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Hadronic transitions of D-wave quarkonium
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The decays Y( 1D)~Yern are calculated within the framework of the multipole expansion in

QCD. Using a description of the conversion of gluons into pions based on soft-pion theoretns, we

find I (Y(1'D&)~Yew)=0.07 keV; the rates are identical for J=1,2,3. The smallness of these
rates means that the 'D states can probably only be observed using their electric-dipole transitions
Y(1D)~Y(1P)y.

I. INTRODUCTION

The spectrum and decays of the f system of bb bound
states are described well by potential models and QCD
decay-rate formulas. ' A further test of these models
would be the observation of D-wave states (i.e., states
having orbital angular momentum 1=2}. Potential mod-
els predict the existence of Y(lD) states with mass
M = 10.16 GeV; the DJ states (J=1,2,3) could be pro-
duced as a result of electromagnetic transitions from the
Y(3S). The most promising signatures' of the decay of
the 1D would be a photon of energy -250 MeV from the
decay Y(1D)~Y(1P)y (plus two photons of energy —100
MeV produced in the cascade from the 3S}or a pion pair
plus missing mass from Y(1D)~Ytr+n . In addition,
the D states can decay into three gluons —these rates
have been calculated and found to be small.

The techniques for calculating electromagnetic transi-
tions in quarkonium, based on the usual multipole expan-
sion, are well established. The various potential models
are in rough agreement among themselves concerning
electric-dipole rates; for the transitions Y(1D)~Y(1P)y
a typical model predicts rates of several tens of keV, but
these decays may be difficult to observe due to the energy
resolution of detectors currently in use.

At present, it might be more promising to look for two
pions, plus missing mass equal to the Y mass, in the de-
cay Y(1D)~Ye tr. Unfortunately, there are confiicting
theoretical predictions in the literature concerning the
magnitude of these decays for D states. Kuang and
Yan predict a very large rate of 24 keV, while Billoire
et al. predict a rate that is smaller by a factor of 10
We shall reexamine the calculation of these rates in an at-
tempt to resolve this discrepancy.

At first sight, the calculation of hadronic rates seems
intractable, in comparison with that of the electromag-
netic transitions, due to the intrusion of long-distance
physics. The emission of two gluons, for example, can be
calculated using the multipole expansion in QCD (Refs.
8 —10), but somehow one has to take into account the
conversion of the gluons into pions. It is the use of vari-
ous more-or-less arbitrary models for this long-distance
process that accounts for the disagreement in the litera-
ture.

In our view this confusion is unnecessary, since the
low-energy theorems of QCD provide what is virtually a
"first-principles" description of the conversion of ~luons
into pions, as shown by Voloshin and Zakharov ' and
refined by Novikov and Shifman. ' This method has
been applied' to show that the branching ratio for the
transition Y(3S}—+Y(1'P, )sr' must be as small as 10
or less. In this paper we use the techniques of Refs. 11
and 12 to calculate 1(Y(1D)~Ysrsr), and compare the
results and techniques with those reported previously.
We find that these rates are less than 0.1 keV, implying
that these transitions are probably unobservable in
present experiments.

II. HADRONIC AMPLITUDES

The relevant term in the Hamiltonian derived from the
multipole expansion in QCD is

%=——,'gr E'P (2.1)
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Here i,j are three-vector indices, ii) and (f i
denote

the initial and fina quarkonium states, and G is the
Green's function of the unperturbed system:

G(M)= g ik)(k
/

k k ™ (2.3)

where the summation is over octet as well as singlet
quark-antiquark intermediate states, and M and Mk are
the masses of the initial and intermediate states, respec-
tively. The operator P turns a singlet state into an octet
state, and vice versa, in view of which only the octet

Here g is the QCD coupling constant, r is the radius vec-
tor, E' is the chromoelectric field strength (1 & a & 8},and
P= —,'(A, i+Van), where V&, A,z are Gell-Mann matrices.
(The subscripts 1 and 2 label the quark and antiquark. )

