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Radiative corrections to heavy-Higgs-scalar production and decay
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A simple formalism, based on the Goldstone-boson equivalence theorem, is described for calcu-
lating O(g mH /m~) radiative corrections in the standard model. We apply this method to heavy-

Higgs-boson decays and find that the dominant decay rates I (H~ W+ W ) and 1 (H~ZZ) are
enhanced by a factor 1+(g2/8tr2)(mH2/m ~~) ( —,'69 —3 &3++—5s H). The same enhancement applies to

heavy-Higgs-boson production from W+ W and ZZ fusion. Corrections of O(g lnmH) are also
brieAy discussed.
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The standard SU(2)L XU(1) model of electroweak in-
teractions predicts the existence of a neutral spin-zero
particle H, called the Higgs scalar. It is a necessary rem-
nant of the symmetry-breaking mechanism responsible
for generating the 8'*, Z, quark, and lepton masses. As
such, its discovery is crucial for final confirmation of the
standard model.

During the last few years, considerable attention has
focused on the possibility of a very heavy Higgs scalar,
mH ))m w, and the physics associated with it. '

Indeed, such a scenario has been a primary goal of SSC
(Superconducting Super Collider) studies. ' It is general-
ly accepted that for mz ~1 TeV, one enters a strong-
coupling domain which cannot be reliably described per-
turbatively. However, at somewhat smaller scales, per-
turbation theory should still be reliable. To study the
perturbative domain and the approach to strong cou-
pling, we have initiated a systematic analysis of
O(g mH /m s ) radiative corrections in the standard mod-
el.

In this paper we describe a simple method for calculat-
ing O(g mH/ms, ) radiative corrections. We then apply
this formalism to the various Higgs-scalar decay rates,
which in lowest order are given by '

where g is the SU(2)t gauge coupling and the (3) in Eq.
(3) is a color factor appropriate only when the fermion f
is a quark. Since we are interested in the limit

mH )&mw, where transverse-vector-boson decay modes
are relatively suppressed, we shall concentrate on the
corrections to the longitudinal-vector-boson decay
modes. However, we shall also calculate the
O(g mH/ms, ) corrections to the transverse-vector-boson
and fermion-antifermion decay modes. In the case of the
vector-boson decay modes, we compare our results with a
full O(g ) calculation by Fleischer and Jegerlehner. 's

The basis of our computational scheme is an
equivalence theorem originally due to Cornwall, Levin,
and Tiktopoulos' and further developed by others. ' '
This theorem states that at high energies (s))m~), S-
matrix amplitudes involving external longitudinal com-
ponents of W* and Z are equivalent, up to O(ma, /~s ),
to the corresponding amplitudes in the Higgs-Goldstone
scalar theory with the Goldstone bosons' w*, z replac-
ing WL*, ZL (L denotes longitudinal components). Since
the longitudinal components dominate high-energy am-
plitudes, and calculations in the equivalent scalar theory
are quite easy, the leading high-energy behavior of W*
and Z physics is considerably simplified by this theorem.
As such, it has been widely employed at the tree level in
SSC studies' as well as in analyses of the large-mH lim-
it. ' "" Here, on the basis of an all orders proof of the
equivalence theorem by Chanowitz and Gaillard, we ex-
pand its use to O(g mltlmtt, ) radiative corrections. In
that regard, our results can be viewed as an extension of
early pioneering work by Veltman which also explored
the large-mH limit of radiative corrections.

We begin by writing down the interaction Lagrangian
for the Higgs-Goldstone scalar theory

X=—Ap(to tv+ —i + H+vpH+ 2vp —p—p/2)(p)

(4)

I (H~ff)=(3) 1—
32m mw mH

(3) where w* and z are the Goldstone bosons, A,o is the bare
coupling of the underlying A,pg theory, and up is the vac-
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uum expectation value which gives rise to spontaneous
symmetry breaking. H is the physical Higgs scalar with
zero vacuum expectation value. The last two terms,
which cancel at the tree level, yield a tadpole counter-
term, as we will discuss.

