v has already been determined impli-
citly in the above discussion for the general quartic poly-
nomial potential: ¥ =0.31A4/A,. In the concrete-vortex
approximation, y =1, the primed parameters coincide
with the unprimed ones; this redefinition has the advan-
tage of minimizing the y dependence of the additional
term.
The joint extremal equations in x’ and y are

a'x?—B[xF(x'/y)+x"F'(x'/y)/yl+1=0, (@2.57)

1—y2428yWx'F'(x'/y)/y =0, (2.58)
where W=a'x?—B'x"*F(x'/y)—1. We also recover
our previous constraints recast in the present variables:
W >0, and B'—a’>0. Note that since W >0 we must
have y > 1, i.e., the vortex is always larger than the size
given by our concrete-vortex approximation.

Upon specification of y the allowed values of a' are
restricted by constraint (1):

a'< 22

vy
We present in Figs. 6-9 both a’ and 3’ as a function of y
for two choices of 7, 1073 and 1078, (We choose small
values of ¥ here and elsewhere only for the convenience
of having a large region of a,B parameter space to
study.) These results were obtained by solving for o'
and B’ in the extremal equations and scanning over x’
and y (always checking that the constraints are satisfied,
and that the charged condensate lowers the energy per
length of the original vortex). We see, as a general rule,
that back reaction can only be significant if the above in-
equality approaches equality. In other words, a neces-
sary condition for back reaction to be important is

(2.59)

4 4
me m,
ho = . (2.60)

This should come as no surprise since in this limit the

* ' T T T T T T T3
y=103 ]
\\\\\\\\\\\\\\\\\\\\\\\\\\\“\“\\“““,““‘“““_4_‘“H_“:{
\
=
\z'; 3 :
: 4
| L 1 ! L | L
| 10

y= po/p
FIG. 6. The allowed a’ parameter space as a function of y
for a global string with ¥y =10~3. Significant deviations from
the concrete-vortex approximation occur for large y.

vacuum energy associated with a o condensate is about
the same as that associated with a ® condensate; i.e., the
(®)=£0, (o )=0 and the {o )50, (®) =0 minima are
nearly degenerate. We further see, upon comparison of
the graphs with the same y, that large values of y (i.e.,
significant back reaction) only occur when condition
(2.60) is satisfied and

3fm?
a'=B orml=
Ao

(2.61)

For the choice y=10"%, 107%, and 10~ we also show
the a',8' parameter space where y >1.2 in Fig. 4. We
see that our concrete-vortex approximation is valid over
most of the parameter space, and solutions with even
mild back reaction are very rare, and are restricted to be
near the line a=4.

Lol

1

1 1 1 1 1 1 1 1

10
Yo /p
FIG. 7. The allowed B’ parameter space as a function of y
for a global string with y =103,
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2. The gauged case

The full Hamiltonian per length for the gauged string
is

4#52111(%) 89 _,
————+ 5o

—2
(HY=""" 4 #52G(s)+ 783

4 abs

2
—i—TTH—Z-[axz—Bx2F(x)-— 17%.
x

g

(2.62)

We redefine variables as in the global case, again use
Yy =po/l, and further define s'=sy. We replace a with
a'y 2 where a’ is the value of a in the concrete-vortex ap-
proximation. Dropping constant factors and additive
constants we now have the variational Hamiltonian in y,
x',and s’:

4In(3) 89
@ AN ' 12
(H)=G(s'/y)+ The?? + TR
—Lla'x?—BxF(x'/y)—1F.  (2.63)
X
108 T T T T T T T3
y=10% 3
104 —
Q}), ///////////////////////// Dbt e E
Q ]
103 1 1 1 1 L L1
1 10

Y o /p
FIG. 9. The allowed B’ parameter space as a function of y
for a global string with y =105,

We have defined y as before, and in this case
¥ =Ag/2A,a’. The constraint on a’, which follows from
constraint (1), now takes the form

1/2

) (2.64)

’

a’
2y

’

a <

and, as in the global case, we require 5’ >a’ [constraint
2] and W=a'x"*—B'x"*F(x'/y)—1>0 [constraint (3)].
The method of solution in this case was to numerically
search for a global minimum in the energy (and, of
course, checking to see that the charged condensate ac-
tually lowers the energy per length of the original flux
tube'®). Results very similar to the global case were ob-
tained. Again, the main result is that if we are to have a
superconducting solution and y >> 1, we require

me Mo da'=p (2.65)
e A and a’'=f' . .

To summarize the issue of back reaction, we can say
that for all but a small portion of the parameter space of
solutions back reaction of the o condensate upon the
vortex itself is not important. Only for a=p is back re-
action potentially significant.

E. Coleman-Weinberg effective potentials

It is interesting to consider the possibility of vortices
and associated superconductivity, in the case of
Coleman-Weinberg!” symmetry breaking. Here the
fields ® and o have zero renormalized mass, but the ra-
diative corrections due to the interactions with their
gauge bosons produce an unstable effective potential at
the one-loop level. We may consider the effective poten-
tial to be!’