Regarding (2.1} as a perturbation on the Hamiltonian
describing the quark-antiquark interaction gives the re-
quired amplitude, at second order in perturbation theory.
The amplitude factorizes into a quarkonium matrix ele-
ment times a hadronic amplitude. Writing g =4na„we
have
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states in the summation in (2.3) contribute to the ampli-
tude (2.2); we call the corresponding octet Green's func-
tion Gs. Using the rule

~„.=GI',~G:~+ 4s„.G~ G~o

+(i~» y (qr4D. q+qrapq) . (2.9)

(singlet
~ Pg ~

singlet & =—', 5'

we obtain

(2.4)

—gi.&, » (2.6}

where we have introduced the symmetric tensor
Tp —pi~2„+pz~—i„, and A and B are constants. (The
other symmetric combination pi~, „+p2~2„ is excluded
by the requirement' that the amplitude vanish when the
four-momentum of either pion goes to zero. } The wave
function of the pions in (2.6) is assumed to be symmetric
under the interchange of ~+ and m.

It turns out that A and B in (2.6) are fixed if we know
the matrix element of the operator G„'&G'„& with a pair of
indices contracted. ' This operator is symmetric in the
indices p, v, and the soft-pion theorems restrict its matrix
element to have the form

(m+n
~

Ga„' G'„i~0i&=Cq g„„+Dr„ (2.7)

Contracting a pair of indices in (2.6) and comparing with
(2.7) gives the relations

A = —,'(C —
—,'D}, B =—,'D . (2.8}

It remains to express C and D in terms of known quan-
tities; this can be done using the matrix element of the
gluonic part of the energy-momentum tensor. ' First we
consider the full QCD energy-momentum tensor (with
massless quarks):

A =—', (f [r;Gsr ~i &(n+n
~
ma, E E'~0& . (2.5)

Voloshin and Zakharov" showed the correct way to
obtain the hadronic amplitude in (2.5); the careful treat-
ment by Novikov and Shifman'2 of higher-order correc-
tions gives the amplitude for emitting the m+m pair in a
D wave as well as the corrections to S-wave emission.
We will review in some detail the techniques of Refs. 11
and 12, since we will need the hadronic amplitude in a
slightly more general form than the one presented in
those papers, where only transitions between S-wave
quarkonium states were considered, and where expres-
sions for absolute rates were not presented. A self-
contained discussion will also facilitate comparison with
other methods.

The idea is to assume initially that the pions are mass-
less and use soft-pion theorems' which hold in the
chiral-symmetry limit. Let the pion four-momenta be

p, =(e„p, ) and p2 ——(e2, p2), and let q =pi+p2 be the to-
tal four-momentum of the two-pion system. Since
E = —Go;, where G„' is the field-strength tensor, what
we need is the matrix element of the operator G„'iG'„.
The form of the matrix element of G„'iG'„ is fixed by the
soft-pion theorems and the symmetry of the indices; up to
terms quadratic in the momenta we have'

,G„' G'„~ 0 & = Aq (g„„g —g„g„}
+B(gpv+ia gpn tv+gin pv

This quantity is symmetric in the indices p, v, and so its
matrix element has a form similar to the right-hand side
of (2.7}; the two arbitrary constants in the corresponding
expression can be fixed by imposing the conditions

q„(m+n ( 8„„~0& =0,
(n+ (8„„/n+&

f
=2p~„.

(2.10)

(2.11)

8;.= G;i.G:i.+—4g,.Gi. Gi. (2.13)

We again assume the matrix element of 8G„ to have a
form similar to the right-hand side of (2.7},but of course
we cannot use the conservation condition since we are no
longer dealing with the full energy-momentum tensor;
also, the condition (2.11}will be modified. In this case,
the two arbitrary constants are fixed using the following
conditions:

(m+n [8„'„[0& = -(n+n
~ 8„„[0&,

(n+
~

8G„~ n+
&

~

=2p p~„,

(2.14)

(2.15}

where pG is the glue fraction of the pion, P is the QCD P
function,

(11——', nf )a,
P(a, )=-

27T
(2.16)

where henceforth we set the number of quark flavors to
be nf ——3, and the gluonic part of the P function P is
given by the right-hand side of (2.16) with nf ——0. The
quantities a, and p are to be taken at a mass scale of the
order of the inverse size of the quarkonium system.

