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We discuss the zero-point energy associated with a heavy-quark-antiquark system confined to a
cylindrical cavity through the dielectric vacuum picture of confinement. The correction to the
string tension and the universal Coulomb-type behavior produced by the Casimir forces are treated.

I. INTRODUCTION

A complete analysis of the long-distance behavior of
quantum chromodynamics' (QCD) has proven to be
elusive, and models attempting to represent the impor-
tant features of QCD continue to be of value. A. sufficient
number of rather different quarkonium potentials exist
to make it clear that the pure phenomenology of quar-
konia will never serve as a decisive arbiter for the non-
relativistic potential between quarks, let alone for the be-
havior of QCD. This is partly because quarkonia exist in
the delicate transition region between long and short dis-
tances, as well as in a region which is neither unambigu-
ously relativistic nor nonrelativistic. Nevertheless, it is
important to continue to explore differences between and
consequences of these models in order to sort out the
universal from the particular predictions, as well as to
search for critica1 tests of them.

Perhaps the simplest kind of dynamics which such
models can explore is the static potential between a very
massive (fixed) quark-antiquark pair at large distances.
Since all models (and perhaps even QCD itself) lead to
potentials which at large distances grow linearly with
separation between the sources, what distinguishes
different models for the potential are the coefticient of the
leading term and the behavior of the nonleading terms.
One such model, which formed the basis for earlier' cal-
culations on the static potential, treats the nonlinear and
non-Abelian aspects of the gluon field and possible effects
of light quark-antiquark pairs through the creation of a
cavity in the QCD vacuum; the cavity is carved out when
F" F„„-E—B (E and B are the color fields) exceeds a
certain critical value. The vacuum has the property that
the gluon fields within the cavity, which are now treated
as Abelian, cannot penetrate it, because in the region
where the vacuum occurs the dielectric constant vanishes
(e=O) and the magnetic permeability is infinite (p= ~ )

(maintaining the relativistic condition ep= l). Inside the
cavity, on the other hand, e=jM=1. %e refer to this
model as a "dielectric vacuum model" (DVM). This

model has many elements in common with the so-called
bag models, although, among other differences, there is
no analog to the surface tension in the DVM.

The version of the DVM which we treat is character-
ized by a discontinuous transition from the cavity to the
vacuum. %hen there is a color-singlet quark-antiquark
pair with a fixed separation, the shape of the cavity is
determined by a constant critical value on the boundary
for the electric field E, which is tangential to the surface.
These boundary conditions have been treated numerically
in earlier work. The resulting cavity has cusplike singu-
larities near the sources, and an analytic solution of this

problem in three dimensions is not known.
In earlier work, we treated cavities of fixed shape.

This approach has the virtue that it is possible to find an-
alytic results and that it is possible to check whether a
particular fixed cavity approaches the "true" cavity, the
cavity that would satisfy the boundary conditions. Such
a check can be made by seeing how well the analytic solu-
tion for the fixed cavity satisfies the boundary conditions.
We found an analytic solution to the case where the cavi-
ty is an open-ended cylinder of radius R with opposite
charges separated by a distance a on the axis. The results
salient to the question of bag shape are the following:
first, for large a, the bag shape is arbitrarily close to that
of a cylinder, and second, the fields fall off exponentially
to the outside of the charges with a scale that depends on
R, not a. For large a, the bag is a closed cylinder, and
how the cylinder is closed at the ends is independent of a.

Our calculation was nothing more than a simple exer-
cise in classical electrostatics. However, the results are
both transparent and interesting. The leading behavior
of the potential for large separations is linear, as expect-
ed, and the nonleading force terms —below the linear and
constant terms —fall off exponentially as a function of
the parameter A, =a /2R, where a is the charge separation
and 8 is the cylinder radius. The spin-spin forces also
fall off exponentially. The question then arises as to
whether there are quantum corrections to this result, as
expressed by a nonzero vacuum expectation value of the
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energy of oscillating fields within the cavity. This is the
question that is examined in this paper.