A 4
V(@,0)= =2 [® |4+ 9~ | |[In(2| D |2/v2)— 2]
3! 1672 ¢

A 3e*

4 4 4 2 0,12y 25
+——-3! o +16ﬂ_2!o|[1n(2|a| /v'f)— 2]
+f1®?o]?. (2.66)

The condition that ®=ve’®/v2 minimize the ® part of
the potential implies that

Ao 11¢*
=— (2.67)
6 1672
at which point the vacuum energy density is
4
vac — 3q 2 U4 (2.68)
1287

[for simplicity we have not added a constant term to
V(®,0) to make the vacuum energy vanish at the
desired minimum].

In general we wish for the o field to minimize the po-
tential at some other mass scale, v’ /V'2. Consequently,
we have the relationship

Ao 1le?
6 167

0= (2.69)



At the 0 minimum we have

_ 364 v,4
vaeT 1287

and the stability of the theory at the o=0, ®z0
minimum requires [constraint (1')]

E (2.70)

(2.71)

which is the analog of constraint (1). Besides f >0, no
further constraints are obtained. Unlike the case with
ordinary scalar potentials, we find that the second non-
trivial constraint_arises from requiring that the ex-
tremum o =v, /V2, ®=v,e"?/V2, (v,,v,70) not be the
true minimum. Upon extremizing the potential, v, and
v, can be solved from

84 (v, /v)*In(v,/v)+C(v,/v')*=0
8(v,/v")? In(v, /v")+Clv, /v)*=0,

qu >ev',

(2.72)
(2.73)

where A =(qv /ev')*>1, C=B/X >0, and we have intro-
duced the parameter X:
4 12
A (2.74)
647U

which is the analog of a (B is defined as before, i.e.,
B=fv?/2u?). Because of the positivity of 4 and C, it is
clear that v, <v and v, <v’. To find the parameter
space (A4,C) that represents the global minimum, we
scan through the space (v, /v, v, /v’), solve for 4 and C,
and then check that the energy is lower than that given
by Eq. (2.68). This parameter space, which is not ac-
ceptable, is shown in Fig. 10. We see from Fig. 10 that
a necessary condition (though not sufficient if 4 =1) for
stability of the theory at the o =0, $5£0 minimum is

BR1.2X , (2.75)

which is the analog for Coleman-Weinberg breaking of
constraint (2).
Now we use the variational Ansatz of the preceding

14 T
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FIG. 10. The region of parameter space [A4 =(qu/ev’)?,

C=pB/X] that corresponds to a true vacuum with (o),
(®)s£0. This region, which corresponds to electromagnetism
being broken far from the vortex, is strictly disallowed.
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analysis. We again recover Eq. (2.9) and find presently,
for u,

2 941)2 3 qv- U
=" [ -3 44 —0(107%)]=0.0921——

(2.76)

in the global case. The series does not terminate because
of the expansion of the logarithm; we keep here terms to
O(e %),

Similarly, for the o field we find the energy functional
per unit length:

H(o k) ——[1+Bx2F(x lod
9e*x20g 3e x 208
®In(adw . Q7D
1024;L 1r 512u’r

We see here another manifestation of the modified con-
straint (2); if S—0 this energy is unbounded below for
k—0; the lower limit to f prevents this catastrophe.

We rescale the above Hamiltonian per unit length by
letting o3=v'?63/X. The energy per length then takes

the form
/ 8X.

(2.78)

Upon extremization of the energy per length with
respect to &, and x we obtain

BI2F(x)+xF'(x)]+&3[ In(&3/X)—
14Bx2F(x)+ &3 In(&§/X)—1]=0 .

2
H=mv"*283[1+Bx2F(x)]+&ax _iﬁ _

3
2

11=0, (.79

(2.80)

In this case the upper boundary to the parameter space
of solutions does not correspond to (3=0, and the
boundary is more difficult to locate. Given values of X
and B, &3 typically has two extremal solutions. Howev-
er, the solution of interest can be obtained by requiring
that the condensate is bound to the vortex: H <0. The
extremal equations can be solved for S and X in terms of
x and &, It is then possible to scan over the variational
parameter space (x,§;) and search for solutions satisfy-
ing the modified constraint (2). Results from such a scan
are shown in Fig. 11. We see that the parameter space
(X,B) is very similar to the parameter space (a,B) ob-
tained with ordinary quartic potentials.

III. DYNAMICS OF BOSONIC SUPERCONDUCTIVITY

To recapitulate what we have done to this point, using
our variational Ansdtze we have mapped out the regions
of parameter space that allow bosonic superconductivity,
for both ordinary and Coleman-Weinberg scalar poten-
tials (see Figs. 4 and 11). Furthermore, we have ex-
plored the regions of parameter space for the scalar po-
tential where the o condensate significantly modifies the
vortex solution itself, which occurs for a=pf and
mé /Ao=m?¥ /A,. Throughout these analyses the super-



274 HILL, HODGES, AND TURNER 37

A ! 10 100

1000 10000

FIG. 11. The X,B parameter space of solutions for super-
conducting vortices for Coleman-Weinberg potentials.

conducting current was taken to be zero. Presently we
obtain the expression for the energy associated with su-
perconducting currents, i.e., the kinetic energy of the
charge carriers and the energy in the magnetic field.
Throughout we will use our truncated Ansatz. First we
directly solve Maxwell’s equation without resort to a
Green’s-function expression (which Witten' does); how-
ever, the usual UV singularities still occur and must be
dealt with in a self-consistent manner.