The condition (2.14} is a consequence of the trace
anomaly,

GP ~ . G 13~ I=4 G~ G~ ~=44a, 4a,
(2.17)

while the condition (2.15) is consistent with the definition
of p as the moment of a structure function as used in
deep-inelastic scattering. ' These conditions fix the cor-
responding matrix element to be

The first condition of course corresponds to the fact that

8„„is conserved. As for the second condition, its kine-
matic structure is obvious from Lorentz invariance, while
the factor of 2 is due to the fact that the pion field is
charged. [The energy-momentum tensor of a massless
complex scalar field {{) is d„P'dP+ d,P'd„P
—g„„Big'Big; substituting {I)-e 'i'" for a plane wave and
using p =0 gives (2.11).] Applying the conditions (2.10)
and (2.11) fixes the matrix element of 8„„to be

(2.12)

the trace is (ir+ir
~ 8„„~0& =q .

Next we consider the gluonic part of the energy-
momentum tensor:
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G
(n.+m

I
OG„IO)= — +p q g„p—~„, . (2.18)

al angular momentum of the pion pair and that due to
the motion of the pions relative to the final quarkonium
state. The final results for the hadronic amplitudes are

Solving (2.13) for G„'kG'z we can evaluate its matrix
element using (2.17), (2.18), and (2.12); the result is that
the constants in (2.7) are fixed to be

((m+n )z I
na, E E'

I
0) = q 5;. ,

2
(2.21)

a,C=
G

+pG D a G (2.19)

((n+vr )n I era, E E'
I 0)

n.a,p
p;p, ,'—(q—;q,+q'5;, ) 1—4m

2

The constants A and 8 in (2.6) are then found using (2.8).
Using PIP = —", +O(a, ), the result for the hadronic am-

plitude appearing in Eq. (2.5) is

(~+~-
I
~a,E;E; I

0) = (~+~-
I
~a, GO, GO, I

0)

+O(a, ) q 5;l.
j. 2m

m-a, pG
+ ~)r~ (2.20)

Defining the relative four-momentum of the pions to be
p =p, —p2, we can write r„„=,'(q„q„—p—~„). To
decompose (2.20) into terms corresponding to emission of
the ~+m pair in an S and in a D wave, we note that the
D-wave amplitude must be proportional to
p;pl ——,'(q;ql+q 5;j), since in the rest frame of the pion
pair this goes over to p,p ——,'p25; . [The corresponding
covariant expression is p~„——,'(q„q„—q g„,). ] We
mention that this definition of the D-wave part of the am-
plitude does not distinguish between the "internal" orbit-

(2.22}

We only give the leading term in each ease; the question
of the correction to (2.21) is addressed in Ref. 12. In
(2.22} we include the kinematic correction -m giving
the second term in the D-wave amplitude the correct
threshold behavior; for arguments concerning the small-
ness of the remaining O(rn „)corrections, we again refer
to Ref. 12. This concludes our review of the methods of
Refs. 11 and 12. It only remains to consider the quar-
konium matrix element in (2.5).

III. QUARKONIUM TRANSITION RATES

In the cases we are considering, where the quarkonium
states are S or D waves, only the P-wave part of the octet
Green's function contributes to the amplitude (2.5}. We
shall use Cartesian wave functions, constructing the
"double-dipole" matrix elements in (2.5) starting from the
dipole matrix elements:

(('P ) Ir I('s, );&=-,'&P
I
r Is)5;

(('P, ),. Ir, I('s, ), )=— „(P
I
r Is&e.j. ,&6

(( P ),„I,I( s, );&= &P Ir Is&
2 3

(5j5kl+5ik5'jl 35il5jk )

(3.1)