A note of disclaimer and motivation is perhaps ap-
propriate at this point. Because of the lack of "end caps"
and cusplike behavior, we certainly do not claim that the
prediction of our earlier calculation is a prediction of the
DVM with sharp dielectric cutofF, but in any case the
sharp cutofF case is itself unlikely to be an exact predic-
tion of QCD. The infinite-mass restriction is also not
very realistic (although the success of fiavor-independent
potential theory suggests that it is better than might
naively be expected}. As stated above, putting end caps
on is a step which is required by the fields calculated in
Ref. 4, and their details cannot change the a dependence.
Nevertheless, highly detailed application of our calcula-
tion to phenomenology would not make much sense. In-
stead, the fact that our model can give analytic results
makes it sufBciently valuable as a theoretical tool to allow
it to stand on its own. For example, we can pose ques-
tions about the relation of the cylindrical Aux tube to the
hadronic string, or compare its features with those that
are predicted by lattice gauge theories. This is the same
spirit in which we calculate the quantum corrections.
The picture can also shed light on the significance of cer-
tain qualitative features of the phenomenology; like so
much quarkonium phenomenology, even the quantitative
aspects turn out to be surprisingly relevant.

The crudest measure of the quantum corrections to the
energy of a classical system such as the cylinder is con-
tained in the so-called zero-point energy, or the Casimir
effect. ' We shall be studying the oscillating solutions
which are allowed in the context of the original
geometry, but with the cylinder closed at the charges, as
the fields we previously calculated require. The vacuum
expectation value of the energy associated with these
solutions is the zero-point energy.

Oscillating solutions with baglike boundary conditions
have also been studied by Laperashvili and Nielsen, ' al-
though their aims were quite difFerent from ours; much of
our formulation of the problem is based on theirs. The
concept of oscillating solutions to the bag geometry was
also discussed" earlier in the context of strings and of the
sine-Gordon equation.

In Sec. II we formulate the boundary conditions and
find the allowed modes and corresponding electric and
magnetic fields. Zero-mass modes must be given special
attention. Section III contains a discussion of the zero-
point energy, first for the correction to the string tension,
and second for a term proportional to 1 ja with a
coefBcient which is a pure number. Zero-mass modes
lead to this term, which in the context of the string is
known as the Liischer term. ' Usually it is associated
with transverse vibrations of the string. The connection
follows from the relation between the zero-mass modes
and the vanishing width of the tube. We conclude with
some discussion of the relation of our results to others,
and of phenomenological implications. It is perhaps
worth stating here that the 1/a term has a significant
coeScient, = —0.26, which implies a contribution
surprisingly close to the phenomenological value in the
region around 0.3 fm, where physical quarkonia are
relevant. As was discussed in Ref. 4, the extension of the

large distance, cylindrical, geometry down to distances
this small works unexpectedly well.

H. OSCILLATING FIELDS IN A CYLINDRICAL CAVI'I'Y

A. Conditions determining the fields

We start with a cylinder of radius R, choosing its axis
to be the z axis and placing the charges kg at z =+a/2,
as in Fig. 1. The cylinder is closed with Rat end caps at
the charges. In this static configuration, the electric field
satisfies n E=O, where n is a unit three-vector perpendic-
ular to the surface, part of a unit four-vector n„normal
to the surface given by n„=(no, n)=(0, 1,0,0). The
boundary is determined by a particular constant electric
field strength Eo=(O, O, Eo). We are working here in cy-
lindrical coordinates (p, 8,z }; a vector is written as
V=(V, Vs, V, ). The static configuration defines the
zeroth order of the calculation; fields containing correc-
tions must reduce to this in the limit where these vanish.
The static configuration corresponds to E=(O, O, Eo), and
the spirit of our calculation is that Eo is a constant
throughout, even when the boundary of cavity changes;
in other words, it is the changes in the fields which reQect
the boundary conditions.

The oscillating corrections to the electric field, as well
as some new magnetic fields, are determined by the
boundary conditions, by a gauge choice, and by
Maxwell's equations. Let us list these in order. The co-
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FIG. 1. Schematic representation of a fiux tube of length a
and radius R. The charges +g are placed at z=ka/2. (a)
shows the tube in the static configuration. (b) shows the zero-
mass mode (much exaggerated) of Eqs. (2.45) and (2.46) with
x =ka /2n. = 1.
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variant boundary conditions are

n F" =0 on the surfaceP

and

F „F"=E —8 =ED on the surface .

(2.1)

(2.2)

conditions. Beginning with the time and z dependence,
we write

A(p, 8,z, t)=(2a)a) ' g [C(p, 8,k)e'"'
k

+Ca( 8 k )e i(kz— rot)—
)

Equation (2.1) can be rewritten in terms of the fields as
(2.11)

n.E=O,

noE+ n &(B=0 . (2.4) ika /2 e —ika /2

(2.3)
The periodic boundary condition (2.5}requires that

A(z =a /2) = A(z = —a /2) . (2.5)

We choose a gauge in which the vector potential A„
satisfies

Ao ——0 and V A=O . (2.6)

