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M1 transitions involving the D states of qnarkonia
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We derive expressions for the decay rates of the M1 transitions (1) n 'D2~n''S&, (2)
n D&~n' 'So, and (3) n 'D2~n' Dl including their leading relativistic corrections. Using the po-
tential proposed by Gupta, Radford, and Repko we also numerically calculate the decay widths for
some of these transitions in both the cc and the bb bound systems. In general the M1 decay rates in
the bb systems are found to be extremely small, of the order of a few electron volts or less. But in
the cc system the M1 decay 1 'D2~1'Sl may have a significant branching ratio, its partial decay
width being more than 2 keV. The inclusion of coupled-channel mixing leads to only small correc-
tions.

I. INTRODUCTION

In the literature there exist several papers' regarding
the S~SM1 decays of quarkonia and especially of char-
monium. The interest was mostly restricted to S states
because only those transitions were seen or expected to be
seen for charmonium in the e+e colliding-beam experi-
ments. But when experiments involving pp collisions are
performed at Fermilab in the near future there is a dis-
tinct possibility that D states of charmonium will be
formed and their decays can be studied. Furthermore the
singlet D state of charmonium, namely, the 'D2 is expect-
ed to be narrow and so its radiative M1 decays to 1 S&

and 2 S& and its E1 decays to 'P& should have observ-
able branching ratios. Even though the 'D2 state is pre-
dicted to be above the charm threshold in most potential
models, it is expected to be very narrow since the decay
to Do+Do is forbidden by conservation of parity and the
prediced mass of 'D2 is such that the decay to Do +Do is
energetically forbidden. Moreover in the bb system all
the 2D and the 1D states are predicted to lie below the 8
threshold in most potential models. So the calculation of
their radiative decay rates may be of some interest.

In this paper we first derive the expressions for the M1
decay rates of quarkonia involving the D states. We then
use these expressions to numerically calculate the M1 de-
cay widths of the cc and the bb systems in the potential
model of Gupta, Radford, and Repko (GRR), which
has been very successful in predicting the energy spectra
of both the ec and the bb bound systems. The calculated
rate in charmonium for 1'D2~1 S&+y is about 2.13
keV and for 1 'D2~2 S, +y is about 0.041 keV. Even
the branching ratio for 1 'D2~1 S, +y should be rather
small since the rate of the E1 decay 1 'D2 ~1 'P&+y is
about 661 keV in the GRR model. The M1 decay rates
for the bb system are found to be extremely small in all
cases. This is to be expected since these decays are either
forbidden in the nonrelativistic limit or when they are al-
lowed nonrelativistically the photon energy is too small

to give a significant decay rate, as the decay rate is pro-
portional to the cube of the photon energy.

The format of the rest of the paper is as follows. In
Sec. II we derive the expressions for the M1 decay rates
of the following transitions in quarkonia in terms of in-
tegrals involving the radial wave functions of the states in
question: (a) n 'D2~n' S, +y, (b) n' S,~n 'D2+y,
(c) n D, ~n''So+y, (d) n D, ~n''D2+y, and (e)
n' 'D2~n D, +y. In Sec. III we use the results of Sec.
II to estimate the decay widths of these transitions in the
cc and in the bb systems using the potential suggested by
Gupta, Radford, and Repko. In Sec. IV we provide
corrections due to coupled-channel mixing. Finally, in
Sec. V we make some concluding remarks.

II. DERIVATION OF THE FORMULAS FOR THE
M 1 DECAY RATES

In order to derive the M1 transition rates we use a for-
mula derived earlier by one of us (K.J.S.). According to
this formula, the M1 transition rate is given by

~a~'=-', k'
I t& ~

I yo+yi I
& &t I

'

where k is the wave number of the emitted photon. The
ket vectors

~

A )t and
~

B )t are eigenstates of the inter-
nal Hamiltonian h which is also the full Hamiltonian of
the isolated quarkonium in its center-of-mass frame
where the total momentum p is zero. In order to get the
measured rates we have to sum over the final spins of

~

A )t and average over the initial spins of ~8)t. The
operator yo is the nonrelativistic M1 transition operator
and y& is its relativistic correction of relative order 1/c .
The expressions for yo and y& were given in Ref. 9. Since
the M1 transitions are possible only between the singlet
and the triplet states because of the charge-conjugation
parities, only the spin-dependent terms in yo and y& need
be considered. We can show that W"' defined in Ref. 9
has no spin-dependent part. The proof makes use of the
commutation relation between W'" and h' ' derived by
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Sebastian and Yun. ' We will first consider the D~S,
~

bL
~

=2 M 1 transitions.

