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DifFusion of charmed quarks in the quark-gluon plasma
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We calculate the classical drag and diffusion coefficients for a charmed quark propagating in the
quark-gluon plasma. Both coefficients turn out rather large, so that (1) a charmed quark created
when the plasma is hot will be stopped before propagating 1 fm and (2) subsequent diffusion will be
fast. The first efect should serve to increase the yield of J/P mesons in relativistic heavy-ion col-
lisions, while the second should work in the opposite direction. In any case, the two effects should
dominate the dynamics of a cc pair.

I. INTRODUCTION

In the effort to create a quark-gluon plasma (QGP) in
nuclear collisions, ' a persistent problem is the scarcity of
signatures that would indicate that a plasma has indeed
been formed. A recent suggestion is to expect suppres-
sion of J/f production, basically because the outstanding
feature of the QGP is the absence of quark confinement.
Any charmed-quark pair formed by either a hard or a
soft process has only a screened Coulomb potential to
hold it together, and at a high enough temperature, that
potential is supposed to be too short-ranged to permit a
bound state.

The fate of a cc pair created in the quark plasma de-
pends on a variety of factors. For instance, recombina-
tion will occur if there is a significant density of charmed
quarks created in the initial stages of the collision; this
can perhaps be studied adequately with simple statistical
methods. A more interesting question is whether a sin-
gle cc pair will somehow stay together long enough to
form a J/f at hadronization. This question requires
study of the dynamics by which a heavy quark propa-
gates in the QGP.

In this paper I present a study of the drag and diffusion
forces which act on a charmed quark in the QGP. My
conclusion is rather a startling one: even though the
charmed quark is quite heavy on the scale of the plasma
temperature, drag is very strong and diffusion is very fast.
The classical analysis implies that a charmed quark creat-
ed in the early stages of a nuclear collision, whatever its
momentum, will be stopped before it traverses 1 fm and
will undergo diffusion thereafter, with a violence which
increases as the plasma cools. The implications for a cc
pair are anything but obvious; a pair formed with high
relative momentum will come to rest before attaining a
great separation, but the subsequent Brownian motion
could well overwhelm the potential that binds them to-
gether and prevent recombination. The strong drag
would act to increase the yield of J/P particles at the ex-
pense of DD pairs above threshold; the rapid diffusion
would act in the opposite direction.

The problem of the motion of a charmed quark in the
QGP will look familiar to anyone who has looked at the
classic "test-particle problem" in plasma physics. That

problem in turn traces its ancestry to the problem of
Brownian motion, which was studied by the classical
physicists around the turn of the century. The starting
point is the Boltzmann equation for the density f (x,p, t)
of charmed quarks in phase space:

+F f(x,p, t)=a a a af
t}t E t}x t}p dt

F represents external forces acting on the charmed quark,
such as the interaction with large concentrations of color
charge; the right-hand side contains interactions with

nearby plasma particles, gluons and light quarks and an-

tiquarks, which are taken to be significant only in the
course of a collision of short duration. In principle, one
could use (1.1) to solve for the evolution of the charmed-
quark distribution under the inhuence of the cc potential
by inserting the latter into F. We will, however, solve a
simpler problem: We will neglect all interactions with
other heavy quarks and with background color fields, and
set F=O. (This is the opposite of the collisionless Vlasov
approximation considered in conventional plasma phys-
ics. } Further assuming that the plasma is uniform, that
is, that the distribution functions of light particles ap-
pearing in the right-hand side of (1.1) are x independent,
we can average (1.1) over x. Defining

f(p, t)=—f d'x f(x,p, t),
V

(1.2)

which is the normalized probability distribution in
momentum space, we have

—f(p, t)=a af
collisionsat ' at

(1.3}

In the absence of external forces, all the variation of f
with time is due to collisions.

The right-hand side of (1.3) is a linear integral operator
acting on f. An approximation due to Landau is to al-
low only soft scattering in the collision integral, which
turns the integral into a differential operator, so that (1.3)
becomes a Fokker-Planck equation. We review this for-
malism in Sec. II, showing how the collision terms may
be interpreted as due to drag forces and diffusion induced
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by random collisions. We evaluate the drag and diffusion
coefficients in Sec. III and present numerical results in
Sec. IV. Appendix A contains background material
about Brownian motion and the Langevin and Fokker-
Planck equations. Appendixes B and C contain details
of the calculation of the collision integral.