Note that n„ is not necessarily the zeroth-order form
when oscillating fields are present, although it should
reduce to this form when first-order terms are neglected.
Indeed, the work of Ref. 10, for which the context is the
bag model, begins with the assumption that the surface is
oscillating, and that the oscillating fields inside the cavity
must be consistent with the oscillating surface. While
this assumption is not necessary, it should indeed be con-
sidered. One more condition for the surface must be
chosen, and that has to do with the conditions at the two
ends. We showed in Ref. 4 that the fields die exponential-
ly outside the two charges. We can thus incorporate an
end cap without materially changing the fields, and we in
addition take periodic boundary conditions at the two
ends:

so that

k=, a=O, +1,+2, . . .
a

(2.12)

~k=k +P2 2 (2.13)

This expression follows from the insertion of the decom-
position (2.11) into the Maxwell equations (2.10}.
Maxwell's equations take the new form

a +—a + a +p, c(k,p, 8}=0.
p p

(2.14)

It is convenient at this point to define right- and left-
handed combinations by

and the sum over k will be understood to be a summation
over k.. The factors 1/&a and 1/&2' are in Eq. (2.11)
for orthonormality. Note that the values of co will in gen-
eral depend on k and on the eigenvalues p associated
with the other boundary conditions:

In cylindrical coordinates, this gauge-fixing condition,
the Lorentz condition, reads

C„+iC C„—iC„
Cg —— and CL, ——

2 2
(2.15}

a, ~,+a,~,+—~,+—a,~,=o.1 1
(2.7)

p ' p''
In this gauge, the fields are given in terms of the vector
potential by

The cylindrical components are expressed in terms of
these by

Cz ——e ' Cz+e' CL and C& ———ie ' Cz+ie' CL .

(2.16}
E= —aoA and B=VX A .

Finally, Maxwell's equations reduce to

(2.8)
Having accomplished this transformation, we expand the
8 dependence of the components of C in a Fourier series:

(V —ao) A=O,

or, in cylindrical coordinates,

a,'+ —a, +—,a', +a,' A=a', A.' p' p''

(2.9)

(2.10)

-"C„=y e'"'C„„(p,k),

e' CL ——g e'"eCL„(p,k),

C, = pe'" C,„(p,k) .

(2.17a)

(2.17b)

(2.17c)

B. Determination of the Selds from the equations of motion

Our procedure here will be first to find the field solu-
tions corresponding to the Lorentz condition and the
Maxwell equations. The boundary conditions will be ap-
plied last, in Sec. II C, and will be used as much to help
determine the boundary as to restrict the field, always, of
course, keeping in mind that the cylinder is the zeroth-
order boundary. We expand the fields in an orthonormal
set of functions which are natural for the given boundary

The summation is over all positive and negative integer
values of n.

The Lorentz condition and the Maxwell equations with
Eqs. (2.17) must now hold for each value of n, and the
e'" factor cancels in each term. This leaves, for the
Lorentz condition,

a,+ C,„+ a,— C,„+ikC,„=O.n+1 n —1

(2.18)
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The Maxwell equations become

2

a+ a +p cR (pk)=0
P p P p2

(2.19a}

The Lorentz condition, Eq. (2.18), provides us with a re-
lation between the coefficients 8 and A if we use the
Bessel function relations

2

a+ —'a —"-' +p' c,„(p,k)=o,
P p P p2

1 n'
a,'+ —a,—,+p' c,„(p,k)=o.

P p

(2.19b)

(2.19c)

a,+ J.+((pp) =pJ. (pp)
n+1

p
(2.21a)

Given that the fields must be finite, the solution to the
Maxwell equations is generally given in terms of Bessel
functions:

n —1
a, — J„,(pp) = —pJ„(pp) .

p

The resulting relation is

(2.21b)

CRtt (P, k ) = A R„kJ„~((pP ),
C«(p, k) = A«k J„,(pp),

C,„(p, k)=8„kJ„(pp) .

(2.20a)

(2.20b)

(2.20c)

ik
Apnk AL,nk

= ——Bnk

In summary, the vector potential is given by

(2.22)

AP=(2~(2) ' 'Q Ie' ' ""e'" [A„„„J„+,(pp)+AL„„J„,(pp)]+c.cI,
k, n

(2.23)

Ae (2roa )——' g je'"' "e'" ( —i)[AR„kJ„+,(pp) —A«k J„,(pp)]+c c j, . .
k, n

(2.24)

(2'(2 )
—(/2 y ei(kz ~t e e— P

( A „—A „„)J„(pp)+c.c.
k, n

(2.25)

The electric and magnetic fields can be expressed in terms of these coefficients. Let us write these fields in the form