Consider phase fluctuations about the o condensate
obtained above,

oo(r) .
o(r,0,z,t)— 5 expli¢(z,t)],

and we obtain the effective action for ¢(z,¢) in the case
of an infinite straight string along the z axis:

(3.1

108 TT |I”H'

LI RLLL LELELRALLL LENLEL RELLI B L R 1

R 1 10 100

1000 10000

Q
FIG. 12. The a,B parameter space of solutions consistent
with KA, > 100. In this region the magnetic field energy dom-

inates that of the KE of the charge carriers. Solid lines indi-
cate the entire parameter space of solutions.

I=%f2'n'r drdzdto(r)[(3,6—edo)*—(3,0—eA,)]
—1 [d*xF,,F*+0(1/x) . (3.2)

We thus obtain the equation of motion for the ¢ field
and the vector potential:

p—02p=e(dgAy—3,4,), (3.3)

9, F* =eK (3¢ —eA?)8%(x )8" , (3.4)
where

K= f27rr droyr)? (=mos’/2k%) , (3.5)

the latter result holding with our simple Ansatz. The in-
teresting solution for our purposes corresponds to a con-
ducting wire of length L with ¢ topological winding
number N; that is,

6= 21£Nz ’

A= 4*=47=0, (3.6)

and we obtain the remaining component of the vector
potential,

A,=—constXIn(Vx>+y2/L), (3.7)
which describes a circumferential B field:
B, = —const X Zi 7
Xy (3.8)
By =const X xz—:—y? ,

and the constant is determined by self-consistency with
the current by way of Stokes’s theorem. The current is

j,=eK[0,6—eA,(0)18%x,) 3.9

and we must interpret A4,(0). (Witten similarly en-
counters this subtlety in his Green’s-function solution.)

We simply define
A,(0)=const XIn(kL) (3.10)

(the lower cutoff is the size of our “wire,” ~x~!). Then
using Stokes’s theorem we obtain

—1
2
const=KN |1 L €K eL) (3.11)
L 2w
We make the definition
1 e’K
w=;2—1? 1+—2;-1n(KL) , (3.12)

which is the “inductance per unit length” and the result
for the B field becomes

_N Y
eLw x2+y

N X

*eLw x2+y2 ’

x=

2 b
(3.13)

B,

Now, we may compute the resulting energy from the
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Hamiltonian:
H=%f21rr drdz oy(r) 3,0 —ed,)?
BZ
3.2
+ [dx - (3.14)

The 3,6 —eA, contribution is just 27°N?/Le*w’K and
the B2/2 contribution is logarithmically divergent in the
transverse dimensions which we truncate at L, which
yields 7N?In(kL)/Le’w*. These terms combine to give
the effective Hamiltonian per unit length associated with
the current:

~ 272N? e’k
= 1
(H) FET + e In(xL)
2a72
= i’; LANVNES (3.15)
e w

where the current I= f dA j,=2wN/eLw. We use

electromagnetic units here, and elsewhere, that corre-
spond to e’/4m=agy, where apy~ 5 is the elec-
tromagnetic coupling constant. For reference, e
GeV=2.43x10° A.

The ratio of the energy in the magnetic field to the ki-
netic energy (KE) of the charge carriers is
e’k In(kL)/27w, and with our simple  Ansatz
K =mo}/2«*. Upon using our previous extremal solu-
tion for o3 and taking A, S 1 (perturbativity) we find that
for most of the solution parameter space K >>1, as
shown in Fig. 12. For the loops of interest L is a macro-
scopic (or even cosmological) length, implying that
Lk>>1, and so the field energy is the dominant contri-
bution when K >>1. The energy associated with the su-
perconducting current, in this case, is no different from
that of an ordinary wire with current I. The only region
of our parameter space (a,B) that the kinetic energy of
the charge carriers can have a significant contribution is
near the upper boundary of solutions, where the o con-
densate is starting to become energetically unfavorable
and K —0.

Superconducting currents can be induced in a cosmic
string if primeval magnetic flux is present in the early
Universe. Whether or not there were primordial mag-
netic fields in the early Universe is still an open and very
important question which has been considered else-
where.!®* We mention, however, that superconducting
strings inherently have a nonzero winding number in the
o field (and hence current) since the phase of the o field
can have a correlation length £ no larger than the scale
of the horizon (H ~!~t) at the time of the spontaneous
symmetry breaking (f=tgy) that gave rise to cosmic
strings: £ Stggg. This results in a winding number in a
length of string L of at least ~(L /£)'/2, which leads to
a minimum current that must be present (and which one
might refer to as “the Kibble current”).