The first term in the integrand represents gain of proba-
bility through collisions which knock the charmed quark
into the element of momentum space at p, and the second
term represents loss out of that element. w is a sum of
contributions from gluon scattering and from light-quark
and antiquark scattering:

II. FORMALISM w (p, k) =wg(p, k)+ w~(p, k)+ w (p, k) . (2.2)

R (p, t)—:
collisions

= f d'k[w(p+k, k)f(p+k) —w(p, k)f(p)] .

(2.1)

As discussed in the Introduction, our starting point is
the Boltzmann equation (1.3), derived in the absence of
external forces. Defining w(p, k) to be the rate of col-
lisions which change the momentum of the charmed
quark from p to p —k, we have

w is given by an integral over the momentum of the in-
cident gluon:

d q
3

s f 3 g "qt nq-r — q+(2m )
(2.3)

where f is the gluon distribution in phase space (as-
sumed to be position and time independent) and

Uq
=

~

v —v~ ~

is the relative velocity. The degeneracy
factor for gluons yg

——2X 8 appears because we must sum
over spin and color of the incident gluon. erg is the
differential cross section, as usual summed over the spin
and color of the final particles and averaged over those of
the incident particles. It is given by7

g 1 1 1 1 1 q 1

(2 ) 2E 2E yy, ~ ' 2E „2E (2n) 5(Ep+Eq Ep ~
—E—q+g} . (2.4}

(wq and w't, which are obviously equal, are given by similar expressions; since wg and wv are to be treated exactly alike,
we will discuss only ws and henceforth drop the superscript. ) Combining (2.1)-(2.4), one gets the familiar expression

d3 d3 I d3'R= 1 q q d P 1
2~ p+q —p' —q' p' q' — p q2Ep (2m)32E (2m) 2Eq. (2m) 2Ep. y,

(2.5)

where we have let p'=p —k and q'=q+ k.
Equation (1.3) is a linear equation in f, but a rather un-

manageable one because of the integral operator appear-
ing in R. It may be simplified by working in the Landau
approximation, ' which is physically motivated by not-
ing that most of the quark-gluon scattering is soft. In
other words, w(p, k) falls off rapidly with

~

k
~

. One is
thus entitled to expand the integrand in (2.1) in powers of
k, viz. ,

w(p+k, k)f(p+k)=w(p, k)f(p)+k (wf)
a

Bp

where we have defined the kernels

A, = f d kw(p, k)k;,

B, =—,
' f d3kw(p", k)k;k

(2.9)

(2.10)

To see the significance of A and B, consider the p~0
limit. In that limit, we take B,J ~D5,J and A; ~yp;, and
ignore derivatives of A and B Then th.e Fokker-Planck
equation (2.8) reduces to

giving

a'
+ —,'k;k (wf),

dpi dpj
(2.6)

2
af a a
z =yz .(pf}+D

~ f .
dt Bp Bp

(2.11)

a2R= f d k k. +—,'k;k. (wf}.
~p ~pi dpj.

(2.7)
The one-dimensional version of (2.11) is known as
Rayleigh's equation,

Equation (1.3) now takes the form of a Fokker-Planck
equation 6

af a
~

=y
~

(pf}+D
Bt Bp Bp

(2.12)

df 8
A (p)f+

g [B;,(p)f]Bt Bp; Bp~
(2.8) which describes the evolution of the momentum distribu-

tion of a particle undergoing Brownian motion. For the
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initial condition f(p, t =0)=5(p —po), the solution of
(2.12) is

' —1/2

&x'& —&x &'- t =D„t
Pl

(2.16)

f(p, t)= r
( 1

—2ri)
2~D

r 'p —p,e-")'
(2.13)

along with a diffusion process in momentum space,

&p'& -
&p &'= —(1-.-"'),

y
(2.15)

which has as its limit the Maxwell distribution if we
demand that r ID =JIM.