E=(E,Ee,ED+Ez(), B=(Bp,B(t,&z), (2.26)

where all the fields except the background field E0 are first order small and we work only to this order. Then we have

aoA =(2coa } ' g Ie'"' ""e'" (ice)[AR„kJ„+i(pp)+ AL,„k J„((pp)] +c cJ, .
k, n

(2.27)

Ee aA(t (2coa) ——' g——te'"' "e'" ( ice)[AR«—J„+i(pp)—AL„kJ„((pp)] +cc.J,
k, n

(2.28)

E =a A =(2~a) —(/2y et(kz ~t'cine
z1 0 z

k, n

1a, =-a,A, -a, A,

pro
( A„„k—A«k )J„(pP)+c.c. (2.29)

& )
—(/2 y i(kz rut) ittee-

k, n

( A«k —A«k )J„(pp) k) A«k J„+((pp—) —A«k J„ ( ipp)] +cc.
kp

(2.30)

=(2coa )
' g e'"' "e'" ik[ A„„kJ„+,(pp)+ AL„kJ„,(pp)]+

k, n

~ 2

( A R„k —A I.„k )J„(pp ) +c.c

(2.31)

1 18,= aP ——Ae — aeAP (2—boa) ' ——g [e'"' "e'" ( ip)(AR„k—+ AL, k)J.(pp)+c c ] .
k, n

(2.32)
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C. Application of the boundary conditions

The boundary conditions lead us to choose certain ei-
genvalues p. In this section we apply these conditions.
The zero-mass modes p =0 will require special care.

In applying the boundary conditions, we keep in mind
that n„ is not necessarily the normal to the constant
cylinder. To do this, we adopt the following notation:
the zeroth-order solution to the surface is a cylinder with
time-independent radius R. Corrections to R are given in
terms of the first-order quantity cr(8,z, t). The four-
vector n„ takes the general form, in terms of cr,

c}cr
1

1 c}o c)crat" R a8' az
(2.33)

The first boundary condition, Eq. (2.1), gives us, to first
order, conditions on the field components E, B&, and B„
namely,

The boundary condition (2.2) concerns only the longi-
tudinal component E„, since the contributions of the
other fields to this equation are automatically second or-
der. Since (Eo+E,i) =Eo+2EOE, i, and since by Eq.
(2.2) this quantity must equal Eo to leading order, we

have, to this order,

(2.34)

J„(p,R )=0 and Ag„k+ AL„1,——0,
E=(2a)a )

(2.41)

g [e'"' "e'" 2mA„k( iJ„'—(pkpi), ,0,0)+ c c].,
k, n, i.

(2.42)

B=(2coci )

B=(2coa )
—i/2

X g [e' ' "e'" 2kA„k(J„'(y„ip),0,0)+c c..] .
k, n, A.

(2.40)

We have here set A„k
—= Art„k ——Al„k. So long as p&0,

both E and Be vanish on the original stationary surface
p=R. In other words, this mode occurs within the origi-
nal cylinder, and the surface does not oscillate at all.
This mode was not considered in Ref. 10. Note that a 0.
dependent on 8 alone is formally allowed, although this
does not represent a very interesting variation, because
we might well have started with such a "scalloped" sta-
tionary surface. Only time dependence is of real interest
here.

Mode II:

Ep(p, 8,z, t ) =ED
BET

c)z
(2.35)

X g e'"' "e'" A„k(0, iJ„'(p„—ip), 0},i(kz —cot) inc

k, n, A,

0
Be(p, 8,z, t ) = Eo— (2.36) +c.c. (2.43)

B(p, 8z, t)=0 . (2.37)

J„(pR)=0 and Ait„k —AL,„k=0. (2.38)

The masses p are the zeros of the Bessel functions,

p =y„i /R. This solution leads to trivial (zero) fields for
p=0. With this solution, we have for the oscillating
fields, up to normalization factors,

E=(2coci )

g [e'"' ""e'"2' A„k(0, — 'J(p, „i)p, )0+c.c.],
k, n, A,

(2.39)

Equation (2.1} implies no conditions to this order on
B, because a zeroth-order radial B field is allowed by
this boundary condition; the same remark holds for an
electric field in the 8 direction. In other words, B and
E& can have undetermined first-order values. Note also
that the dependence of o on 8 does not enter into these
first-order conditions, which might have a consequence
for the possible surfaces allowed in these modes.

By going back to the fields, Eqs. (2.27)—(2.32), we can
see the two configurations which will satisfy the bound-
ary conditions. We refer to these configurations as modes
I and II. We must in addition consider zero-mass modes
separately.