IV. CRITICAL CURRENTS

We now examine the breakdown of bosonic supercon-
ductivity. Collecting terms in the Hamiltonian associat-
ed with the o condensate gives

(H,)= —%[axz—BxZF(x)—l]a(z)
mA,x’a] 2rNK
+
192u? LY 1+4(e’K /2m)In(xL)]

4.1
using our simple Ansatz for o and using the ordinary
scalar potential. (Since this is a Hamiltonian per length,
the last term is of the order of 1/L2%) The current can-
not be arbitrarily large because there will be a (critical)
current beyond which it will be energetically favorable
for the o field to become zero everywhere. Since (H )
vanishes for o =0, it becomes energetically favorable for
the current to dissipate when (H_,) becomes non-
negative.!” Although N is topological in nature, it can
unwind in processes where the o field can go through
zero (where the phase ¢ is not well defined), which on
energetic grounds should occur when the above Hamil-
tonian approaches zero.

Notice, however, that we should display the full o
dependence in this expression by restoring the expression
for K obtained previously:

2, 4
TAX 0

(H,)=—Llax*—BxF(x)—1]o3+
glox"—P Yoot oo

7 N2}
+ .
kK’L*[1+e%02In(kL ) /4x?]

If we could neglect the logarithm term in the last term
in Eq. (4.2), the 0,50 superconducting minimum would
smoothly go to zero as N/L is increased to (N /L),
(where 0,=0), and the current would achieve its max-
imum at (N/L)=(N/L),,./V'3 and go to zero at
(N /L)y, The quench transition would be second or-
der. However, the logarithm is typically large and can-
not be neglected. In fact, one can see by plotting H,, as
a function of o, (for fixed x) that, for a range of
currents, the local minimum at 0,50 persists even when
H,(0y)>0. Thus, it is possible for the superconducting
state to be metastable even when H_ (0,)>0. This also
suggests that the transition should be first-order, and
proceed through the nucleation of bubbles (inside which
0¢=0). The full analysis requires considering variations
in both x and oy, and computing tunneling rates; this
analysis is currently in progress.?’ We will content our-
selves to defining absolute stability when (H, ) <0 (how-
ever, see Ref. 19). In analogy with finite-temperature
SSB phase transitions, we define the critical current to
be that where H, =0 (holding N fixed).

This critical current can easily be estimated by using
the unperturbed extremal solution for o2 from Eq. (2.49)
and equating the right-hand side of Eq. (4.2) to zero.
The result for the critical current found in this way is
172

[ax —BF(x)x —x ~'].

(4.2)

6w
o (4.3)

o

Icrit =u

In the limit K >>1 the critical current takes the form

172
12

_1e — —x 1. 4.4
AIn(xL) [ax —BF(x)x —x ~"] (4.4

I =mu
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This limit is convenient to study since the A, and loga-
rithmic dependence is now multiplicative. For
KA, > 100 and a < 10* we find that the coefficient involv-
ing x, a, and B is roughly proportional to al?/B¥*. Us-
ing this approximation, the critical current for the
aforementioned range of parameters is

I ~5.5u[A,In(kL)] = 2a8 /B34 (4.5)

which is accurate to about =~30%. Note that,
I, S25[a /In(kL)]'/? the value =O(7) being achieved
for a~B~(a/2y)"/%. The critical current as defined is
shown in Fig. 13.

We note that one could equally well choose to define
the critical current to be that for which the lifetime of
the metastable, superconducting state becomes shorter
than some relevant cosmological time scale. However,
as we shall now describe, that definition can differ with
ours by at most a factor of a few because the local 0,40
minimum only persists for currents at most a factor of a
few greater than our critical current.

To see this we study the one-dimensional potential
H ,(0,), always choosing x to minimize the energy per
length and holding N fixed. The current is varied by
varying the length of the loop L. The energy per length
of the condensate, Eq. (4.1), is shown as a function of o
and the current in Fig. 14 for a choice of parameters,
a=10* B=10°, N=10% and A,=1. For small currents
(I <<I;,), the current has little effect on the condensate,
i.e., the value of o,, which minimizes A, is almost in-
dependent of the current. As the current increases H,
becomes minimized for o,=0, while a local supercon-
ducting minimum still exists where the o field becomes
trapped for a supercritical current. For currents not
much greater than the critical current (in all cases less
than a factor of a few) the superconducting minimum
disappears, making the superconducting state classically
unstable. A search through many different parameters
was made, and it appears that the properties exhibited
by this particular choice of parameters are quite general.