Under certain reasonable assumptions about the
diffusion process, the diffusion in momentum space can
be shown to lead to diffusion in position, with

which shows a drag force acting on the mean momentum
of the particle,

(2.14}

for t &&y '. An explicit example of a diffusion process
satisfying these assumptions is described by the Langevin
equation, and is discussed in Appendix A.

Thus A,. yields the drag coefficient while 8, gives the
diffusion constant. In this example there is a simple rela-
tion between the two, which comes from the requirement
of thermodynamic equilibrium in the tabac limit. In
general, when the momentum dependence of A and B is
not neglected, the relation is somewhat more complex. It
may be derived by demanding that f(p)=exp( PE~—)
satisfy (2.8) in the steady state, df Idt =0, and serves as a
check on the consistency of the results below.

III. EVALUATION OF THE DIFFUSION
AND DRAG COEFFICIENTS

We proceed to evaluate A; and 8;, which are given ex-
plicitly by the expressions

1 d3 d3 t d '
1

n} 2E (2n } 2E, (2~)32E

Xf(q)[(p —p');]—= «(p —p'); », (3.la)

aj=-,'«(p -p), (p -p), » . (3.1b)

A;=p;A(p ), (3.2a)

p' .
(3.2b)

with

Since A; and 8;& depend only on the vector p, they may
be decomposed according to

Note that A is positive definite. According to (Al 1), this
assures a dissipative drag force.

The momentum-conserving 5 function enables us to
evaluate part of the integral in (3.1) by solving the kine-
matics in the center-of-momentum fratne (see Appendix
8}. The result is an integral over the momentum of the
incident gluon and over the c.m. scattering angles:

«F(p') » =
(2~)' 2E,

& =p;&;Ip'=«1» —«p p'» /p',

1 P&PJ
~0 = 5ij p ~ij2 p

(3.3a)

xf q Jdn,

X g i
JN,

i
f(q)F(p'), (3.4)

P&Pg

2 V

=—,'[«(p' p)'» /p' —2«p' p»+p'«1»] .

(3.3b)

(3.3c)

where p' is a function of p, q, and the c.m. scattering an-
gles, and as usual s =(E +E ) —(p+q) .

The scattering matrix element "comes from the dia-
grams in Fig. 1. We introduce a mass in the gluon propa-
gator of Figs. 1(a} and 1(d) in order to regulate an in-
frared divergence in (3.4); physically, this mass should be
on the order of the Debye screening mass, which cuts off
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scattering at large impact parameters. The summed and

averaged matrix element squared takes the form

(3.5)

where p is the c.m. momentum of the incident gluon (or
quark) and t =2p (cos8, —1).

The integral in (3.4) is simplified by noting that we only
need ((F(p') )) when F is a scalar function, parametrical-
ly dependent on p. This means that if we choose the po-
lar axis in the q integral to be along p, the integrand does
not depend on the azimuth of q. Furthermore, we note
that g ~

A,
~

depends only on the polar angle 8, and
not on the azimuth (ts, . Thus we find

s —m((F(p'))) = f q dq1(cosX) f(q) f d(cos8, ) g ~

JPl
~ f dP, F(p') .

1024m Ep S 1 fc 0
(3.6)

The integral over P, is elementary for the cases needed
(see Appendix 8}. The remaining three-dimensional in-

tegral may be evaluated numerically. We recall that im-

plicit in (3.6) is the need to add up the contributions from
cg, cq, and cq scattering. We take the u and d to be mass-
less and ignore s quarks.

IV. RESULTS

We show in Fig. 2 the drag coefficient A(p} for
T=p=200 MeV. (We have set a, =0.6 and rn =1.5

(a)

GeV. ) Two features to note are that (1) the quark contri-
bution is of the same order as, though smaller than, the
gluon contribution, and (2} the variation in A as the
momentum is varied between 0 and 1.5 GeV is about
10%. In Bo and B„shown in Fig. 3, the quark and
gluon contributions are likewise comparable; the varia-
tion in B& is 50% of its value at p =0, and Bi Bo,—
which is the coefficient ofp;p /p in B;J, grows to 30% of
Bo. These features persist at higher temperatures and
suggest that detailed studies of the dynamics of charmed
quarks may legitimately take A and Bo, but perhaps not
B„ to be constant in the phenomenologically relevant
momentum range.