Mode I.

Note that this time, A„k
—= Aq„k ———AL,„k. Again, there

are no nontrivial zero-mass modes.
Given these fields, we can use Eqs. (2.35) and (2.36), to-

gether with the statement that o dependent on 8 alone is
without interest, to specify the boundary. We find

o (8,z, t) = (2coa )

X X e'"' "'e'"' — A.kJ.'(p~P )
2'

k, n, A,

+C.C. (2.44)

This configuration, apart from the zero-mass modes, is
the one considered in Ref. 10, although in that reference
the surface plays a privileged role and there is a surface
tension term in the energy.

Zero-mass modes. The possibility of zero-mass modes
is best handled by looking directly at the fields in the lim-
it p~O. There is, we shall find, only one such mode, and
its field configuration is distinct from either of the two
modes considered above. Note that all J„have a zero at
zero except for Jo. We find from Eqs. (2.27)—(2.32) that
for n =0, the fields all vanish in this limit; to show this
we use the symmetry J &= —J&. This is also true for
n )2. For n = 1, however, Jo(0)= 1 appears in the fields,
and there is a nontrivial configuration of the field which
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survives: namely,

E=(2toa) '~ g [e'"' "e' coAL»(i, —1,0)+c.c.],
k

(2.45}

B=(2toa) ' g [e'"' "e' kAL ik(l, i,0)+c c .]..
k

(2.46)

This configuration of fields is contained in neither mode I
nor II. It will be significant for the I/a term in the zero-
point energy that there is one and only one zero-mass
mode, even in the absence of surface tension. From Eqs.
(2.35}and (2.36), we find a surface oscillation

o(8,z, t)= (2coa) '~ g(e'"" "e' AL]k+c.c. ) .1

k

(2.47)

This surface corresponds to a snakelike oscillation of the
original cylinder, in which the circular cross section is
undisturbed, but there are transverse undulations along
the tube. If seen from a distance, it would resemble the
transverse oscillations of the string.

There is a slight subtlety in the discussion of the zero-
mass modes having to do with the normalization of the
fields. If the normalization of the fields is performed with
some factors of p, then p could cancel in leading terms on
the expansion in pp which is treated here. In this case,
we would be left with power behavior in p, growing to a
maximum up to the boundary, where the boundary con-
ditions would insist on a drop to zero. The only power
that would in fact be allowed by the boundary conditions
yet still give nonzero fields is in fact constant behavior in
p', this is indeed the behavior picked out by the solutions
of Eqs. (2.45) and (2.46).

[It is perhaps worth mentioning here that the second
boundary condition that led us to set E, &

——0 rules out
still another possible solution with a stationary surface.
In this third solution, J„'(pR ) =0 and Aa„k+ AL„], ——0 on
the original surface, and there is a vanishing E, while
both E& and E, have a first-order contribution, and

8, =0, while the other two components of B are
nonzero. ]

D. Quantization and normalization of the fields

Quantization is performed by treating the A's as
creation and annihilation operators. This means that
they become noncommuting variables, that the complex-
conjugate operation becomes the Hermitian conjugate
operation, and that the size of the various commutators is
fixed. It is this last requirement that normalizes the oscil-
lating fields into, hopefully, small quantities. An
equivalent approach to normalization is to insist that the
energy of the oscillating fields in the cavity, proportional
to the integral of E +B, is the sum over the to;. In this
paper, we are in fact interested only in this latter quanti-
ty, so, having already found the spectrum, we do not need
the fields correctly normalized. Nevertheless, it may be
helpful to see how this works, so we illustrate the normal-
ization procedure with the fields of mode I.

The energy 8'of the oscillating fields in the cavity is

W= f dz fd8f pdp(E +B ) . (2.48)

Both E and B are sums over k, n, and A, . It is rather
direct to see, because of the orthogonality of the func-
tions e' and e'", that cross terms in k and n disappear.
The integrals over z and 8 are simple. It is less straight-
forward that this is the case in the sum over A., the index
for the zeros of the Bessel functions. Nevertheless, this
can be shown, and we find

)) = 2~ z J pdp[Aa„i, Aa„i] [m+(k'/m)][J„' ~(p,Ã)yJ„'+, (l&„xp)]+ J„'(p„A)
8~ kn~ N

g a)[Ak„i, Ak„i ]R J„+](p„](R) .
k, n, A,

(2.49)

The correctly normalized creation operator is then

ak. t, = Ak. t,R ~
~.+](p].iR )

~
. (2.50}

zero-point energy:—(0
~

IV
~

0)=—,
' g cok„]( .