Qualitatively, the features seen in Fig. 14 are quite
simple to understand. Picture the two-dimensional po-
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FIG. 13. The critical currents of bosonic superconducting
strings are shown as a function of a, for all possible choices of
B consistent with KA, > 100.
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FIG. 14. The energy per length of the condensate H, (arbi-
trary units) as a function of o and the current, for the parame-
ters a=10% B=10°, N=10% and A,=1. For curve a,
I=0.97I_; and the superconducting state is stable; for curve
b, I=1I_; (H,=0); for curve ¢,  =1.004I_; and the supercon-
ducting state is metastable; for curve d, I * 1.00461;,, the su-
perconducting local minimum disappears and the metastability
of the superconducting state is lost. The behavior illustrated
here for a particular set of parameters appears to be generic.

tential H,(x,0,). The surface H, (x,0,) has a dimple
near x~1 and oy=0f#0 (the superconducting
minimum). However, for values of o, very different
from o, H, (x, fixed o) is minimized for x ~0, and for
x=0, H, «g3. Thus the potential plotted in Fig. 14,
H,(0y) [=H,(x,0,), minimized as a function of the
condensate size x], varies as o3, except near the dimple,
og~0y. As the current increases the dimple flattens,
and eventually disappears (in Fig. 14, for I =1.00461 ;);
for currents greater than this H, < o3, and the metasta-
bility of the superconducting state is lost.

The precise details of how a loop in a cosmological
setting quenches involves not only the microphysics of
the quench transition for a loop of fixed current (that is,
fixed length), but also the rate at which the loop is
shrinking (and the current is increasing), whether or not
cusps are present on the loop which can dissipate phase
twist in o, etc. From our work it is already clear that
supercritical loops can only be metastable for currents of
at most a few times I ;. And the metastability of these
supercritical loops depends upon the tunneling rate
(which has been addressed in Ref. 20).

V. STATIC LOOPS

We will now explore the possibility that a loop of
string can be stabilized against its string tension by elec-
tromagnetic stresses and achieve a static, or floating
state.*> That this could occur is easy to see. Neglecting
numerical factors, the energy of a loop is ~(string
tension ~7 2) X L +LI?/2, the first term representing the
energy due to the string tension and the second due to
the electromagnetic field. As a loop oscillates it radiates
both electromagnetic and gravitational radiation, and in



the process must shrink in size. Conservation of the
winding number N means that the supercurrent I < N /L
must increase, and so the magnetic field energy varies as
1/L, whereas the potential energy of the string varies as
L. Assuming that N remains constant (and the string
superconducting) the loop will reach a state of minimum
energy for L =L, . ~N /U, where it can no longer de-
crease its energy by shrinking, and the string tension is
balanced by electromagnetic stresses.

To consider loops of string in our present framework
which is strictly only applicable to infinitely long strings,
we require that the scale of the fields be much smaller
than the curvature of the loop: uL >>1, kL >>1,
hL >>1. We also implicitly assume that the loop is “rel-
atively smooth,” so that 3¢/9dz ~const. Our analysis
may be invalid if the loop has cusps where 9d¢/0z is
large, as superconductivity may quench at these points
long before I ~1,,, dissipating phase twist and perhaps
preventing the current from ever getting close to I .

The ideal approach to search for static loops would be
to extremize the full Hamiltonian with respect to o, k,
u, and L, and search for solutions consistent with our
constraints. However, we will restrict ourselves to the
case where the loop is stabilized by currents that are
smaller than the critical current, and so here we will not
address the question of metastable, supercritical static
loops. By so restricting ourselves, we are able to use our
previous results, i.e., our variational parameters do not
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change in the presence of the current. This amounts to
requiring that the energy in the current not “back react”
upon the rest of the Hamiltonian. In what follows we
consider the case of the usual quartic potential, Eq.
(2.41), although most of the results also apply to
Coleman-Weinberg potentials.

We write the energy of a superconducting loop, in
units of 77 %, as

E(L)=[Ag+w In(uL)IL —B,L
C

ag

+ L[1+4(e%K /2m)In(kL)]

; (5.1)

where B, includes all the o-dependent terms except for
those associated with the charge carriers and magnetic
field, which are given by C,, and A4 contains the
remaining terms depending only upon ®, which are in-
dependent of the loop length L. In the global case
w =1, and in the gauge case w =0. The quantities 44,
B,, and C, are determined from Eqgs. (2.21) or (2.12)
and (4.1). In general, the energy per length of a super-
conducting string (with subcritical current) must be less
than that of an ordinary cosmic string since the o con-
tribution to Eq. (5.1) is necessarily negative.

Note that the coefficients 44, B,, and C, are all posi-
tive. The length of loop that minimizes the above ener-
gy, and represents the static state, is

172

C,d
L= 2
[Ap+w +w In(uL 4 i) — B, [ 1+ (e“K /2m)In(kL g5 )]
[
where
2
§=1+ e K /2w . (5.3)

14 (e?K /2m)In(kL gy )

Requiring L,,. to be real gives us the condition that
Agp+w[l+In(uL)]>B,.

