
PHYSICAL REVIEW D VOLUME 37, NUMBER 9 1 MAY 1988
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A nonperturbative method is used to find the solution of neutron-antineutron transitions in an
external magnetic field. The convergency of the method is very high, and allows one to obtain a
practically exact solution of the problem for all physical values of the parameters of applied magnet-
ic field. In the resonant region of frequencies the eigenstate and initial-value problems are solved

exactly, with the shift and the width of the resonance calculated to second order in the ratio of cou-
pling and applied frequencies. The obtained results go over smoothly into the first-order perturba-
tion results for frequencies far out of resonance.

I. INTRODUCTION

dn (t)
itott(t)n (t) i—to n(t), —

dt

dn(t)
dt

i to n (t)+itott(t—)n(t),

(l.la)

(l.lb)

The possibility of the conversion of free neutrons into
antineutrons, guessed in the early 1980s from a purely
phenomenological point of view, has gotten a great deal
of attention recently in the modern context of gauge
theories. ' As an alternative to theories predicting the
proton decay, a class of left-right-symmetry models pre-
dicts the n~n transitions.

Several experiments were undertaken and some are un-
derway to search for those very slow baryon-
nonconserving transitions. Since neutrons do have inter-
nal structure and therefore an anomalous magnetic mo-
ment, the experiments face a technical difficulty of de-
gaussing the Earth's magnetic field. If not properly de-
gaussed, that field pushes the neutron and the antineu-
tron states away from each other and reduces the transi-
tions by a few orders of magnitude.

It is then a natural idea to try to restore these oscilla-
tions by driving them with additional oscillatory magnet-
ic field. The free parameters of the field, of course, have
to be tuned so as to optimize the growth of the anti-
neutron probability.

Several authors attacked that problem by trying to
solve either numerically or analytically the underlying
system of linear di6'erential equations with periodic
coefficients:

tott (t)= too Asintot +B—coscot

—:too+ W cos(tot+(b) . (1.2)

Obviously W=(A +B )' and (b=arctan(AlB).
Since, according to estimates by other authors,
co —10 s ' and cop-10 s ', we note that co ((cop.

The plan of the article is the following. In Sec. II the
eigenvalue problem is solved for the total Hamiltonian,
with the magnetic field (1.2) present. This is used in Sec.
III to define and solve the initial-value problem for
neutron-antineutron oscillations. The transition proba-

where units R=c =1 are used, to is the frequency
characterizing the fundamental baryon mixing force,
tott(t) is the time-dependent external-magnetic-field cou-
pling frequency, while n and n are the neutron and the
antineutron wave functions, respectively.

This system of equations is equivalent to a Hill equa-
tion and an exact solution, of course, cannot be expected.
The existing solutions might to a certain extent meet
the purpose from a practical point of view; however, they
are not fully satisfactory from a mathematical point of
view. Being approximate, it is hard to understand some
of their properties; for instance, why the constant-field
limit is not properly reproduced, how large the uncertain-
ties are, etc.

We believe that the solution we present here is an
essential improvement as it throws light on previous solu-
tions as special cases.

The applied-field frequency is assumed to have the gen-
eral form
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bilities are found in closed form. Our conclusions are
given in Sec. IV.

II. EIGENVALUE PROBLEM

(,"'I," ') =S„., =1,2,
( (l)I ') ( ( )I ))~

=J, ((x)e"

(2.7a}

(2.7b)

It is well known ' (although in different context) that
the interaction of a quantum system with a time-
dependent oscillating field can be defined with a time-
independent Hamiltonian, represented by an infinite ma-
trix. Therefore, the problem can be studied in extended
Hilbert space' of "steady states" with quasienergies
which are defined up to

mod(neo�}

Th. e problem of transi-
tions between bound states of a system in oscillating field
can be then treated by time-independent perturbation
theory, ' or, in case of resonances, by degenerate time-
independent perturbation theory.