We show in Fig. 4 the temperature variation of A and
Bp evaluated at p =0. To indicate the sensitivity of the
result to p, we have plotted curves for p= T+100 MeV
around the central curves which assume p= T. Defining
y= A and D =Bo, the approximate consistency condi-
tion y ID =Plm is satisfied.

To see the physical importance of the values shown in
Fig. 4, consider the central region of a high-energy
nucleus-nucleus collision. We suppose' that a plasma is
formed at an initial temperature T =500 MeV, and that a
charmed quark is created in this plasma with momen-
turn' p =800 MeV. Let us henceforth neglect both
B

~
—Bo and the momentum variation of A and Bo. We

s s ~ s

[
s s s s

t
s s s s

0.05

(c)

0.00 s s s s I s s s s 1 s s s s

0.5 1

p («V)
1.5

FIG. 1. Feynman diagrams for scattering of (a)-(c) gluons by
charmed quarks and of (d) light quarks by charmed quarks.

FIG. 2. Drag coefficient A (p ) at temperature T =200 MeV,
assuming QCD coupling a, =0.6 and Debye screening mass
@=200 MeV. The dashed-dotted curve is the contribution of
quark and antiquark scattering, the dashed curve that of gluon
scattering, and the solid line the sum of the two.
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FIG. 3. Momentum-space diffusion coefficients Bo(p ) and

B&(p ) —Bo(p ) at T=200MeV, plotted as in Fig. 2.

D
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FIG. 4. Coefficients A and Bo evaluated at p =0, as functions
of temperature. The solid curve is for p= T, the dashed curve
for p = T —100 MeV, and the dashed-dotted curve for
IM= T+100 MeV.

recall the discussion of Rayleigh's equation (2.12}. The
drag coefficient y

—= A gives a decay time for the initial
momentum of just 2 fm; for the initial momentum of 800
MeV we obtain from (A12) a penetration length of 1 fm, a
very rapid damping indeed. Once the charmed quark is

stopped it difFuses. According to (2.15), (p ) reaches its
thermal value in t-1 fm. DifFusion in position takes
place with the diff'usion constant D„=2dD/m y -4.2
fm, where we have generalized (2.16) to d dimensions.
Thus we have (x ) —

I
(x)

I
—(4.2 fm)t

Since the damping constant y is so large, the charmed
quark will remain in kinetic equilibrium as the plasma
cools. Thus its mean momentum drops. However, y is
dropping as well, as seen in Fig. 4(a}. This means that the
quark does not change direction as often, and hence that
spatial diffusion is more rapid. The explicit expression
for D„shows that at T =200 MeV, we have D„-9 fm:
Diffusion actually accelerates as the plasma cools.

These numerical estimates are of course merely illus-
trative; their dependence on plasma temperature, Debye
length, and initial charmed-quark momentum may be
read ofF the figures and equations given. We note that
both y and D are proportional to a, via (Cl) and (C2);
thus the time scales for damping and thermalization are
proportional to a, , and so is the spatial diffusion con-
stant D„.

A prediction for the rate of J/g and charm production
in central nucleus-nucleus collisions will require adoption

of models for the initial creation of charm, the evolution
of the QGP, and the cc recombination process. We will

content ourselves with two observations. The first is that
it makes no difFerence exactly how a given charmed-
quark pair is created. If resonance creation takes place,
and the pair is created with a wave function near that of
the J/tj(, then the initial relative momentum will be
small. If it is created with large invariant mass, as in DD
creation above threshold, ' then plasma drag will stop the
pair before it has separated much. Subsequent motion of
the pair will be dominated by Brownian motion, although
efFects of the Debye-screened Coulomb interaction
remain to be included.