A. n 'D2~n' S&+y

Since we are considering
~

b,L
~

=2 spin-flip transi-
tions the operators in y0 and y& contributing to the ma-

trix element should be tensor operators of rank two in the
coordinate space and proportional to (n, —oz). Even

I

though in y0 there is no such term we have to include y0
if the observed n' S, state is a linear combination of S,
and D

&
states. The constant term proportional to

(cr& —crz} in yo can connect between D, and 'Dz states.
The

~

b,L
~

=0 terms in y& need not be considered if we
assume that the mixing coefficient of D, is of order
v /c (or at least small). It should be noted that we are
calculating the transition amplitudes correct to relative
order 1/c and y& is of relative order 1/c compared to
y0. So the contributing terms are given by

eq
yo, =

2mc

leq k eqk eq

, , [q (a'~ —a'z)]~+ q[q (a, —nz)]+ ', , [q (a, —crz)]V(V, + V, )
16m c 80mc 16m c

r

eqa 1 ik eq—'k q(o, —a z) q — ~(rr, a'z) ~ —[q (cr, —o z)]n + [(q &

—cr z ).w]n .
4mc m c 2mc 8m c

(2)

(3)

In Eqs. (2) and (3}ee is the electric charge of the quark, m

is its mass. The symbol a in Eq. (3) is the dimensionless
parameter representing any anomalous magnetic moment
the quark may have. V and V, are the perturbative
QCD potential and the confining potential, respectively.
Also,

q=(ri —rz)
I r =o

and m is the momentum canonically conjugate to q. The
last term in the expression for y„ in Eq. (3}owes its ori-
gin to the recoil momentum of quarkonium in its final
state and to the use of the relativistic relation '" between
the constituent and the center-of-mass (c.m. ) and internal
variables. We will find that this term makes a significant
contribution to the rates.

In order to calculate the matrix element of y„and y0,
we first note that the initial and the final relativistically
corrected quarkonium states can be written as

~

n 'Dz ) R„iz(q) Yz (e,p)Xoo
2m

and

quantities. In the infinite sum over 1 in Eq. (7), in prac-
tice we need to keep only one or two terms. We should
also note that the 'D2 state cannot mix with any other or-
bital angular momentum state since the total angular
momentum is to be conserved. Since the coefficient azz is
of order v /c and since we are calculating the matrix
element only to order v /c the matrix element of y„
need be considered only between R„.s Y00X, ~ and

Rnn Yz~Xoo and that of yo, between azzRn5'z» and

R„DYz 700. Since one of the states involved is an S state,
using the Hermitian property of the momentum operator
m and the fact that

i dR&s
YooX )~'q dq

we can easily show that

($,3,q (o, crzHrf —
& )

=(y'„. , q (a, —a z)qy„, ), (9)

where

n'S,.) ~Rn sY~X, .+anRnÃz»

=0„s,+azz4 ~,lm' 1m'

where a~Rzz Pz„represents the D-state admixture which
is probably small. In Eq. (6}, Pz„ is the angular-spin

part of the wave function which is written as PLsz. If we

assume that the D-state admixture in Eq. (6) is due to the
relativistic terms of order v /c in the Hamiltonian, in
first-order perturbation theory it will be given by

(n' S&
~

VTSiz I
I D, )Rioa'RD D E(0) E (0)

I n'S ID

where VTS,z is the so-called tensor term in the Harnil-

tonian and the superscript (0} refers to nonrelativistic

) dR„S
YooX)~ —— iRn sYoo—X'

q dq

Also,

($,3,[(cr, oz} m]mg ~
—}.

1m' 2m

l(a i
—az} q]q4„,

where

d 1 dR„.S
YooX, .=Rn's YooX,

q dq q dq

The observed decay rate is given by

(10)

(12}
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I+ =1x+V'y (14b)

Using Eqs. (3) and (9}—(14} it becomes clear that the
problem reduces to the calculation of

W, ', =-'k'-' g I(n''S, Iyln'Dz ) I'. (13)
m, m'

At this point we note that

I
& ~

I y I
& &

I
'=-,'& ~ ly

+—,'(3 ly IB)(A ly IB)'
+-, &~ ly. l»&~ ly. l»",

(14a)

where

(n' S, ~

I
q„q.(o,—a2) I

n 'D2 ),
where q, could be q+ or q, . It is also useful to make the
observation

'q ( I ~2) (a 1 ~2) 'q —+ (~1 ~2) q

+(cr, —o2),q, .