To obtain the "steady states" and quasienergies for the
system described by Eqs. (1.1) and (1.2} it is convenient to
define the Schrodinger equation which corresponds to the
coupled equations (1.1):

(2.7c)

where the brackets in Eqs. (2.7) mean

(a Ib)= —J a'bdt,T

T 0
(2.7d)

p)
2COp

CO=CO~ = (2.8a)

and J&, (x) is the Bessel function. From the frequency
spectrum of the basis states (2.6) (Fig. 1), it is clear that
the perturbation ~ strongly couples u'&" and u 2' ' in the
region of frequencies co where e&" and ez' ' are nearly or
completely degenerate (resonant region). Obviously,
~( 1) ~(I') for1 2

i —H—o(t) —V 4=0
a~

where

N =/ —l', l, l' integers . (2.8b}

with

0 =n(t)
I
1)+n(t)

I
2), (2.2)

where
I

1 ) and
I
2 ) are (orthonormalized) neutron and

antineutron states, respectively, and n, n are interpreted
as the time-dependent amplitudes of population of the
respective states. According to Eq. (1.1},Ho and V in Eq.
(2.1) are defined by relations

HO I
1&=~a

I
1& HO I

2&= ~a I
2&

vI 1)=~. I2), VI2)=~.
I
1) .

(2.3a)

(2.3b)

Because of the smallness of co, the reasonable choice
of the unperturbed basis states are the eigenstates of
(Ho —iB/Bt), that is

T

It should be noted that for each resonant frequency co&'

there are infinitely many resonant regions (crossings of
the e',"and e~z' ' in Fig. 1) defined by Eq. (2.8).

Far enough from the crossings, the coupling between
the states u &"2 can be treated perturbatively. In order to
develop a theory that will simultaneously account for the
strong coupling of the states u &"2 in vicinity of resonance
and the nonresonant weak coupling, it is convenient to
use the Feshbach' projection operator formalism in the

Ho i u—, (—t) I
1)=E,u, (t)

I
1), (2.4a)

Ho —i u2(t—)
I
2) =Ezuz(t)

I
2) ~

dt
(2.4b)

l=o

According to the Floquet theorem, " u;(t}, i =1,2 are
periodic functions of time of the period T=2m!co, where
co is the frequency of oscillation of the applied magnetic
field. From Eqs. (2.4) it is clear that

k=o

w
u& 2

——exp i e, 2t +coot ——sin(cot+/) (2.5)

and the condition of periodicity yields the sets of eigen-
values of the problems (2.4):

1 2 +0+lW(&) (2.6}

where I is an integer. An unperturbed eigenstate u'&"2,

given by Eq. (2.5},corresponds to each e'&"2.

The eigenstates defined by Eqs. (2.5) and (2.6) have the
following properties:

FIG. 1. Frequency spectrum of eigenvalues of unperturbed
Hamiltonian Hp( t).
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form appropriate for the time-dependent problems. '

Define a projection operator

PI, N=
I

1&
I

u')" &&u'i"
I &1I

+ I2& I
(+N)&& I+N

with the properties

(2.9)

The higher-order corrections in co /~ can be easily in-
cluded in (2.17a), but for our purposes this is not neces-
sary due to the smallness of 0) /0) and due to the fact
that the Hamiltonian of Eq. (2.16) already contains a
term of order V . To solve Eq. (2.16), Pl Nu is expanded
as

Pl N" =al I
u )" &

I
1 & +4+N I

u z'+ '
&

I
2 &

I,N IN& QI, N QI, N& I,NQI, N
2 2 (2.10)

where Ql N is the complement of Pl N in the whole Hil-
bert space of the problem

QI N 1 PI N (2.11}

From the Schrodinger equation (2.1}, the eigenvalue
problem for the total Hamiltonian is

where al, pl+N are constants. Then, Eq. (2.16) yields two
coupled equations for al, pI+N

..

[+N o)0 oi ~N(EN }]al= J N{"—)
' l I +N

(2.19a)

[EN +~0 N~ ~tn BN ( EN ) ]Pl +N ~m J—N {x }e

(2.19b)

H0+ V —i—u =au . (2 12) where

!,N +~ +0 ~ I, N I, N VQ!,Nu (2.13a)

With the use of Eqs. (2.10) and (2.11), Eq. (2.12) is decom-
posed into a set of two coupled equations:

JN (x)
AN(EN}= g (N

.
)

j+0 EN ~2

JN J(x)
BN(EN)= g (J),

j+0 EN ~1

(2.20a)

(2.20b)

QI, N I , +& ~0 —l' QI, Nu =Q—I,N 1'PI,Nu . {2.13b)
while the quasienergies e are defined by

e=eI N —EN+le), —l an integer . (2.21)

Defining the Green's function
T

QI, N I +~ +0 V QI, NG QI, N ~

the formal solution for Ql N u is obtained in the form

QI, Nu QI, NGQI, N I,N

(2.14}

(2.15}

Since EN, found by successive approximations from the
two-state problem (2.19}, does not depend upon l, the
choice of a particular l in construction of the projection
operator {2.9) is not important and EN, together with re-
lation (2.21), produces the full set of quasienergies eI N',

valid in vicinity of the Nth-order resonance, 0) =o)N'.
The result for EN is

This is substituted back into Eq. (2.13a), to produce the
equation for P, Nu:

EN~ ((Neo + co ——aN—RQN ),
where

(2.22)

IN ig)+ ~0 ~ ~QINGQIN~ INu

(2.16)

QN ——[b N+40) JN(x)]'~

~N=~N +mbN(0) 2

=E1 —6'2 =2N0 —NEO,(0) (I) ( I +N)

(2.23a)

(2.23b)

(2.23c)
Although this equation is exact, it presumes the
knowledge of the exact Green's function of the problem.
Fortunately, Ql N excludes the resonant states l and l +N
form 6 which enables one to use the perturbation expan-
sion for Ql N GQI N. Therefore, one has

and

JN (x }QN

J~o i~(~(NO)+i&)
(2.24a)

QI, NGQI, N QI, NGOQI, N+0

where

(2.17a)

with

JN J(x)(2j co+ AN' )

;+0 i ~(~'N'+i ~)
(2.24b)

I
1& Iu 1'&&u',J'

I &1I
QI, NGOQI, N= g

j~I E E1

I
2&

I

u'1+"'
&
&u'J+"'

I
&2

I+ ~(j+N)E' —E2

QN QN{ ~N ~N (2.24c)

Solving now for the coefficients al*', p&+'N with each of
the eigenvalues

eI N
——EN++1CO(+) (2.25)

(2.17b} one obtains for the projected part of the wave function
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Wo 7 "6

FIG. 2. The frequency domain of validity of the steady states (2.30). The shaded regions apply for N =2.

2' J N(x)e' ~

(~INu4 I u) &
I
1&+

N — N

(I+N) )
i
2)

(2.26a)

and, for the residual part of the wave function,

(QI Nu 4 Ql NGp(eI N }QIN I'(~l Nu )~ . (2.26b)

where

~ (N)e iieet=up+e (2.27)

(zN =
I u( &+pl sN g" (N)

I
u

j~p
P(k) s(+)

~

u(N) )+~ y q(+)(N)
~

u(y) )
j+N

(2.28a)

(2.28b)

4' JN(X } J2(x)

(~N+IIN )

4
' —1/2

+0 (2.28c)

Combining Eqs. (2.26), and normalizing the resulting
eigenstates, the steady states of the total Hamiltonian of
the problem are obtained in the form

u(N) C( )( (2)
~

1 ) +P( )
~

2) )eilrut

Since the whole I dependence of the eigenstates (2.27) is
in the exponential factor e" ', using the relation (2.25) it
follows that the eigenstates with different I are physically
equivalent and, therefore, there are only two physically
resolvable steady states in the considered problem. These
are given by

(N) (N)
—is] N t (N)

—iE~gt
(t'a ula ——e ' =up e (2.30)

m5= «1, » an integer .
2cop —Nk» ro

(2.31)

At the exact resonance, hN =0, from Eq. (2.27) it follows
that

fP) form an orthonormal set of states. It is important to
determine the range of validity of the "steady states"
(2.30). These states are derived for the vicinity of the res-
onance co(N'=2')p/N where the coupling of the eigen-
states u', ", uz'', I' —1=N, is treated exactly, while the
coupling of these states to all other eigenstates, is treated
perturbatively. Therefore, the conditions of validity of
the steady states fP) (Fig. 2} is that the frequency (o of
the applied magnetic field is far enough from all other
resonances, except coN, that is, for»+0,

and

u' '= —(
~

u') ')
~

1)+e' ~
~

u' ')
~

2))
2

(2.32)

and, therefore, the neutron and antineutron states form
two mixed states which are split in energy by

(2.29a) EN, EN =2pl~
I

JN—(x)
I

~ (2.33)

J (x )ei (j N)P—
r(+)(N)j

EN+ —e(j)

J (x)e'j~
(j)EN+ ~2

(2.29b)

This splitting introduces "avoided crossings" in Fig. 1 at
the resonant frequencies.