From the H term, one finds the Higgs-scalar bare
mass
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and, from the gauge-boson sector (not discussed here),
the 8'* bare mass

m ~ =gpup/2,0 (6)

where gp is the bare SU(2)L gauge coupling. [Note that
we have chosen not to absorb an extra Higgs-boson mass
counterterm —Ap(up —pp/Ap) that follows from Eq. (4)
in our definition of (rnH) ]Co.mbining Eqs. (5) and (6)
leads to
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which illustrates why the large-mH limit corresponds to a
strong-coupling domain. Using Eqs. (5)—(7), we can
rewrite the Lagrangian in Eq. (4) as

wz ——~ ———
i

I

p2

FIG. 1. Feynman rules for the Higgs-Goldstone scalar
theory. Closed loops containing identical particles must be mul-

tiplied by ~.

25T
0 2 0gp(mH) /m~

where 5T=Apup(up —pp/Ap) is a counterterm generated
by the incomplete cancellation of up and pp/A, p beyond
the tree level. This counterterm is constructed to exactly
cancel tadpole loop corrections order by order in pertur-
bation theory. An analysis by Taylor ' has sho~n that
5T is related to the Goldstone boson (w*,z) self-energies
at zero momentum transfer, II(0), by

2m
11(0) . (9)5T= —upII(0) =—

gp

Therefore, a simple computational strategy is to ignore
all tadpole diagrams and the tadpole counterterms associ-
ated with 5T (since they exactly cancel) and subtract the
zero-momentum Goldstone-boson self-energy II(0) from
all scalar self-energies, including the physical Higgs sca-
lar H. This subtraction follows from the existence of
effective mass counterterms

5K=II(0)(w+w+ ,'z + ,'H )——(10)

generated by the 5T term in Eq. (8). As previously noted,
we have chosen not to absorb these counterterms into our
definition of bare quantities such as (mH ) .

Separating Eq. (8) into renormalized and counterterm
parts using (mHp)~=mH' 5m~, (m~p)—~=m~ 5m~, and-
g0 =g —5g we generate Feynman rules for the effective
Higgs-Goldstone theory. These rules are illustrated in
Fig. 1, where we have included combinatoric factors. In
the complete theory, the w* and z propagators are gauge

dependent; however we have effectively chosen to work in
the Landau gauge where the w and z propagators have
zero mass and the W —+ and Z propagators (not explicitly
dealt with) are proportional to g""—k"k'/k . In this
way, gauge-boson-scalar mixing is avoided, since any
such interaction is proportional to the gauge-boson four-
momentum k". Furthermore, we can neglect diagrams
with internal W —+ and Z propagators, since they are
suppressed by mii, /mH in this gauge. Thus, the Landau
gauge is the simplest and most natural gauge in which to
employ the Goldstone-boson equivalence theorem.

Employing the efFective Higgs-Goldstone theory, one
can easily calculate the O(g mH/rnid ) corrections to
various processes. As an illustration, we describe such a
calculation for the decay rates in Eqs. (1) and (2). By the
SO(3) symmetry of Eq. (8), the O(g mH/mizz, ) corrections
to I (H~w+w ) are the same as the corrections to
I'(H ~zz ); therefore, we need only calculate the former.

We begin by calculating the Hw+w counterterm gen-
erated by expressing the bare coupling gp(mH ) /2mii. in
terms of physical parameters. To this end, we choose the
physical W~ and H masses (i.e., the real parts of the
poles in the propagators) as our renorinalized parameters
and are at liberty to employ any of the various definitions
of the renormalized coupling g in use, since its renormal-
ization does not natura11y induce g IH /m~ corrections.
For definiteness, we wi11 employ a short-distance g
defined from the muon decay constant

g2—:4&2mii, G„,
G =1.16636+0.00002/10 G V

The mass counterterms do generate O(g mH/m~)
corrections via
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FIG. 2. Diagrams contributing to the Higgs-boson self-

energy at O(g m&/m~). The counterterm corresponds to the
Goldstone-boson self-energy subtraction II(0).

FIG. 3. Diagrams contributing to the Goldstone-boson self-

energy.
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so they must be calculated. To begin, we compute the
Higgs-boson self-energy —iIIH(q ) from the diagrams in

Fig. 2 and subtract the Goldstone-boson self-energy ob-
tained from Fig. 3,

SmH=ReIIH(q )
~ q =m&

that the Higgs-boson mass counterterm is

SmH g2 mH
2 2

16-'--' ' 1 —In(plmH )
n —4

(14)
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8 3

(15}

a mass scale introduced to keep the coupling g dimension-
less. In this way, we find using

4
g H 3 1—i II(0)= i- —In(iM/mH ) ——,

'