We can then do the spin and angular parts in these ma-
trix elements easily by making use of relations such as

(1s)f ~ooq q I'zmdfI=( —,', )'"q'5m'

and so on. We find that these matrix elements are given
by the expressions

I
q~q'(a'| —ir2)

I
n Dam &= + —4 *|5~o+ 5m +i5m +2+(») 5mo5i3 ] 2 1 2 2 ]/2

3 v'IO ' 1S '
)& radial part, (16)

(n' S, .
I q, q (cr, —nz) I

nDz ) = — 5 o5 o+ 5, ,5

Xradial part . (17)

Usings Eqs. (2), (3), (9)—(12), (14), (16), and (17) we can
express Eq. (13) entirely in terms of radial integrals. Our
final result for the decay rates are given by

prM1
D2 S) 90

2

~
I Jo+Ji+J2+J3+J41' .

mc

(18)

In Eq. (18) Jo originates from the matrix element of yo
between the wave functions R„D Yq X00 and aDRD2, i and
it is given by

Jo =~72 an fRnR„&q dq . (19a)

The other dimensionless integrals J;(i =1,2, 3,4) are
given by

I

The integral J3 when a =0 gives the recoil contribu-
tion ' to the M1 amplitude. Later we will see that it
makes a significant contribution to the 1'D2~n S,
(n = 1,2) M 1 decay rates in charmonium.

Next we consider the related M1 decays n' S&~n 'D2+ y and n D, ~n
' 'S0+ y of quarkonia.

B. n' Si~n 'Dz+y

The decay rate for this transition can be obtained from
the results of Sec. II A by the following simple observa-
tions:

ly, ln'S, &'=(n'S, , Iy,'In'D, &, (2O}

and that y, is Hermitian except for one term correspond-
ing to the integral Jz. In fact we find

kJ|—— (1+a)f R„.sR„&q'dq,
10 0

J2 —— (1+2a)f R 'sR zq dq,
2mc 0

(19b)

(19c)

2

mc

x~
I Jo+Ji Jz+J3+J4

I

'
~ (22)

J3 — ( 1 —2a) R„"sR„~q'dq
m c 0

(19d)

1 n s „1d 1 n's

dq q dq q dq

J4 —— R 's V + V, R„Dq dq, 19e4 2mc' o
.sq ~q

where

The extra factor —', in Eq. (22) comes from the fact that
the final state 'Dz now has five spin states instead of three
for D, in the previous case.

C. n D& ~n' 'So+y

Here the state n' 'S0 cannot mix with any other orbital
angular momentum, but the state n D, can. In fact we
expect
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I
n D, )~R,D+211+CSRS+011 (23) where J„Jz,J3, and J4 are given by Eqs. (19) and Jo is

defined as

o& I '~i
I

VrS'12
I

n 'D
i &oRI"

CsRs =X (o) (o)
I E

(24)

In practice in the infinite sum over I only one or two
terms need be considered. By doing a calculation similar
to Sec. II A we find

'2

AM�] 1 eq a
0 54 e mc

'2

x~
I
Jo+J&+Jz+J3+J4 I

(25)
)

where the coefficient cz is expected to be small. In the
usual potential models it is of order v /c, and comes
from the so-called tensor term in the Hamiltonian. In
first-order perturbation theory CzRz will be given by,
just as in Eq. (7),

Jo=&72Cs f RsR'sq'dq .
0

In Eqs. (22) and (25) J3 gives the recoil contribution.
Next we turn to the D~D M1 decays of quarkonia.

We will consider the decays n D, ~n' 'D2+y and
n' 'D2~n D]+y.