To obtain a stable, static configuration with subcritical
current, the sum of the last two terms in Eq. (5.1) must
be negative. We define the critical loop size, L icar» tO
be the loop size for which the loop current is equal to
the critical current:

c 172

ag

critical — Bo [ 1+ (e 2K /2m)In(kL critical ) ]

L (5.4)

(In calculating L., We have ignored the back reaction
of the current upon the vortex and the condensate; in-
cluding the back reaction may modify this result slight-
ly.) Since we are seeking subcritical floating solutions,
we must have L. > L iica (to be perfectly safe we
should probably require L, R 3L jticar» SO that the
back reaction of the current upon the vortex is less than
~10% and can be neglected). Using L .. > L iticar 35
the criterion, we see that static loops are possible only if

0< A¢+w[1+ln(HLstatic)]—Ba

1+ (e?K /2m)In(kL oigicar)
<8Ba . critical ) (5.5)
14+(e“K /2m)In(kL g,y )

If we require kL /7 > 10 so that our variational approach
is not invalidated by curvature effects, we must have
1<8<1.3. It is then apparent that the energy in the
vortex is very close to that in the condensate (true for
global or gauged loops), which is not surprising since a
static string implies an equal balance of the energy be-
tween the o and ® fields. The energy per length of a
static loop is

E(L)

—L—=[A¢+w1n(uL)——Ba]

1+~

5 (5.6)

w
+8.

For a given set of parameters that specify the poten-
tial 44 and B, are fixed. However, C, depends upon
the winding number. In the canonical scenario of
cosmological loop production, loops of size L, are con-
tinuously formed by breaking off from infinite strands of
string when the age of the Universe is about t5~L,
(Refs. 21 and 22). This results in a loop having a wind-
ing number N of at least ~(t,/£)!/? (the “Kibble
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current”). Taking N «(t,/£)"/? leads to a spectrum of
static length sizes: L . <to!/2.

We now check to see if the concrete-vortex approxima-
tion is appropriate for our study of static loops (and find
that it is not). The concrete-vortex approximation is val-
id when

B, << Ag+wln(uL) . (5.7)

Because we are considering static loops, A
+w In(uL )=B,, and inequality (5.7) cannot be satisfied,
indicating that there is always significant back reaction
of the superconducting condensate onto the vortex. This
immediately locates the only possible region of parame-
ter space where static loops might exist:

my mg

~ =~Va/2y~ 172 ~fB.
" )\a(=>a a/2y ) and a=pB

(5.8)

Since there is back reaction we must now consider the
global and gauged case separately.

A. The global case

For a global loop, w =1, and, for an ordinary scalar
potential,

y2
Aq,:%—ln(y)—k? . (5.9)

Upon using our simple Ansatz for o,

B, =L [a'x—Bx"F(x'/y)—1] . (5.10
P

From Eq. (5.5) we develop a criterion for stable static
global loops is

Ag+1+In(uol)—B, <1.3B, .

Since the size of the loop L enters into the criterion, for
a given potential there is always a maximum length L .,
beyond which stable, static global loops do not exist:

:uOLmaxzexp(z-:;BU—A@—l) . (5.12)

(5.11)

For lengths bigger than ~L . the critical current is
reached before the loop shrinks to its static length. Re-
call that there is a minimum length we can consider
without having to worry about loop curvature effects:

oL min =10my . (5.13)

This leads to yet another constraint: L, >L_... We
note that small values of the ratio L ,, /L ;. imply that
static global loops were only produced during a very
short cosmological time, early in the history of the
Universe.

As mentioned before, the variational equations can be
solved for the parameters a’ and ' in terms of x and y.
For the choice 7/::10‘4 we show the a',f' parameter
space for L, /L i, > 1, 1000, and 10'° in Figs. 15-17.
We see that loops much larger than the minimum length
occupy an increasingly smaller portion of parameter
space.
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FIG. 15. The allowed a',8’ parameter space for a floating
global string with ¥ =10"% and L ,,x /L min > 1.

B. The gauged case

In the gauged case we do not encounter the peculiari-
ty encountered with static global loops; i.e., the energy
per length of the vortex is independent of the size of the
loop. Static loops are more natural in this sense, as the
existence of floating solutions only depends upon the pa-
rameters of the potential, and not also upon L ;. as it
does in the global case. However, here, too, floating
solutions only occupy a very small portion of parameter
space. From Eq. (5.5) it follows that our criterion for
static gauge loops is

4o
B

<2.3. (5.14)

o

The full Hamiltonian, given by Eq. (2.62), was numeri-
cally minimized for ¥ =10~* for three different values of
b: 0.01, 1, and 100. Superconducting solutions satisfy-
ing the above constraint are shown in Figs. 18-20,
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FIG. 16. The allowed a',8’ parameter space for a floating
global string with ¥y =10"* and L ., /L pir, > 1000.
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FIG. 17. The allowed a',3' parameter space for a floating
global string with y =10"* and L ., /L i, > 10'°.

where we plot a’ vs ' for each value of b. In each case
the allowed region of parameter space for floating loops
is very small. To gain a proper perspective of just how
small this parameter space is, we note that for the
aforementioned cases the ratio of the area of our static
solutions to that of our superconducting solutions is
~1:1000. [Note, the area of a-B space where static
loops exist is of order unity (independent of y), whereas
the area of solution space is ~(a /2y )*/*/4. For y << 1
static solutions occupy a small part of solution space; for
¥ — 1, they occupy a large fraction.]