The other observation applies to a geometric argu-
ment' based on surface effects in the nuclear collision.
This argument states that J/P's with large pr, especially
those created in nucleon-nucleon collisions near the nu-
clear surfaces, will escape the plasma without dissocia-
tion. According to our discussion, any J/g whose flight
intersects the plasma region will be stopped there, to
share in the fate of cc pairs created in the plasma in the
first place. Thus if there is suppression of low-pz J/g's,
there should be suppression at high pz as well. As men-

tioned in the Introduction, however, the large plasma
drag could lead to enhancement of J/f production by
preventing separation of charm pairs created in the DD
continuum. This would obviously only apply to pairs
created within the plasma volume.
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APPENDIX A: BROWNIAN MOTION
AND THE LANGEVIN EQUATION

One may model the interaction of a heavy particle with
the plasma by a random process in which collisions are
included via a Gaussian white-noise term in the force act-
ing on the particle. The (nonrelativistic) equations of
motion are then

p;(t)
x, (t +e)=x, (t)+e

p, (t +e)=p, (t)+e[F,(p(t))+G, (x(t) }]+&eg,(t),

(A4)

(AS)

The tensor N, can in general be a function of p and x; its
connection to the physics of the problem will appear
presently.

As a continuous-time random process, the general
Langevin process shown above is fraught with ambigui-
ties, particularly in the specification of the product
N;~ 5(t . t').—All these ambiguities are removed when we
make time a discrete variable and rewrite (Al) —(A3) with
a step size e:

x; p;
t m

(A 1) (rt, (t)rt, (t')) =2N,,(x(t), p(t))5„. . (A6)

dpi =F,(p)+G, (x)+rt, .
dt

(A2)

Here F is a (nonlinear) drag force and G is an external
force; g, is a noise variable, specified by its correlation
function

The specification of the time arguments in (A4) —(A6) is
unambiguous, and corresponds to the so-called Stratono-
vich definition of the Langevin process.

To make contact with the discussion of Sec. II we
derive the Fokker-Planck equation for the probability
distribution f (x,p, t). The evolution of f is determined
by the formula

f(x,p, t+e)= J dx'dp'f(x', p', t)5 x—x' —e (5(p —p' —e[F(p')+G(x')] vert(t)—)) .
m

(A7)

Expanding to first order in e and making use of (A6), along with ( rt; ) =0, we have

f(x,p, t+e)= f dx'dp'f(x', p', t) 1 —e
m ax

Integrating, we find

5(x—x') 1 —e(F+G) +eN, J 5(p —p') .a a a

ap api apj
(A8)

f (x,p, t+e}=f(x,p, t} e—+ [(F+G)f]— [N;,f]~af a a'
m ax ap ap~ apj

Now we take the a~0 limit and rearrange terms to obtain
T

a a a a 2—+~ +G(x) f= [F(p)f]+— (N,,f) .
at m ax ap ap ap;apj

(A9)

(A 10)

This coincides with the Boltzmann equation (1.1) with
the collision term in the Fokker-Planck form (2.8) if we
identify

F;=—A;, N; =8;. . (Al 1)

Setting G(x) =0 and integrating (A10) over x, we obtain
Eq. (2.8) for the momentum distribution function f (p, t).

The Fokker-Planck equation (A10) describes the time
evolution of f (x,p, t) and thus allows the calculation of
the expectation value of any function of x and p at a
given time. The solution of Rayleigh s equation,
(2.12)—(2.15), is an example. f does not, however, con-
tain any information about correlation functions such as

I ~(t)=(p;(t)p~(t')) for t&t' Thus, from R. ayleigh's
equation it is possible to calculate

(x(t))=x,+ f dt'~ (p(t'))
o m

=xo+ (1—e ),Po —yf

ym

but a calculation of

(A12)

((x —xo} ) = f dt' f dt" (p(t')p(t")) (A13}

is impossible without knowledge of I~(t). Direct solu-



2490 BENJAMIN SVETITSKY 37

tion of the Langevin equation (Al) —(A3) for the case at
hand gives

(p(&)p(t') ) =poe ~"+' '+ —e ~"+' '(e ' —1),
y

(A14)

&(x —xo) &- 2D
2f2

when t »y
APPENDIX B: KINEMATICS

OF THE QUARK-GLUON COLLISION

(A15)

where t is defined as the lesser of t and t', whence it is
easy to verify that

We begin with the covariant form of the collision in-
tegral (3.1),

((F(p')))=, f d"q5(q )8(q )d q'5(q' )8(q')d p'5(p' m—)8(p')
(2n )'2Ep

X5 (p+q p' q—') —g i
JK

i f(qo)F(p'),
~C

where we have taken both gluons and light quarks to be massless. The integral over q is trivial, giving

((F(p')))=, f d q5(q2)8(qo)d4p'5(p' —m )8(po)5((p+q —p') )
(2m} 2E

(81)

x8((p+q —p')o) 2 I
~

I
'f«o)F(p') .