16&m' 4 n —4

(13)
(16}

In the case of 5m ~, we use an existing calculation in Ref.
26 of the diagrams in Fig. 4, which gave

5mw g2 1 mH
2 2

m~ 16m 8 m

where n is the space-time-dimension regulator and p is
I

Taken together, these counterterms imply

g (mH) LmH g mH
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Our next step is to evaluate the H and w* wave-
function-renormalization factors (from Figs. 2 and 3)

mg H 3 37T
(18)
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The divergence in Eq. (21) cancels the counterterm-
induced divergence in Eq. (17) and one finds that the
overall real part of the one-loop-corrected Hw+w and
Hzz couplings is given by

Finally, the real part of the proper vertex diagrams in
Fig. 5 gives a vertex correction factor

2g' mH 11+ 3 —In(p/mH )
16 mw n —4

5 3m. 5n.

2 8v3 48
(20)
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Multiplying the factors ZH~, Z (due to two external
w's), and Eq. (20) gives the full loop correction
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FIG. 4. Diagrams of O(g m&/m~) that contribute to the
W + self-energy.

FIG. 5. Proper vertex corrections of O(g m&/m~) to the
Hw+ w amplitude.
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Note that the correction is finite and positive. It is also,
in some sense, surprisingly small if we recall that a 1-TeV
Higgs boson is considered to be strongly coupled to the
w+ and z Goldstone bosons' and the correction in Eq.
(22) is only 7.5% at that scale. It is interesting to note
that the three terms contained within the parentheses of
Eq. (22} are each of order unity, yet they sum to only
0.175 because of cancellations.

From Eq. (22), we find that the decay rates in Eqs. (1)
and (2) are enhanced by a factor
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(23)

in the large-mz limit. [Note that there are no additional
O(g mz/ms, ) corrections from Goldstone-boson brems-
strahlung because only an even number of Goldstone bo-
sons can be radiated. Hence, the decays H~4 Gold-
stone bosons will contribute corrections, but only of
O(g mrs /ma ) to the decay width. ] The effect of Eq. (23)
is illustrated in Fig. 6 where the decay rate sum
PH~W+W }+I(H~ZZ) is plotted as a function of
mH. The Higgs-boson width starts to exceed its mass for
m& &?.3 TeV, thereby signaling a strong-coupling
domain. At this scale, the radiative correction in Eq. (23)
is about 24%, but perturbation theory may no longer be
valid.

The enhancement factor in Eq. (23) also leads to an in-
crease in the heavy-Higgs-boson production cross section
via W+W and ZZ fusion. This process is the largest
source of heavy Higgs bosons in high-energy electron-
positron, electron-proton, and proton-proton col-
lisions. Since longitudinal vector bosons make the dom-
inant contribution to these fusion cross sections, the
enhancement factor in Eq. (23) applies.

At this point, we compare our result in Eq. (23) with a
complete O(g ) analysis of radiative corrections to
H ~W+ W and H ~ZZ by Fleischer and Jeger-
lehner. ' These authors give an analytic expression for
the radiative corrections to H ~ZZ in the large-mH limit
[see Eqs. (5.4), (7.4), and (7.5) in their paper]. ' If we as-
sume that the Reczz term in their Eq. (5.4) has an in-
correct sign, then their result agrees with our Eq. (23).

We have also calculated the O(g mz/m~) radiative
correction to the Higgs-scalar decay to transverse W or Z
bosons, for which one cannot employ the Goldstone-
boson equivalence theorem. Nevertheless, the calculation
is rather simple if performed in the Landau gauge. One
need only calculate the corrections to the proper vertex
due to Goldstone-boson loops, the Higgs-boson wave-
function renormalization (18), and the W mass counter-
term (16). There are no O(g m& /m ~) corrections to the
gauge-boson wave functions. One finds the real part of
the one-loop-corrected HZTZT coupling to be

m& (GeV)

FIG. 6. The decay width of H into gauge bosons
I z ——I (H~W+W )+I (H~ZZ) as a function of mz with
and without the O(g mz/m~) radiative corrections. The
dashed line represents equality between m& and I &.

g ma 15 &3m.
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8
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which is comparable to the correction to the HZLZL
coupling [Eq. (22)]. This agrees with the result of
Fleischer and Jegerlehner, ' see Eqs. (4.23) and (7.4) in
their paper. The correction to HWT WT is given by Eq.
(24} with the last term set to zero. We do not include
these corrections in our analysis of the large-mH limit of
the Higgs-boson width since the transverse partial decay
width is suppressed by (m ~/mrs ) (Ref. 4).