D. n D( ~n' 'Dg+y

Since this is a
I
bL

I
=0, D~D spin-fiip Ml transi-

tion, both the scalar and the tensor terms in coordinate
space and proportional to (cr& —crz) in the expression for

yo and y, given in Ref. 9 will contribute. In addition to
the terms given in Eqs. (2) and (3) for yo and y, the fol-
lowing additional terms will contribute to y] which we
will write as y, „:

eq 2k ~2 l eq k ekq
y, „= (1+a)—3 (a, —az)+ (1+2a)(q n)(cr, —oz) — (I+a)(a', crt)—]A 4mc mc m2c2 1 2 8m2c2 20mc

ev 8( Vz+ V, ) ez
z 3q (o, —nz) —

z z V, (a, —oz) .
8m 2c3 Bq 2m c

(27)

and

yo=yo

The contributing yo and y] will now be given as

(28)

where the L's are dimensionless integrals given by the ex-
pressions

L, = 1+ (5+6a) R„.DR„Dq dq,k 00

8mc 0

y]=y]c+y] A (29)

where yo, and y„were given earlier by Eqs. (2) and (3).
The observed decay rates will be given by

IV&
'

)
———', k'

—,
' g I

(n''D~ ~ Iyo+y, In'D, ) I'

=-', k'2
I

&n' 'Dz
I yo+yi I

n 'Dii
I

'.

k 2
00 4

Lq ——— (1+a) R„,DR„Dq dq,30 0

k BR„D
L, = (1+2a)f R n q dq,

24mc o
"

Bq

B(V~+ V, )
L, = — f R„.D R„Dq'dq,

24mc
(32)

(30)
When we use Eqs. (14) in Eq. (30) it becomes a calcula-
tion of

Iy~ In'D~~&

1 2
L6 ——— 1+—a

m2C2 3

„BR„D BR„D

L, = — R„.DV, R„~q dq,
2mc

and

(n''D, Iy, I
n D„) .

Using our expressions for y in Eqs. (28), (29), (27), (2), and
(3) and going through a rather long but straightforward
calculation similar to the one in Sec. IIA (but more
difficult because both the initial and the final states are D
states) we finally obtain

L6=—

+6f "R„,DR„odq
0

BR„D BR„D
q dq

12m c

+6 Rn'DRnDdq
0

M] 48'3 ) ——— a
z 3 e

2

~
I L, +L~+L, +L4

+L5+Ls+L6 I
',
(31)

The integral L6 has been written separately, just to show
that it is the contribution due to the recoil of the quar-
konium, the so-called "recoil term. " ' The integrals L2
to L6 have coefficients which are of order v /c and so in

doing their evaluation we can use the nonrelativistic radi-
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TABLE I. D ~SM1 transition rates of charmonium.

Dimensionless integrals

Decay

1 'D2~1 Sl
1'D2 —+2 SI
1 Di~1 Sp
1 Di ~2 'Sp

Photon
energy (GeV)

0.643
0.129
0.697
0.171

Jp

—0.2294
—0.3159

0.2294
0.3160

0.2738
—0.0294

0.3219
—0.0515

—0.4056
0.0358

—0.4399
0.0473

J3

—0.4266
—0.3938
—0.4266

0.3938

J4

0.1646
—0.2600

0.1646
—0.2600

—0.6232
—0.9634
—0.1506
—0.3420

Predicted
decay rate (keV)

2.13
0.041
0.265
0.020

al wave functions. In the evaluation of L, we have to be
more careful. It comes from the matrix element of (con-
stant) (cr& —a'z) between n D& and n''D2 states. Since
part of the constant is of order 1 we must calculate this
radial integral to order u tc . Writing the Hamiltonian
of the isolated quarkonium (without any interaction with
the radiation field)

H =Hss+ Uss(q)S, S2+ ULS(q)L S+ UT(q)S„, (33)

where S,2 is the tensor operator defined by

(S, q)(S2 q)
Si2 ——4 3

q2
—S, S2 (34)

We next note that the states n D& and n' 'D2 ~ can be

written as

n D, ) R„'@PE&&+asRs&oi& (35)

In''D~m )~Rnn&2p2 ~ (36)

It should be noted that when we take into account rela-
tivistic correction terms in the Hamiltonian we have to
distinguish between the singlet (R„n) and the triplet
(R„'z) radial wave functions since the differential equa-
tions obeyed by them are slightly di6'erent because of
those relativistic terms in the Hamiltonian. Writing the
energy-eigenvalue equations for the states in Eqs. (35) and
(36) and using the Hamiltonian of Eq. (33) we get the in-
tegral in L& as

s t 2 i s t 2
R„'.~ UTRs

(R„'.n, R„'n ) = I R„rpR„nq'dq = R„*n( Uss 2UT 3U—ls)R„'n—q dq+~8 as
p (E g ) p Et Es

(3'7)

When n&n' the second term on the right-hand side is of
order u !c and can be dropped. Then the radial integral
is entirely given by the first term where we can use nonre-
lativistic radial wave functions since Uss, UT, and ULs
are of order u /c . When n =n', the radial integral will
be 1 to order u lc .