(3.2)

(3.3}
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I
r

I
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2 3
(3.5)
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I
r
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D &(5;,5kl +5ik5jl 35il5jk }

IO& 6
(3.6)
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I
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I
D &(5ik5jl+5il5jk 35ij 5kl ) i

&( P2)km I rl I
( D2)ij & (~ilk5jm+~ilm5jk+~jlk5im+ejlm5ik) i

&PIr ID&
4 15

(3.7)

(3.8)

&( P2), I ri I( D2};,k&= —&P
I
r ID&[5; 5,,5ki+5; 5ji5kn ,'(5i5j 5 —+—5; 5jk5i +5;,5jk5im)]+e P.3v'10 (3.9)

[The indicated permutations in (3.9) are over the indices i,j,k ]We neglect th.e fine structure of the octet P-wave states,
so that the masses Mk of the intermediate states [cf. Eq. (2.3}]are identical for the PJ octet states having J=0,1,2.
This assumption has the important result that the Green's function transforms as a scalar. Defining

I&j=(f IrGspr Ii) (3.10)
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we find

&( Si }; I rkG8pr/ I
( Si };&=

3 5j5k/
Is s'

&2ID,s
& ( Sl }j I rk Gs pr/ I

( Dl )/ & =
10 (5/k5J/ +5//5jk —35/j5k/ )
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&( Si)m I "kGS P"i I

( DZ)/j&= 60 [ei/m5jk+«/k5jm+~J/m5/k+~J/k5/m+3(~jkm5//+&ikm5j/ z—~/km5/j }1 ~

~30ID s
& ('Si }n I r/Gs p"m I

('D3}ijk &

90 [5in5jl5km+5il5jn5km g(5jk5i/5mn+5jk5im5/n+5jk5/n5/m }]+cP.

(3.11)

(3.12)

(3.13)

(3.14}

Contracting the indices on the radius vectors in the expressions above, we find that the matrix element vanishes in the
case of a DJ initial state, J=1,2,3, so that these states can decay only by emitting the pions in a D wave. For D2 and

D3 this is obvious from conservation of angular momentum. For the D, state it follows because the spin variable ap-
pears neither in the interaction (2.1) nor in the Hamiltonian of the unperturbed system (due to the assumption men-
tioned above that the fine structure of the intermediate states is neglected). The spin dependence factorizes and there-
fore the orbital angular momentum is conserved; this in turn implies the vanishing of the amplitude for S-wave emis-
sion.

Next, we insert the expressions (3.11)-(3.14) into Eq. (2.5) to obtain the required amplitudes. Let e, be a polarization
vector for the final Sl state, satisfying

polar
«kj =5/j (3.15)

Then the amplitudes are

A;( S,~ S, (vrvr)s)= Is,s p q
4n

(3.16)

~a,pG~Z e, , e, , 4m'.
A. ( Di~ Si(vrvr)r/)= IDs p p'~ ——p —-' q q'~ q'——

l

q
(3.17)

A;J( D2~ Si(vrvr)D)=
~5vra, p

ID s p;(pXa)j+p, (pX~); ——,'[q;(qX~)j+qj(qX~), ]
4m1—

2
(3.18)

~30vra, p
Aijk( D3~ si(nvr)D)= 'Ias &ipjpk ,'k/5jkp ————',p/5jk(p &)

4m
,'[~;q, q—k—,'k/5, k—q'—,'q/5, k—(q—~)] 1— +C.p. (3.19)

24 4

I Is,s I

'q' . (3.20)

A simple analytic form can be found for the phase-space
integral in the limit in which the quarkonium is very
heavy (so that there is no recoil) and in which the pion
mass is neglected. In that limit we have q =6, where 6
is the dim'erence in masses of the initial and final quar-

It remains to square the amplitudes, sum over polariza-
tions using (3.15), and integrate over phase space. Al-
ready from (3.16)—(3.19) we see that the D rates are
suppressed relative to the S, rates, since the correspond-
ing amplitudes receive no contribution from the trace of
the QCD energy-momentum tensor and so are propor-
tional to a, .