We next comment on radiative corrections of
O(g inmlr ). In principle, such effects can be as large as
the g m&/ma, corrections for some range of mls values,
especially since the latter are only about +4% for
mH-500 GeV. Fortunately, much can be discerned
about the logarithmic corrections without doing any new
calculations. First note that we have chosen to define the
renormalized g in terms of G„ma, [see Eq. (11)]. There-
fore, it is effectively defined at the short-distance scale
m~, and employing this g in the lowest-order formulas
of Eqs. (1)—(3) will not lead to any g inm~/mf correc-
tions for mf & m~. If we had instead employed a long-
distance coupling such as gz

—=4~a/sin 8~, a=,37 as
was done in Ref. 15, then additional g lnm~/mf correc-
tions would be present and would constitute an additional
+7% correction at the decay-rate level. The difference
corresponds to the running of a from its long-distance
value of —„', to its short-distance value of a(m s ) =+, ,

Even in our renormalization prescription, there are ra-
diative corrections of O(g 1nm~/mz ) which are in-
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duced by the renormalization of go/(m~) (such correc-
tions can be viewed as due to the running of G„ from
mass scale mz, to mH) as well as logarithms that we
characterize as infrared. The latter can result from rela-
tively light particles in loop corrections or bremsstrah-
lung of gauge bosons. Regarding the corrections induced
by the renormalization of go(mH) /(mu ) we find from
the calculations in Refs. 20 and 26 a correction factor '

[to I"(H W+W ) and I (H ZZ)]

Gym~ 3 3 3 mt
2 2

1 — " —+ —— ln
&2m 4 4cos 8„, 2 mt'

mH
+ 0 ~ ~

mw

(25}

where the ellipsis represents corrections not of the form

g lnmH/mu„cos Ott. ——0.77, and m, is the top-quark
mass. For mH ~ 1 TeV and m, =45 —90 GeV, the correc-
tion lies in the range —2% to 0% and is, therefore, not
clearly larger than ordinary O(g ) corrections that we
have neglected. It could of course start to grow rapidly if
m, (or some other quark or lepton mass difference) is
much larger than 90 GeV. If this is the case, one would
also have to include nonlogarithmic g m, /m~ correc-
tions.

As mentioned before, virtual loops and bremsstrahlung
involving y, 8'*, and Z bosons may also give rise to "in-
frared" logarithms. One expects such effects to cancel for
inclusive decay rates. (We have not explicitly verified
that such a cancellation actually occurs. ) Therefore, Eqs.
(1) and (2) supplemented by the radiative correction fac-
tors in Eqs. (23) and (25) should represent a good approx-
imation to the heavy-Higgs-scalar decay width, as long as
perturbation theory remains valid.

We can use part of the above computation to also
evaluate g mH /m ~ corrections to the H ~ff decay rate
in Eq. (3). In this case, one need only add the effect of W

mass renormalization on the lowest-order coupling
—igomf/2m& [see Eq. (16)] to the H wave-function-

renormalization effect in Eq. (18). Together, they lead to
an enhancement of the rate in Eq. (3) by an overall factor

2
mH 13 v'3sr

1+
8~~ m 16 8

G„mH= 1+0.132
2tr2

(26)

This result agrees with an early calculation by Veltman.
Note that this enhancement factor is somewhat smaller
than Eq. (23) and only significant for very large mH. It
also entails a cancellation between terms of order unity in
the parentheses of Eq. (26} similar to the cancellation in
Eq. (23). Radiative corrections of O(g lnmH) resulting
from the renormalization of go/m~ are the same as in
Eq. (25). There are additional logarithmic corrections
due to the running of the fermion mass from its low-
energy value to a short-distance value at mH. This effect
has been discussed somewhat in the literature, so we
will not review it here.

In conclusion, we have demonstrated by example how
the Goldstone-boson equivalence theorem allows quick
and easy calculation of O(g mH/m~) radiative correc-
tions in the standard model. This formalism may, there-
fore, provide insight for studies of the approach to strong
coupling and consistency constraints on the Higgs-boson
mass.

Note added in proof. F. Jegerlehner has confirmed a
sign error in Eq. (5.4) of Ref. 15. Consequences for their
numerical analysis are under investigation.
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