Next we turn to the related M 1 decay n' 'D2
~n Di+y.

E. n''D&~n D&+y

The decay rate for this transition can be obtained from
the result of Sec. II D by making the simple observations

(n D, iy~n''Dz . )*=(n''D2 ~y in D, )

and that

M1W
2 1

'2
4 eq a
5 e

'2

2
~

i
L', +Lq+L'3+L4+L5

mc

+Ls+Ls i

where

/

(n'D, /y[n''D~ )*i
=

i
( n 'D,

i y i
n

' 'Di

We obtain

(38)

TABLE II. D~D M1 transition rates of charmonium.
2

eq8 1 3 CE

3

, ~

L', +L, +L3+L4+L, +L6+L6
~

Dimensionless integrals

Decay

1 'D2~1 Di

Photon
energy (GeV)

0.0189

L'I

1.002

L2

—0.000

L3

—0.005 —0.026 —0.428

L6+L6

—0.222

gL,
—0.322

Predicted
rate (keV)

0.001
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Decay
Photon

energy (GeV)

TABLE III. D~S M1 transition rates in the bb system.

Dimensionless integrals

Jp J4
Predicted
rate (keV)

1'D2~1 S)
1'D2~2 Sl
2 'D2~1 Sl
2'D2 2 S)
2'D2~3 Sl
3 S)~1'D2
1 D]~1 Sp
1 Dl ~2 'Sp
2 Dl~1 Sp
2 D] ~2 Sp

0.667
0.126
0.941
0.415
0.092
0.203
0.702
0.158
0.975
0.446

—0.0611
—0.511
—0.1078
—0.0874
—0.1654

0.0025
0.0527
0.0441
0.0447
0.0359

0.0836
—0.0097

0.0402
0.0823

—0.0187
0.0067
0.0927

—0.0151
0.0439
0.0949

—0.1051
0.0102

—0.0627
—0.1127

0.0259
0.0379

—0.1107
0.0127

—0.0650
—0.1210

—0.3413
—0.2719
—0.2236
—0.4234
—0.3341
—0.0639
—0.3413
—0.2719
—0.2236
—0.4234

0.0365
—0.0622

0.0249
0.0224

—0.1198
0.0029
0.0365

—0.0622
0.0249
0.0224

—0.3873
—0.3847
—0.3290
—0.5187
—0.6122
—0.0902
—0.2700
—0.2924
—0.1758
—0.3911

0.0175
0.000 12
0.0355
0.0076
0.000 11
0.00004
0.0166
0.0002
0.0188
0.0089

L', = 1+— (1—2a) R„.DR„Dq dq,1 00

8mc o

Li —— (1+a)f R„D q dq,5 k R„D

24 mc 0

(39)

(40)

'D2~1 S, M1 transitions since these may be the only
D-state M1 transitions with observable branching ratios.
We also like to point out that we have put a =0 in our
formulas to make the numerical estimates.

and all the other L, 's are given by Eq. (32). The extra
factor of —,

' comes because the final state n D& has only

three spin states where as the previous final state n' 'Dz
had five spin states.

III. NUMERICAL EVALUATIONS OF THE M 1

DECAY RATES IN THE cc AND THE bb SYSTEMS

We have used the potential proposed by Gupta, Rad-
ford, and Repko to calculate the radial wave functions
and thus the M1 decay rates involving the D states of
both charmonium and bottomonium. We have used the
same parameters as they have since it gives the energy
spectra including their fine structures for both cc and bb

systems in excellent agreement with experiment. We also
used the variational method proposed by them to solve
the semirelativistic Schrodinger equation and chose the
same form for wave functions:

K r
pni(r)= g al. „i R

e " F( (0,), L =k+1,
k=0

where the value for K is from 7 to 11 and the value of R
is usually in the range 0.4-1.0 GeV '. The results of our
calculations are given in Tables I-IV. In Tables V and
VI we also give the predicted energy spectra of the D
states in the GRR model. For the cc system we have only
calculated the rates for the 'D2 ~2 S, and the

IV. COUPLED-CHANNEL MIXING EFFECT ON
THE M 1 DECAY RATES

In addition to relativistic corrections, coupled-channel
mixing could also have an effect on the M1 decay rates.
A bound state such as cc or bb can make a transition to a
pair of heavy-light mesons (Qq, Qq), 'which then make a
transition either to the same or to a different QQ (for ex-
ample, ccrc state. Consequently different QQ states can get
mixed. The values of the mixing coefficients mainly de-

pend on the light-quark pair (qq) creation mechanism.
We have used the flux-tube-breaking model for the pair
creation mechanism, ' ' and find that coupled-channel
mixing has little effect on the D-state M1 decay rates.