k, n, A,

(2.51)

If we divide A in our equations for the fields by the addi-
tional factor on the right-hand side of Eq. (2.50), we will

have a properly normalized set of fields, in terms of
which Eq. (2.49) gives for an expectation value

ground, classical, energy associated with the cylindrical
cavity, or with the energy in the standard quarkonium
phenomenology. The standard phenomenological poten-
tials have the form

V(a)=ca ——+ Vo .
Q

(3.1)

~ is known as the string tension and is associated with the
slope of Regge trajectories. a is the coeScient of an at-
tractive Coulomb-type term. Without going into details,
x and a take the phenomenological values

III. ZERO-POINT ENERGY 0.3&a &0.5 and 0. 15 &~&0.25 GeV (3.2)

We want to compute the sum of Eq. (2.51). It will be
helpful in doing so to compare the result to the back-

The potential for the charges in the cylinder is, for
large separation,
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V,„)(o)= a+D+0(e ' ") .2 (3.3)

m&„), [(2n—x—/a) +(y„)„/R ) ]' (3.4)

where

J„(y„)„)=0, A, =1,2, 3 . (3.5)

Here g is the magnitude of the charge of the heavy
source, and D is a numerical constant times 4g /R. That
there is no power correction to the linear and constant
term in a is one of the remarkable features of this cavity.

These potentials make it clear that it is the linear and
the Coulomb terms in a which are the interesting quanti-
ties to extract from the zero-point energy. We can get a
feeling for the nature of these terms by reminding our-
selves that the eigenenergies ek„~ are given by

The sum over the co must, for dimensional reasons, be of
the form f (R /a)/a. Our job will be to extract the vari-
ous terms in the limit a »R, which involves the evalua-
tion of singular sums; we shall in particular worry only
about the linear and the Coulomb terms. The extraction
of these terms is in fact a problem with a long lineage,
and we shall have occasion to refer to some of it as we
proceed.

The Euler-MacLaurin series' is a useful tool for the
evaluation of the sums, and it also provides us with the
desired expansion in the small parameter R /a. The sum
over the co is, as it stands, divergent. We shall eventually
have to continue, or subtract, this sum in such a way that
it is finite, so we replace the exponent —,

' in Eq. (3.4) by
—s/2, and, after evaluation of expressions with positive s
has taken place, we replace s by —1. Because a »R, it is
appropriate to turn the sum over ~ into an integral with a
remainder. We have

4n a

a

' —s/2

F +—,
' F 00 +FO + B2F' ao —F'0

277 0 2a

qBq g F"
2a

lm em+
a a

(3.6)

Here Bz is a Bernoulli number, 8 is a number between 0 and 1, and

F(k)=(k +6) (3.7)

The quantity 6 is proportional to 1/R, but for now it is unnecessary to be more explicit.
The terms of Eq. (3.6), which still need to be summed over the n, A, index to give the zero-point energy, show their a

dependence clearly. The erst term is linear in a; the coeScient must be proportional, ultimately, to R, and is a
correction to the string tension. The second term is independent of a, must be proportional to R, and represents the
constant term in the potential. The third term is the a term, and the fourth term represents higher-order corrections
to the energy.

A. Contribution to the string tension

The contribution 5~ of the zero-point energy to the string tension )r is, from Eq. (3.6),

5m= g J dkF(k) .2' „g 0
(3.8)

We continue this integral in the number of longitudinal dimensions p, i.e., fdk~ f k dk. Later we can let p~ 1.
In addition, we use the identity

F(k) = 1 (s —2) /2 —u( k +5)
I (s/2) o

This gives us

(3.9)

k 'dk F(k)= "dtl Ll(s —2)/2 dk kP —)e —u(k +6)
0 I (s/2) o 0

(s —2)/2 —uA d& &(p —2)/2 —uv

2I (s/2) o o

I (p/2) d (, g)gp gp „g 1 I (p/2)I ((s —p)/2) ~(,)gp

2I (s/2) o 2 I (s/2)
(3.10)
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Thus

1 1 I (p/2)I'((s p)/2} y ( /R )p
—s (311)

2m 2 I'(s/2)

where we have used Eq. (3.4) to specify h.
We can replace either p or s by their naive values, but

not both. For example, while we can safely set s= —1

here, we cannot naively replace p by 1; the sum is diver-
gent, as would be the I function of argument (s —p)/2.
The sum on the zeros of the Bessel functions is a special
case of the more general Minakshisundaram-Pleijel g
function, ' or spectral g function,