First, let us consider the case where the initial and final
quarkonium states are both S waves. Squaring (3.16}and
using (3.15), and dividing by 3 to average over initial po-
larizations, we obtain

l

konium states, so that the amplitude squared is a con-
stant. Then the rate is given by

r=&
I

A I'& I ', 5(., +.,-~}5/'(P+p, +p, }
(2~9

X d MP)d P2
2E)262

(3.21)

we get

where P is the momentum (which is equal to zero in this
approxiination) of the final quarkonium state. Note that
the denominator in (3.21) contains a factor 2e only for
each pion; the quarkonium states are normalized as in
nonrelativistic quantum mechanics. Using the integral
over d P to eliminate the momentum 5 function, and
writing

d p, d p2~16&k, k2de, d62 ~
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) f8(e, +a~ —b)eiezde, de,
1

Sm.

3 f Ei(4 —Ei)dpi8~'
Q3

(3.22)

Inserting (3.20) into (3.22) gives

ir
I is, s I

'~'
r('s, 's', ~+~-)=

39
(3.23)

where 6 is the mass di8'erence. This turns out to be a
poor approximation but serves to illustrate the strong
dependence on the mass splitting h. A considerable
amount of suppression with respect to this formula re-
sults when the physical masses of the particles are taken
into account in evaluating the phase space. A numerical
calculation, using the physical pion mass, and allowing
for the recoil of the final-quarkonium state, gives suppres-
sion factors of 0.08, 0.02, and 0.09, respectively, for the
transitions 2S~ 1S, 3S~2S, and 3S~ 1S in the Y sys-
tem. We have taken the masses of the 1S, 2S, and 3S to
be 9.46, 10.02, and 10.355 GeV, respectively.

It is impossible to calculate reliably the Green's func-
tion G8 z since we have no information on the octet sec-
tor of quark-antiquark states. We shall simply approxi-
mate the Green's function by a constant Go so that

I y Gp&f lr li& (3.24)

l
(1S

l
r

l
2S)

l
=1.25 GeV

l
(2S

l
r

l
3S)

l
=4. 18 GeV

l
(1S

l
r

l
3S)

l
=030 GeV

(3.25)

(3.26)

(3.27}

The constant Go can be fixed using the observed rate'
I

[Neglecting the nonlocality of the Green's function in
this way is in fact justified in the limiting case of extreme-
ly large quark mass. While this assumption is certainly
not literally valid for the Y system, the simple model
(3.24) should suffice for the present purpose of estimating
the order of magnitude of the transition rates under dis-
cussion. ]

A numerical calculation in the potential model of Ref.
5 gives

2 2
4m

X p+-,'q
q

+[-,'p'q' —(p q}'] 1—4m

q

(3.28)

The equality of the rates for the three 3D states was
proved in Ref. 17. It is somewhat more simply explained
just by looking at the amplitudes, as follows.

In terms of spherical tensors, we are dealing with the
matrix element of two irreducible rank-2 tensors coupled
together to give a scalar. That is, we have a tensor fP
corresponding to the Cartesian tensor r; Gs zr~, and a ten-
sor fz corresponding to E,'E;. Using a standard formu-

la from the theory of addition of angular momenta, ' we
have

r(Y(2S)—+Ymir) =6.62 keV, obtaining Gp ——4.38 GeV
Through Eq. (2.3), this value implies a rather low value
for the octet state masses, probably indicating the crude-
ness of the assumption (3.24). Nonetheless, our calcula-
tion gives an excellent result for the 3S—+2S transition;
namely, 0.51 keV, to be compared with the experimental
number 0.49+0.14 keV.

The model appears to do very badly, however, for the
3S~1S transition, giving a rate of 11 keV as compared
with the experimental result of 0.81+0.14 keV. But in
fact the potential-model wave functions are fixed by the
spectrum only to an accuracy —10%, in view of which
the small value (3.27) as compared with (3.25} or (3.26}
could be considered as equal to zero, within the accuracy
mentioned. Thus the presence of zeros in the 3S wave
function is a likely explanation for the small value of the
rate for Y(3S}~Yern. We mention that, of course, the
1D wave function has no zero, so the simple model (3.24}
should work quite well for estimating the hadronic states
of the D states.