On the other hand, if the relation (2.31) is satisfied for
each ~, then the steady states become those that would
follow directly from the first-order perturbation theory in
the small parameter 5:

J,(~}e"~
( ) I(~,+s, )~

@(N)
~

u(p) ) [ I )+~ y j
[
u(j) )

~

2)
2Np —Jco

(2.34a)

x e-'&&
@-~~ X(N) —j +

( —j) i i (0) i i + (~0+5 )t+iNQ

J 2cop —Jco
(2.34b}
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where

~s =COm
JJ (x)

J 2COp —JCO

(2.35}

magnetic-field amplitude W and initial phase P one can
say that the steady states are the quasiexact eigenfunc-
tions of the total Hamiltonian for any realistic range of
the applied-field parameters.

is the second-order perturbation theory shift of the "bare
state" energies. In derivation of Eqs. (2.34) small terms
of order of (co /co) have been neglected. The constant
phase iNQ in (2.34b) does not influence the transition
probability (Sec. III) and can be omitted. Since the first-
order perturbation theory in 5 (when 5«1} and the
two-state strong-coupling theory (when 5=1) are ade-
quate descriptions of the respective physical situations we
conclude that for arbitrary values of the parameters of
the applied oscillatory magnetic field, the "steady states"
(2.30) are adequate description of the eigenfunctions for
the total Hamiltonian of the problem.

When the amplitude W of the applied magnetic field
tends to zero, the resulting out-of-resonance situation
would be described well by the corresponding limit
W~O in Eqs. (2.34). Really, from (2.34),

CO

P'+' =
~

1&+
~

2& exp i coo+ — t
w~p 2COp 2COp

~ ~

III. THE INITIAI VALUE PROBLEM
AND TRANSITION PROBABIL11IES

y(i}—D~ ~y~ ~+D~ (3.1)

The amplitudes n (t) and n(t} of the neutron and an-
tineutron states, respectively, are.(r) = & 1

~
q(r) &

=D'"'& 1
~

q+"'&+D'"'& 1
~

q'"'&

D (N)g(N) (+ )(r )e N+
0+ &N

+O' 'C' 'a~ '(t)e

n ( r) D(wc(N)p(+ )(r)e + +D(Ã)g(N)p( —)(r)e

(3.2a)

(3.2b)

With the states (2.30), used as a basis, the initial-value
problem can be formulated, expanding the total wave
function

w~p 2cop

(2.36a) The initial conditions

n (0}=1, n(0}=0,
yield

(3.3)

2
COm

X exp i coo+ t+iNP
2COp

(2.36b) (w ~~ "" (w
+ c(N)D(N) ' — c(N)D(N)

0+ 0 0— 0
(3.4)

which is the well-known first-order perturbation-theory
result (in small co /coo) when cog = clio.

The exact steady states in the static-field limit can be
obtained if one starts from Eqs. (2.30), instead of from the
perturbation expansion (2.34) of the steady states, since
the former states account for the coupling of the project-
ed states PINu exactly. But, when the applied field is
zero, the only two unperturbed eigenstates (Fig. 1) that
interact are the states with energies +coo (which corre-
spond to indices l =0, 1'=0 in Fig. 1). Therefore PI z
projects to the states with N =l —l'=0, and together
with the limit W~O one must set N =0 in Eq. (2.30).
Then it follows

where

Do aIv+'(0)PI——v '(0) —ax '(0)Prv '(0)

iNQQNe COm1+0J ~(x) co

From Eq. (3.2) it follows that

i/~(t)
n ( t) =e (N, cosgzt iNz sings, t)—,

i/~(t)
n (t)=e (N, cosg~t iNz singer), —

where

(3.5)

(3.6a)

(3.6b)

)
1/2

COm
P(~Q)

0 0
~

1&+ Ill

~

2&
—&Eof'

W~O (2eo) 6'0+COp

(2.37a}

Nl NmfN
( —)

Nq —— [2J ~(x)+b~f~+'],
N

(3.7a)

(3.7b)

where

eo=(coo+co )
2 2 1/2 (2.37b)

N) ——1+0
2

COm

CO

(3.7c)

which can be easily shown to be the exact eigenstates for
the neutron-antineutron oscillation problem in the static
magnetic field cop.