Za(~)= X Ir. I
(3.12)

n

where y„ label the eigenvalues of the Laplacian operator
acting on a curved surface. This formula is closely relat-
ed to the Selberg trace formula, ' which either in its gen-
eral form or in the guise of Eq. (3.12) appears in a large
variety of contexts, including the "c[uantum billiards"
problem, ' problems involving chaos, and in sum-rule
methods for the calculation of bound-state energies. '

The continuation of this function, and particularly the

sum in Eq. (3.11), to values of the argument which allow
it to be defined, would in principle follow from a symme-
try relation, or reflection formula, obeyed by the func-
tion. ' Although we can conjecture the form of this rela-
tion, we cannot prove it except in the case of Euclidean
geometry. This unproven relation was already discussed
by Weyl.

To illustrate this relation in the case of Euclidean
geometry, we draw on the work of Ref. 9, in which the
Casimir pressures in various Euclidean cavities are dis-
cussed, using an appropriate symmetry relation. Use of
this relation with continuation in the variable s is known
as "g-function regularization, " and is discussed in detail
elsewhere. Continuation in p rather than s is referred to
as dimensional regularization, and leads to equivalent re-
sults. We consider a long tubelike box, whose cross sec-
tion is a square in t transverse dimensions with sides of
length L and whose length is a. The longitudinal dimen-
sion will be p (at the end we can set p =1) and the square
root which gives the energy, as in Eq. (3.4), will change to
a power —s/2 (at the end we can set s = —1). Then the
linear term in a in the zero-point energy has string ten-
sion

dk kP —&[k2+~2(n&+. . . +n2}/L2] —/2

4 I (s/2)

X g [(n +'''+n )/L ]
nl, . . . , nr

The function appearing on the right-hand side of Eq. (3.13) is the Epstein g function '

Z, (1/L&, . . . , 1/L, ;m )= g [(n&/L&)2+ +(n, /L, )z]
fl ) y ~ ~ ~ y Pl

The string tension for the Euclidean geometry is then

( /2) (( )/2)
Z, (l/L, . . . , 1/L;( — )) .

4 I'(s/2)

(3.13}

(3.14)

(3.15)

The reflection formula obeyed by this function, allowing it to be continued to the appropriate values ofp and/or s, is

I —m
~ Z, (L„.. . , L, ;m)= I ™n' "~ Z, (1/L„. . . , 1/L, ;t —m) . (3.16)

For example, suppose we set s = —1 in Eq. (3.15). Then

Z, (1/L, . . . , 1/L;( —1 — )} .
4 I ( —1/2)

(3.17)

We cannot set p = 1 in this expression, since both the sum
and a I function are ill defined. However, using the
reflection symmetry {3.16}we have

,/2 I (p/2)1'((& +p +1)/2) L,
4 I'( —1/2)

Z2(1, 1,4)
1

8m L

x4((2) x0.915 .
1

8~2L 2 (3.19}

xZ, (L, . . . , L;r+p+1) . (3.18)

Everything here is nicely behaved. We can set p = 1, and,
for example, t =2, to find

0.915. . . is Catalan's constant, and g(2) =n. /6.
The reflection symmetry obeyed by the g function for

the cylindrical geometry,

Z,„&(l/R, 1/R; s —p)= g(y„z/R P ', (3.20)
n, A,
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would, we conjecture, obey the same reffection symmetry
as for the Euclidean case. For t =2, this would read

I (m /2)n ~ Z,„,(1/R, 1/R;m )

=R I ((2—m)/2)n' '~ Z,„~(R,R;2 m—) . (3.21)

The correction to the string tension then involves only
finite quantities and is calculable, at least numerically.
Unfortunately, the hope that the reflection formula is
obeyed "is still unsubstantiated. "

We shall discuss the numerical size of the correction to
the string tension in the next section.

B. Contribution to the Coulomb term

The coefficient a of the 1/a term is, according to Eq.
(3.6), given by

a =—g —8z [F'( 00 ) —F'(0) ] .12.2' (3.22)