Squaring the amplitudes (3.17)—(3.19), and dividing by
2J+1 to average over initial polarizations, we find that
the squared amplitudes are identical for J=1,2,3 and
equal to

~'(~,c ')'11D,s I

'

1 J 2
&'s, (~&), l(fF~f," )~l'D, )- 0 2 z &'s, IfP~I'D, &&(~~), If; lo&

( 2J + I )
1 /2 I f8 I'D, &&(~~)D lf; lo&, (3.29)

where we have used the following formula for the 6j sym-
bol:

given by'

a b c
0 c b

( 1)(a+b+c)

[(2b + 1)(2c + 1)]'" (3.30)

J 2 1
(Si if( l DJ)&2J+I '012'(S lf2 lD)

The J dependence of' the quarkonium matrix element -&2J+1(S
l
fP& lD) . (3.31)
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a,p')'
I ID,s II ( D~ S,n+m )=

2'X 3'&& 52~
(3.33}

A numerical calculation of the phase-space integral using
the exact amplitude (3.28) gives a suppression factor of
0.13 with respect to Eq. (3.33). The mass of the 1D was
taken to be 10.16 GeV. In the model of Ref. 5 we find

Combining the expressions (3.29) and (3.31), we see that
the factors of &2J + 1 cancel, and so the squared ampli-
tudes are independent of J. The physical reason why the
rates are independent of J is that the Hamiltonian has
been assumed to be completely independent of the spin,
so that the rates cannot depend on how the spin is cou-
pled to the orbital angular momentum of the initial state.

In the heavy-quarkonium limit we have q=0 and the
squared amplitudes are equal to

(a.,p )
(3.32)

34~ 52

In this approximation we have p =6; also setting
m„=0 and doing the phase space as before, we obtain the
approximate formula

(2g
I
ma, E Eg I

0) =ma, co,co2(e'„e21+ez, e&J ), (4.1)

where ~&,co2 are the energies and e;;,e z; the Coulomb-
gauge polarization vectors of the gluons. Decomposing
(4.1}into S- and D-wave parts, we have

27Tczs
((2g) + I

na, E EJ'I 0}= co,co2ef ez5.J, (4.2)

((2g} + I
ma, E EJ'

I
0}=ma, co,roz(e'„ezj. +ez;e', J

——,'e& ezfi;J) . (4.3)

[as in Eq. (2.6)] from first principles. Rather they fixed
one constant using experimental input and the second by
appealing to the case of two-gluon emission (which
should be valid only in a much higher-energy range). In
fact, it is this second constant which governs the magni-
tude of the amplitude for emitting the pion pair in a D
wave and hence controls the size of the hadronic rates of
D states.

It is easy to obtain the two-gluon rates in the formal-
ism of the present paper. The hadronic amplitude is sim-

ply

I
(1D

I
r

I
1S}

I
=1.65 GeV

and using this value we obtain

I (Y(1 D) +Yern }=—1.83(a,p ) keV .

(3.34)

(3.35)

The quarkonium decay amplitudes are computed as be-
fore; the D states can decay only by emitting the gluons
in a 2+ state. After squaring the amplitudes, the sum
over polarizations is done using

I (Y(1 D)~Yen}=0.07 ke.V. . (3.36)

We repeat that the rates are identical for the states hav-
ing J=1,2,3.

IV. DISCUSSION

We compare our result for 1(Y(1D)~Yen) with
those of Kuang and Yan and Billoire, et al. in Table I.
(The value from Ref. 7 was obtained using the ratio of the
formulas for D and Sl decay and the experimental value
for the 2S~1S transition. ) The reason for the large
value obtained by Kuang and Yan is very clear. Al-
though they adopted the soft-pion approach, they did not
fix the constants in the corresponding hadronic amplitude

TABLE I. Rate in keV for Y(1 D)~"fm.+m

This paper

0.07

Kuang and Yan

24

Billoire et al.