Let us examine the decays in Table I. For
1'D2~1 S, , since the coupled-channel effect can only
mix states of cc with the same J, where J is the total
angular momentum of the cc state, P is the parity, and C
is the charge conjugation of the state, we only need to
consider the admixture of 1 S& with 2 S, and 1 D .
The mixing coefficients (using the method in Ref. 13) are
listed in Table VII. Using the coefficients in Table VII
we find

I
i)'& =0 99g

I
'~i &+o o5712'~i &+0 00211'Di &

(41)

The admixture in (41) will modify the decay rate from

TABLE IV. D ~D M1 transition rates in the bb system.

Dimensionless integrals

Decay

1 'D) ~1 'D2
2 'D2~1 D,
2'D2, ~2 D)
2 D) ~1 'D2

Photon
energy (GeV)

0.012
0.294
0.006
0.299

Ll

1.002
—0.024

1.000
—0.024

L2

—0.000
—0.015
—0.000
—0.016

—0.000
—0.034
—0.001
—0.007

L4

—0.006
—0.002
—0.020
—0.002

L5

—0.062
—0.016
—0.222
—0.016

L6+L6

—0.046
—0.030
—0.063
—0.030

gL;

0.887
—0.119

0.695
—0.094

Predicted
decay rate (keV)

0.00007
0.0102
0.00003
0.011
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TABLE V. Predicted energy levels of the cc system in the
GRR model. Parameters used: m, =1.32 GeV; p=1.94 GeV;
a, =0.36; k =0.15 GeV; c =0.392 GeV.

TABLE VI. Predicted energy levels of the bb system in the
GRR model. Parameters used: mb ——4.78 GeV; p =3.65 GeV;
k =0.18 GeV; a, =0.28; c =0.079 GeV.

State
Predicted

energy (MeV)
Experiment

(Ref. 17) (MeV) State
Predicted

energy (MeV)
Experiment

(Ref. 17) (MeV)

I 'S| (f)
1'S, (q, )

1'Pp (X,p)
1'P, (X„)
1'P2 (X,2)
1 'P,
2 Si
2 'So
1 Di
1 D2
1 D3
1 D2

3097
2982
3413
3510
3560
3529
3684
3590
3801
3822
3830
3822

3096.93+0.09
2980.6 +1.5
3414.9 +1.1

3510.67+0.51
3556.31+0.42

3686.00+0.10
3594 +0.5

2.13 keV to 2.14 keV. For the decay 1 D2~2 S& using
the same method, we find the rate changes from 0.041 to
0.039 keV. For all other M1 decay rates we found no
significant change.

V. CONCLUDING REMARKS

From Table I we see that the M1 decay 1 D2~1 S&

for the cc system has a significant decay rate of about
2.13 keV. This should be compared with the E1 decay
rate of 661 keV for 1 D2~1 P] of charmoniurn, which
we calculated using the GRR model and formulas previ-
ously given. ' So this decay may have a measurable
branching ratio. Also the M1 decay 1 D] ~1 So in the
cc system has a rate of about 0.265 keV. But since this is
a broad resonance its branching ratio is probably too
small for observation. A glance at Tables III and IV
shows that all the M1 decays involving the D states of the
bb system have widths of the order of a few eV or less. It
suggests that the M1 decays in the bb systems may be
difficult to detect. This may be the reason why the e+e
experiments to date have not been successful in locating
the singlet S states in the bb system. One may have to

1 Si
1 'So
1 Po
1 Pi

1 Pl
2 Si
2'S,
1 D2
1 Di
1 D2
1 D3
2 Po
2 Pl
2 P2
2'P,
3 Si
3'S,
2 Di
2 D2
2 D3
2 'D2

9 460
9415
9 866
9 890
9 906
9 897

10011
9 984

10 150
10 143
10 149
10 153
10230
10252
10265
10257
10 355
10 333
10440
10446
10451
10447

9460.03+0.19

9859.8 +1.3
9891.89+0.68
9913.29+0.63

10023.37+0.34

10232.7 +0.5
10255.3 +1.7
10271.1 +1.7

10355.5 +0.5

wait for the direct formation of the singlet states in pp
collisions and the E1 decays between them to establish
their existence and to measure their energies. In Tables
V and VI we give the predicted and the experimental en-
ergy spectra of the cc and of the bb systems in the GRR
model including the relevant D-state energies.