1 2m'
zero-point energy

~ 2 0

The derivative is given by F'(k)= —sk(k +b, )
'+ '

and this vanishes for positive s when k~ ao. It is also
true that F'(0)=0 for nonzero b„as dimensional con-
siderations would imply. Thus only 6=0, i.e., only the
zero-mass modes, contribute. We have, however, seen
that only n = 1 contributes to zero-mass modes, and only
for a single A, . To see the contribution of this mode, we
can go back to the original expression for the zero-point
energy and evaluate the contribution of the zero-mass
modes. We have

zero-point energy, when given as an energy per unit
volume, does not depend strongly on the shape of the
volume. This idea is already contained in Ref. 18 if one
admits that the major contribution to the zero-point en-
ergy comes from high modes; Weyl discussed the shape
independence of the high modes, a result which seems
quite sensible. To verify that this is the case, we can
compare Lukosz's calculation of the energy per unit
length (the string tension) in a long Euclidean geometry
with the numerical approximation of DeRaad and Mil-
ton, using a very different renormalization technique,
for a cylindrical geometry. Lukosz found for the tube of
square cross section ~= —0.038/area [this follows direct-
ly from Eq. (3.19)], while DeRaad and Milton found for
the cylindrical tube x= —0.044/area. We can also com-
pare the calculation for a cube of sides L (Lukosz, Ref. 9)
with that for a sphere of radius R (Boyer, Ref. 8). For
the cube, the energy is 0.092/L, while for a sphere of the
same volume, so that R = ( ', m. )

'~ L,—the energy is

0.074/L.
It would therefore seem reasonable, in estimating the

size of the correction to the string tension, to just use Eq.
(3.19) for a square cross section of the same area of our
cylinder. This gives us

-2%%uo.

The fact that this correction is small gives us a posteriori
confidence that our treatment of the zero-point Quctua-
tions within the zeroth-order cavity was justified.

The effect of all this is to change the long-distance
(a &0.5 fm) potential of the flux-tube picture, Eq. (3.3),
to

=—g( —1) .
a

(3.23) V(a)= ' a+C — —+O(R/a ) . (4.1)
2g —0.014 n 1 2

R 12 a

This is perhaps the simplest example of the g function
regularization technique; the Riemann g function
g( —1) is given by —82/2= —

—,'„so that

12
(3.24)

Equation (3.24) is a result well known in the context of
the hadronic string, and is known in that context as the
Luscher term. ' We have seen that it is very simply the
consequence of the tubelike geometry and of the fact that
zero-mass modes are associated with only one kind of
transverse oscillation. Although we have not proven that
such a term is a consequence of all tubelike cavities, it
seems to us very likely to be the case.

While the contribution of the zero-point energy to the
string tension is small, the 1/a contribution, with its
coefficient of —n/12= —0.26, is very significant, espe-
cially since the original, primitive, Coulomb term,
—g /a, has been canceled exponentially by the induced
potential of the cavity.

The potential (4.1) is quite consistent with the hadronic
string potential,

(4.2)

where

R, = =——=(0.3 fm)
R m 1

12 g2 6 x

IV. COMMENTS

We begin with a few comments on phenomenology.
What is the size of the correction to the string tension
which we have deduced? Rather than making a numeri-
cal calculation involving the zeros of Bessel functions, we
prefer to rely on reasoning which makes physical sense
and which is, moreover, backed up by previous calcula-
tions of Casimir energies. This reasoning is that the

In Ref. 25 it was shown that the potential (4.2) is also
consistent with phenomenology and implies that as a de-
creases, the effective" Coulomb potential will rise
from the universal —0.26/a to twice that value at the
deconfinement radius R, =0.3 fm. For lower values of
the separation, the perturbative regime takes over, with
the effective coupling strength a(a) decreasing again (as a
decreases) from a(a) =0.5 to vanish logarithmically with
a through asymptotic freedom. The phenomenological a,
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Eq. (3.2), reflects all the stages of this process, and, given
that the rms radii of physical quarkonia are in the range
0.2 fm (bb ) to 0.4 fm (charmonium), it is no surprise that
a takes the range of values that it does.

Let us note that the flux-tube potential is expanded in
power of R/a, where R is the radius of the flux tube.
The string potential, however, is expanded in powers of
R, /a, where R, is the "deconfinement" radius. In the
limit where our tube becomes truly stringlike, that is,
R ~0, (2g —0.014)/R —+tt, and R, remains finite. In
this limit, the zero-point oscillations cannot contribute
beyond the —0.26/a term, since by dimensional argu-
ments, these terms must have numerical coefBcients
which are positive powers of R.

The higher terms in the large-a expansion of the
square-root string potential are not associated with any
new modes of oscillation of the string, but rather are a
consequence of the imposition of relativistic consistency
of the transverse oscillations. In the 6nite-R flux tube,
which is not relativistically invariant, the higher power of

R /a in the potential reflects the infinitely many modes of
internal oscillations. These modes are frozen out in the
string limit. The two models are not equivalent even in
the R ~0 limit. In any case, the existence and size of
terms in the potential proportional to a ", for n equal to
two or greater, are of no conceivable phenomenological
significance.
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