0.03

The only point remaining is to fix the value of the pa-
rameter a,p . It is expected that the glue fraction of the
pion should be about the same as that of the nucleon, '

i.e., pG= —,'. As for a„we shall take the value at the scale

( -0.5 GeV) of the inverse radius of the J/g used in Ref.
12, a(J/g)=0. 7 and let the coupling run to the scale
( —1 GeV) of the inverse radius of the Y, giving
a, (Y)=0.4 Using this value in Eq. (3.35), we finally ob-
tain our prediction for the width for decay of the Y(1D}
into the Y plus charged pions:

e'e'=5" nn. —
I J ~J

polar

(4.4)

where n is a unit vector in the direction of the gluon
momentum. One has to divide by a factor of 8 for the
number of colors and by an additional factor of 2 to ac-
count for the identity of the gluons, and then the phase
space can be done as in the two-pion case. Restricting
ourselves to the heavy-quarkonium limit, we find

a' I Is,s I

'~'
I ('S, ~'S$(2g)o+) =

2 &3n'

a' I in, s I

'~'
I'( D~ S)(2g) +)= 2'X 3'X 5'~

(4.5)

(4.6)

Taking the ratio of these expressions, and assuming for
simplicity that

I is, s'
I
=

I ID, s I

I g 16 M D
—Mr2 '7

(4.7)
I 2$ 25 M2s —M

Using (4.7) and taking I g equal to the experimental
two-pion rate gives I f$ =20 keV, which is comparable to
the result of Kuang and Yan. Thus, although Kuang and
Yan set out to work within the soft-pion framework,
their calculation of the D rate is actually a soft-
pion —two-gluon hybrid, and this results in their large
value for the rate.

As for the result of Billoire et al. , they are working
within the framework of two-gluon decays, but they im-
pose the ad hoc constraint that the gluons be admitted in
a 0+ state. (This is allowed in their calculation even for
initial D states due to their definition of the D-wave part
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TABLE II. Total widths and branching ratios for decays of the Y(1D).

D

'D3

I „, (keV)

58
47
42

Y(1 Po)y

0.62

V(1'P, )y

0.32
0.79

Y(1 P, )y

0.02
0.20
0.97

1g 10-'
I y 10-'
2x 10-'

3g

0.04
0.01
0.03

of the two-gluon wave function, which refers only to the
"internal" orbital angular momentum of the gluon pair. )

As would be expected, the projection onto the 0+ two-
gluon state reduces the width by a large factor, and this is
why Billoire et al. obtain such a small rate for the D de-
cay. If they had not made this projection, they would
have obtained a rate comparable to that of Kuang and
Yan. It is interesting that their model gives a value for
the ratio of the D and S, rates that almost coincides
with that of the present work, which is based on the soft-
pion approach.

Finally, Table II gives the result of a calculation of the
total widths of the three Dj states, J=1,2,3, and the
branching ratios for various decays. The electromagnetic
rates were calculated using standard formulas for
electric-dipole transitions' and the value

( ( 1P
(
r

~

1D )
~

=2.75 GeV ' from the model of Ref. 5.
The 1P masses have been tneasured to be
M(1 Po)=9860, M(1 P&)=9892, and M(l P2)=9913

MeV. For the 1D masses we used the theoretical values
given in Ref. 1: M(1 D, )=10149, M(1 D2)=10156,
and M(1 D3)=10161 MeV. The values for the three-
gluon annihilation widths were taken from Ref. 4.

In conclusion, the result of our calculation using the
soft-pion approach is that the D states have very small
rates for the transition to Ysrtr As .a result, the Y(1D)
states can probably be seen only by using their electric-
dipole transitions. A calculation of the probability for
producing the Y(1D) in electromagnetic cascades from
the Y(3S) will clarify the prospects for observing these
states.
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