To summarize floating loops, we find that there is a
small region of the parameter space of solutions where
stable, static solutions may exist, as specified by

F=VAoh, /3, my=mg(A,/Ae)"/* . (5.15)

Because of the potential importance of back reaction of
both the charged condensate and the current upon the
vortex, a more detailed analysis is needed before one can
confidently make a definitive statement about the ex-
istence of floating loops, even in this tiny region of pa-
rameter space.
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FIG. 18. The allowed a’,f’ parameter space for a floating
gauged string with y =10~* and b =0.01.
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FIG. 19. The allowed a',8’ parameter space for a floating
gauged string with y =10"*and b =1.

VI. MODEL BUILDING

In this section we describe a procedure for choosing
the five parameters of the potential

_ Agv?
Vivyu)=—mgv*/2+ 4l —mgu2/2
Aut 3mé
o 2.2 P
+ gy Hftut A+ T (6.1)

such that superconducting vortex solutions exist (see
Tables I and II). However, we first discuss the natural
values for the parameters f, Ay, and A,. The coupling f
can be arbitrarily small since it is multiplicatively renor-
malized [note that this requires no mixing between the
U(1) and U(1)’ gauge bosons and is special to our model;
it may not be a general feature of this mechanism in oth-
er settings], but it cannot be larger than ~1, the point
perturbativity is lost. It is clear that A, and A4 cannot
be arbitrarily small since the exchange of ¢ and ¢ loops
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FIG. 20. The allowed a',B' parameter space for a floating
gauged string with ¥y =10~* and b = 100.
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TABLE 1.

Summary of parameters for the scalar potential:
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V(v,u)=—m3u2/24Aev* /4!

+3m /2he—m2iu?/2+A,u®/4+ fu®n?/4. Primed quantities are related to their unprimed counter-
parts by a'=a /y%, s'=sy, a'=a/y? x'=yx, and B'=B/y? (see Sec. I D).

Parameter Definition

Comments

7 5 =6m3 /Ag
mb /u?

b qwt/m?% =69%/Ae

s w/h

a mi/ut=am? /m?

B fo22u*=3af /e

x n/k

y Mo/p

y 3u3/v A, =(Ae/A,)/2a

X 3e'v't /64y’

VEV of the real part of ®
Size of vortex =~Va /myg
for a global string a ~1.6;
for a gauged string

a ~order unity

2 times the square of the
ratio of the vector to sca-
lar masses

Ratio of the size of the
magnetic flux tube to that
of the vortex

Convenient normalization
for m2 by vortex scale u?
Convenient normalization
for interaction by vortex
scale p?

Ratio of the size of o
condensate to that of vor-
tex

True size of vortex to that
obtained in the concrete-
vortex approximation

In terms of y constraint
(1) is a<(a/2y)'”?
Analog of a in the
Coleman-Weinberg case

require ~ f2 counterterms. If we try to define the renor-
malized theories with A, and Aq smaller than ~f? we
will have the values of physical quantities such as o
determined by effective potentials of the Coleman-
Weinberg type rather than by the tree-level potentials,
and we will effectively recover the same constraints.
Moreover, for small f the gauge-loop corrections require
that A, exceed ~e* and A4 exceed ~g* For global
loops ¢ =0, and for gauged loops g2=bm3 /52 (which
requires Ao, b "%). We then see, in the gauged case,
that the natural range for b is 10725 b S 10 (where we
also assume that g is of the general order of e). For
b 2 10? the appropriate effective potential is that of the

Coleman-Weinberg type, and for b <1072 a nonlinear o
model approximation becomes appropriate.

We presently describe a method, though not unique,
that allows one to construct a potential which permits
bosonic superconductivity. This can easily be done with
the aid of several of our graphs for the case that there is
negligible back reaction—which is a good approxima-
tion unless a=pf, and in any case is always a good start-
ing point.

One can first pick the quartic couplings and f (con-
sistent with perturbativity and the Coleman-Weinberg
limit), and b if the string is gauged. This determines j3:

TABLE II. Summary of constraints on a bosonic superconducting cosmic string with unstable

quartic scalar potential.

Constraint Comments

(1) mé/Ae>mé /A, Stability of vacuum against
breaking of electromagnetism

(2) B>a Stability of vacuum against
breaking of electromagnetism

(3) o3>0 Existence of true condensate;
for a> 10 requires
a<B<0.5a"

4) m,~(Ay/Ag) *mg Existence of floating solutions

f =~V Aok, /3




B=3fa/Ag 6.2)

where a (b) can be determined from Fig. 2. In the global
case, a ~ 1.6, while in the gauge case, a is typically of
the order of unity. Constraint (1) and Fig. 4 restrict the
possible choices of a:

max[%,a(ﬁ)]gagmin[ﬁ,a\/ka/k¢] , (6.3)

where a(fB) is the upper boundary in Fig. 4, which for
B <50 is given by a(B)~0.818%™, and for B> 50 is given
by a(B)~1.438%%2. For solutions to exist to all, A,, Ay,
f, and b must be selected accordingly, i.e.,
aV'A,/he> L. Finally, any values of mg, and m_, may
be picked consistent with

m?,/mﬁ,:a/a . (6.4)

If for the parameters chosen, a~f and a:a\/ka/K¢,
back reaction is likely to be important, and one may
wish to take it into account (see Sec. 11 D).