According to Eq. (2.17a), our steady states are not val-
id for those frequencies co for which co /co-1. There-
fore N &&2cop/co —10 . Still, even at co- 1 Hz,
co /co-10 «1. Since no conditions are set to the

(3.7d)

Pz ——2x [sing+sin(cot+/)]+N +P
COt

2
(3.7e)

(3.7f)
COP

P~ =2x [sing —sin(cot +P)] iN—
2
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and

g~= —,'(Q~ —co a~),2

J ~(»)ef (+) y J
(

—veal+1 )
Jco+6~

(3.7g}

(3.8)

P»(r)=
~

n(r) ~'

= INi I'cos'4r+ IN& I'«n'ger

~m [J ~(»)Im(f g ')+~g Im(f~ 'f~+'")]
+N

The probability of the transition from neutron to an-
tineutron states is then

cy ~ must be controlled within the interval
co

~
Jz(»)

~
/N; or within bco/co& ——co

~
Jz(»)/2coo

-(10 )%%uo. The applied field intensity should be chosen
so that

~
J~(»)

~

has maximum, in order to increase both
the resonance width and the probability [see Eq. (3.13)].
For co=co, = W-10 s ', and J, (») =0.6 (the value of its
first maximum), and t —10 s (order of magnitude of the
mean neutron lifetime), Pz", ' is on the order of 10 . This
value is to be compared with the value of 10 ' for Pz&

when co is sufficiently far from the resonance. The above
estimate holds for a broad range of variation of the field
amplitude corresponding to two neighboring zeros of the
J

&
Bessel function.
If 5«1 [Eq. (2.31}],from Eq. (3.9) it follows that the

transition probability in first-order perturbation theory

where

X sin(2)~t), (3.9) s « ~ Jj(»
P =a) Y

Jco+ 2cop
(e ' —1), (3.14)

I Ni
I

'=~'
I fz '

I

',
2

INz I =, [4'(»}+~~ I
fr" I'

N

(3.10a) which is in agreement with the discussion in the preced-
ing section. Finally, in the static-field limit (W~D,
N =0), Eq. (3.9) yields

+4~N J N(»)«(f—~+ ') ]

In the vicinity of resonance (5= 1), Pz, reduces to

(3.10b)

2
~m

P&&
—— sin apt, 8'~0,

E'p
(3.15)

p2
21 & &

sin '

2
[(co Q)N} +I N](~—~~) +I'~

xt 1+0 ™
which is the well-known neutron-antineutron transition
probability for &g =cop.

IV. CONCLUSIONS

(3.11)

where I z is the width of the Lorentzian resonant peak

2~m
~J,()~ 1+0 (3.12a)

and co& is the shifted position of the resonance peak

2Np Nm m
b~ 1+0

CO

(3.12b)

At co=co&,

PP)' ——sin [co J~(»)t] 1+0 ™ (3.13)

It is interesting to note that at particular values of the
amplitude 8' of the applied magnetic field at which, for
the fixed co, J~(2W/co)=0, the transition probability
drops to the off-resonance value, even at co =co&.

Since the width of the resonant peak I z. is of the order
of magnitude of co, in a possible experiment the frequen-

The quasiexact solution of the problem of neutron-
antineutron oscillations in an applied oscillating magnetic
field is expressed by the eigenfunctions of the problem
[Eq. (2.30)] and transition probability [Eq. (3.9)] for the
neutron state initially populated. The solution is valid for
nearly all values of the applied field parameters (the ex-
clusion is the frequency co-co =10 s ', which is un-
realistic situation) and in the same time simple enough to
be both physically transparent and easily programmable
on a personal computer. The amplitudes (3.6) are exact
in the vicinity of a resonance, and the width and the shift
of the resonance peak are calculated up to second power
in g=co /co. The former smoothly go over into the am-
plitudes in the off-resonance region where it is given by
the first-order perturbation theory in g, and being in-
dependent on the index N of its parent resonance region
this matches to the amplitudes centered in the neighbor-
ing resonant regions. The method enables one to easily
improve the results and to get the shift and the width of
the resonance peak up to a higher power in g, as well as
the perturbative limits of the amplitudes expressed in
higher-order perturbation theory expansion. This could
be achieved by expanding the exact Green's function of
the problem to the higher power in g and approximating
Q, ~GQ, ~ in Eq. (2.17a), for example, by
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Qt N GQ()v —Qt N G0Q) Ã+ ~ X '„, , „, (
I

u )
j'

&
I
» & 1

I
& u 2" '

I
e ' "

(e e(j) )(e ~(n) )
n~l+ N

+u(ll) }
~
2}&2

~

&u(J)
~

e i(j —n)P)+0
2

~m

6)
(4.1)

where Qt )vGoQ) )(( is given by Eq. (2.17b).
The neutron-antineutron transition probability can

reach values on the order of 10 3 provided the applied
magnetic field oscillation frequency is in the region of a
resonance. Note that the width of the resonance region is
10 s ' and the frequency has to be kept constant

within (10 )%, while the variation of the magnetic-field
amplitude is not critical.
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