Vc
(82)

At this point we go to the center-of-momentum frame. Writing p, etc., for c.m. momenta, and also defining P =
i p i,

etc. , we apply the 5 functions in (82) to reduce the integral over p to one over c.m. scattering angles. First, we write

d p'5(p' —m )8(po)=4, ,2 2, d'p' P dPdfc m.
(83)

where P'—:(P' +m }'~ . To eliminate the integral over P', we write

5((p +q —p')'}=5(2(m'+Poqo+P ' —(Po+4o»']»
which is satisfied by the energy-conservation condition P'=P. Equation (84) thus becomes

(84)

A)

2(Po+0o) 5(p' —p), (85)

which we combine with the result of (83) to obtain

f d'p'5(p' m')8(po)5—((p+q —p')')8((p+q —p')o)= f
4(Po+ "qo)

(86)

Further we note

2s —m
Po+qo =+s P =

2&s
(87)

where the velocity of the c.m. is

p+q E.+Eq
vc. m. E +E & } c.m.

s
(89)

This gives us (3.4).
It remains to evaluate p', the laboratory recoil momen-

tum of the charmed quark, in terms of the integration
variables in (3.4). More precisely, we need the scalar
quantities p' and p.p' which appear in (3.3}. This re-
quires some details of the kinematics of the collision.
The Lorentz transformation from the laboratory frame to
the c.m. frame is

x=p/p

y=& '[v. —(p v. }piP'],
z=xxy,

(810)

In order to define scattering angles, we choose axes in the
c.m. frame by singling out p and the p-v, plane,

p=r.
P=r, (E—v, .p),

(Bg) where N =U, —(p v, ) /P . Energy conservation
dictates P' =pi, so
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p'=P(cos8, x+sin8, sin(t, y+sin8, cos((), z) . according to Fig. 1, we have

(B1 1)

Now we can transform 2' back to the laboratory frame
through the inverse of (B8}:

E'=y, (l'+v, p'. )

=y, g+P cos8,

=3072m a,
(t —p )

,~,+ z (rn —s)(m —u) —2m (m +s)
(m —s)

2 2 (m —u)(m —s) —2m (m +u)
(m —u)2 2

(Cl)

+N sin8, sing, (B12}

,Atb —g—dltl, bAt;

=768m-a,2 (m —s)(m —u)+m (u —s)
(t —p )(m —s)

p =E —ltd
&2 &2

which is one of the quantities needed.
Togetp p', weuse

t—:(p' —p) =2m —2EE'+2p p'

=2P (cos8, —1),
whence

(B13)

(B14}

All the dependence on 8, and P, is explicit in (B12).
From E' we get

+At, JK;= gA, ,JK;

~ z (m —u)(m —s)+rn (s —u)=768m-'a,
2 2(t —ls )(rn —u)

QAtbA;= +At, &b

m(t —4m )
2 2

'
(m —u}(rn —s)

for gluon scattering, and

p p'=EE' E+P 2c—os8, (B15) +( )+2
d f s (t 2)2

APPENDIX C: SCATraRING MATRIX ELEMENTS

The scattering matrix elements corresponding to the
Feynman diagrams in Fig. 1 are given explicitly in Ref.
10. (Because of a typographical error, the interference
terms given in Ref. 11 lack a minus sign. ) Labeling them

(C2)

for quark or antiquark scattering. We have introduced a
mass p into the internal gluon propagator in the t-
channel-exchange diagrams, Figs. 1(a) and 1(d), to in-
clude the effects of Debye screening.
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