As an aside we mention how one can arrange the po-
tential to have static loops. If the parameters A, Ay,
and mg, are selected, the other parameters are essentially
determined:

1/4

m,~mg and f~1vA,Aq .

(6.5)

to

The Coleman-Weinberg limit is automatically satisfied in
this case.

VII. CONCLUDING REMARKS

Let us summarize our work. By using simple varia-
tional Ansdtze we have studied a number of important
properties of cosmic strings. First, we have computed
(to an accuracy of better than 2%) the energy per length
of ordinary gauge cosmic strings as a function of
b=6q%/Ao=2m}/m}; our results are displayed in Figs.
1-3. It is very apparent that the energy per length is in-
sensitive to b. Since the critical temperature for the
phase transition which produces cosmic strings
T, ~0(14b)" "2~ (14b)"'"*X (energy/length)'/%,  this
implies that for cosmic strings of fixed string tension,
one can by appropriate tuning of A4 (i.e., b >>1) make
T, much smaller than its natural value
~ (energy/length)!/2. This fact may be of some impor-
tance if one is interested in producing cosmic string in
inflationary universe models,”® where the temperatures
reached after inflation are typically much, much smaller
than 7 ~ 10'°-10'® GeV, the scale associated with the en-
ergy per length required for “cosmologically interesting”
strings.

Second, we have mapped out the scalar potential pa-
rameter space for bosonic superconductivity. The pa-
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rameter space of solutions is shown in Figs. 4 and 11,
and the constraints are summarized in Table II. From
our analysis it is quite apparent that bosonic supercon-
ductivity does not require a fine-tuning of the parameters
in the scalar potential, and in fact may be quite a generic
phenomenon.

Our study of the dynamics of bosonic superconductivi-
ty included a quantitative discussion of the critical
current, which we define to be the current such that the
energy associated with the o condensate becomes non-
negative (at which point it becomes energetically favor-
able to the system to disperse the o condensate). Our
analysis indicates that, in general, the quench transition
is likely to be first order; however, the question of meta-
stability of supercritical currents must still be addressed
in detail.®®

With the exception of a small region of the solution-
parameter space, the ‘“back reaction” of the o conden-
sate upon the vortex itself is small (see Fig. 4), and the o
condensate can be treated as existing on a “concrete flux
tube.” For a=~B and mi/A,=mb% /Ay [so that
f ~(A,Ap)/2/3] the back reaction can be significant. In
this regime, gauge or global strings may be able to
achieve a static (or floating) configuration for subcritical
currents; however, since the back reaction is significant,
the analysis is difficult, and it is probably still premature
to say with confidence that such states are possible. We
can say with confidence that the parameter space which
allows floating configurations is very tiny (unless y is of
order unity) see Figs. 15-20. (If loops with supercritical
currents are metastable, the parameter space could be
slightly larger.) Whether or not floating loops ever
formed in the Universe is a separate issue. If the string
loops which form cosmologically have cusps and if dissi-
pation of phase twist occurs at the cusps, then the near
critical currents required to achieve the floating state
may never be achieved.

There are still a number of important issues to be ad-
dressed. Precisely how does a superconducting string
quench when the critical current is exceeded, and does
the quench lead to detectable effects [e.g., ultra-high-
energy (UHE) cosmic rays,” or the photofission of the
light elements formed during primordial nucleosyn-
thesis®*]? While it has been shown that fermionic loops
cannot achieve a floating state by the support of the ki-
netic energy of the charge carriers alone, no thorough
analysis similar to ours has yet been performed which
also includes the electromagnetic stresses. Our results
for the bosonic case would suggest that the possibility is
unlikely.

Finally, there is no particular obstacle to extending
variational analyses of this type to a large number of re-
lated cosmic string issues. For example, of considerable
importance is a microphysical understanding of cusps.?’
Cusps arise as singularities in the world-sheet description
of cosmic strings, but are clearly nonsingular
configurations of the ® and o fields. It seems interesting
to us to develop a similar analysis of the o field in the
presence of, say, a concrete cusp in the ® field to answer
the question of what, if any, are the changes in the criti-
cal current and the energetics of the o condensate at the
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cusp. For example, we wish to know if superconductivi-
ty is destroyed by a cusp of given extrinsic curvature for
a given value of the local current.

Note added in proof. Very recently, P. Amsterdamski
and P. Laguna-Castillo, Haws, Hindmarsh, and Turok,
and A. Babul, T. Piran, and D. Spergel have completed
numerical analyses of some regions of the parameter
space of bosonic superconducting cosmic-string solutions
found here. In these regions their results are in agree-
ment with ours. In addition Hans et al. have em-
phasized the importance of solution space where ¥ X 1.
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