We also find that the so-called "recoil term" ' in the
M I decay amplitude is quite significant in all decays and
especially the D~S M1 decays. For example, had we
neglected the recoil contribution, namely, J3, to the
1'D2~1 S& M1 decay amplitude in charmonium we
would have obtained the corresponding transition rate
about ten times smaller and the same procedure in
1 'D2 ~2 S, in charmonium would have resulted in a

TABLE VII. Mixing coefficients of ec states due to coupled-channel effect.

P(3770)

State

Re
Im

Re
Im

Re
Im

1 Si

0.998
0

0.005
0

0.002
—0.004

2 Si

0.057
0

0.982
0

—0.032
0.047

1 Di

0.002
0

0.017
0

0.928
—0.358

I
gc

Re
Im

Re
Im

1 'So

0.999
0

0.005
0

2'S,

0.049
0

0.982
0
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transition rate about three times smaller. The effect of
the recoil term J3 is even more pronounced in the D ~S
Ml decays of the bb systems. We find that the coupled-
channel mixing has little effect on the D-state M1 decay
rates.

Next, a word about the V, term, the so-called "pair-
creation" term in the M1 decay amplitude. This term is
present in the M1 decay amplitude if we start from the
so-called Fermi-Breit covariant equation which includes
the scalar and the vector potentials, make the minimal
coupling to the electromagnetic field in that equation,
and then take the Barker-Glover reduction to order
v /c . It is also present if we include the quark-
antiquark pair creation vertex and a photon emission ver-
tex in a scalar exchange graph in a field-theoretic forrnal-
isrn. None of these arguments conclusively prove there is
such a term in the M1 decay amplitude for the following
reasons. First, the covariant two-particle equation in the
presence of an external field has no proper bound-state
solutions because of the problem of the so-called "contin-
uum dissolution. "' So it is incorrect to start from such
an equation. Second, no single scalar-meson exchange
can give rise to the observed confining potential (say,
linear) in quarkonium. So it is not clear how this scalar
pair-creation graph comes about. It is quite probable
many higher-order QCD graphs involving virtual gluons
and quarks conspire to produce a qq scattering amplitude
which simulates a scalar exchange graph. In that case we
should attach an external photon line to every charged-
particle line including the internal quark lines and not
just the external quark lines to get the two-body equation
in the presence of the external electromagnetic (EM) field.
While there are only four external quark lines there are
an arbitrarily large number of internal quark lines. Un-
der those circumstances it is not clear whether the "V,
term" will survive in the M1 transition operator. On the

other hand, if you start from an approximately relativis-
tic Hamiltonian correct to order v /c and couple it to
an external EM field by means of two principles, namely,
(I) minimal gauge invariance and (2) when the internal in-

teraction goes to zero, the external EM interaction is a
sum of simple one-particle Dirac Hamiltonians, one does
not get the "V,cr B"term in the interaction Harniltonian.
The upshot of all this is that there is some question
whether or not the V, term in the M1 transition operator
is present. Now the interesting thing is that in the D ~S
M1 transitions, the V, term, even if it exists, will not con-
tribute to the decay amplitude, since V, is a scalar in
coordinate space and cannot contribute to a EL&0 tran-
sition. So if we see better agreement for D ~S transition
than for S~S transition rate (with V, term present) it
will be an indication that the V, term may be absent in

the M1 transition operator. We should also mention that
the S—+SM1 decay rates in charmonium come out much
better' when we discard this term in the amplitude and
include coupled-channel mixing effects.

Another interesting point to note from Tables I-IV is
that in the D ~S M I transitions the single most impor-
tant integral is J3, which comes purely from the recoil of
the composite system. The use of the relativistic center-
of-mass variables" was important in deriving ' this part
of the M1 decay amplitude. This particular term did not
appear in early treatments of M1 decays. The size of this
term relative to other terms in the D ~S M1 decay am-

plitudes suggests they may also be of crucial importance
in the D~S M1 transitions of positronium.
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