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The reaction yy = m. m. and chiral loops
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Two-photon production of a neutral-pion pair is uniquely predicted near threshold by the theory
of chiral symmetry. The prediction vanishes at the tree level and is nonzero only at one-loop order,
yielding a finite result without any unknown counterterms. In this paper we calculate the cross sec-
tion for both on-shell and off-shell photons, as both cases can both be studied at e+e storage rings.
This reaction is the most accessible process which directly probes the loop structure of chiral-SU(2)
symmetry.

I. INTRODUCTION

At the very lowest energies, QCD is a theory of pions
and photons. There exists a rigorous method for calcu-
lating all of the interactions of these particles in this ener-

gy regime. This is the theory of chiral symmetry, ' made
especially useful by the framework of effective chiral La-
grangians. All of the lowest-order interactions are entire-
ly determined in terms of the pion decay constant F, the
pion mass m, and, of course, the electric charge e.

Phenomenologically, the reactions mw ~ me and
m ~yy have had the most impact on the development of
the low-energy theory. In this paper we point out the
value of the yy~m. m process and evaluate its cross sec-
tion. Basically, yy~m m. is unique is that this ampli-
tude tests the chiral-symmetry-effective-Lagrangian ap-
proach at loop level. Alternate processes have contribu-
tions from tree-level couplings. In addition they contain
counterterms which are needed to handle divergences
which occur when loop diagrams are considered. By con-
trast, yy~~ m cannot be generated by tree diagrams at
either order E or order E in the energy expansion. As
a consequence, its one-loop contribution is necessarily
finite and can be expressed only in terms of F, m, and
e. It is the only experimentally accessible process of
which we are aware which tests this aspect of chiral
SU(2), and hence should provide a unique system for
studying the loop structure of chiral symmetry.

The experimental study of two-photon reactions is
richer than might naively be expected. The prime
sources of information on yy processes are the high-
energy e+e storage rings, through reactions such as
e+e ~e+e yy~e+e m. m . In addition to studying
on-shell two-photon scattering, these reactions can also
be measured with one photon off shell by detecting a final
e+ or e scattered at a nonzero q . These are often
called "single-tag" experiments and have been used to
study resonance production by off-shell photons,
yy'~M. "Double-tag" experiments, with both photons
at nonzero values of q, are also, in principle, possible,
but are much more difficult. We wi11 also display our re-
sults for the off-shell scattering, focusing on the single-tag
case, as this is also uniquely predicted by the chiral-
symmetry approach.

In Sec. II we provide a brief review of the effective-
Lagrangian technique in chiral symmetry and the in-
teractions of pions and photons which results therefrom.
Section III derives the matrix-element calculation for
yy~m m . We present cross-section results in Sec. IV
along with a discussion of possible corrections. Section V
is a brief conclusion.

II. EFFECTIVE LAGRANGIANS

(2)

This Lagrangian is dynamically broken in the real world,
with pions being the associated Goldstone bosons. Pre-
dictions of this dynamically broken chiral symmetry can
be worked out using current-algebra techniques. Howev-
er, it is simpler to utilize effective Lagrangians which in-
corporate the desired symmetry behavior. ' These yield
equivalent predictions, but one needs to use only simple
algebraic calculations. Basically, the equivalence occurs
because if the predictions follow from the symmetry
structure, two theories which have the same symmetry
behavior must lead to the same physics. In the effective-
Lagrangian approach to chiral SU(2)L X SU(2)a the pion
is incorporated within an SU(2) matrix X having transfor-
mation properties

X~ UL XU~ (3)

such that X X= 1 is preserved. The Lagrangian invariant
under this symmetry, which contains the fewest number
of derivations, is then

Xo=CTr(B„XP'X ) .

The fluctuations in X are the pion fields

(4)

If the Lagrangian (current) mass of up and down
quarks were to vanish, QCD would possess an exact glo-
bal SU(2)L &( SU(2)a chiral symmetry

PL e 0L=UL0L PR e 0R=~R|(R

with P being an SU(2) doublet
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.f"g
2=exp i F

The normalization C is fixed to be F /4 by the require-
ment that the pion kinetic energy be correctly normal-
ized,

(6)

and F is identified with F =94 MeV by consideration of
the axial-vector current. This results in the effective La-
grangian

F2
Tr(B„X8'Xt }

appropriate for massless pions.
The pion mass is generated by shifting the up- and

down-quark masses away from zero. This removes the
separate SU(2)r XSU(2)x invariances, but a diagonal
SU(2) invariance survives, i.e., that with Ur ——Ua. To
the extent that the quark masses are small they can be in-

I

cIuded linearly in the Lagrangian. The lowest-order term
of the proper form is

F2
Tr(m„X) . (8)

Expansion of X=XO+X to order ne.asily gives the
conventional %einberg scattering lengths for ~~ scatter-
ing.

The addition of photons requires the inclusion of local
U(l) gauge invariance

y —iA(x)Qy +iA(x)Q (9)

and is accomplished by turning usual derivatives 8„ into
covariant derivatives

D„X=d„X+ieA&[Q,X] .

However, in addition the triangle anomaly of QCD must
be taken into account. This is contained in the Wess-
Zumino effective Lagrangian

Nc ei'" ~[eA„Tr(QL„L L&+QR„R R&)+ie d„A„A Tr(2Q L&+2Q R&+QUQU 'R&+QU 'QUL~))
48

with

Lq ——X 'BqX, Rq ——(BqX)X (12)

Note that the purely hadronic portion of the Wess-Zumino action vanishes in SU(2} and that the terms involving pho-
tons can be written in terms of a local Lagrangian. Expansion of this Lagrangian yields a m —+yy amplitude,

aN,
A(n ~yy)= d"" ~e„k,e'k&,6'

in close agreement with experiment.
Overall the lowest-order efFective Lagrangian for chiral SU(2}r X SU(2)a possesses the structure

F2 F2
Tr(D„XD"X )+ Tr(m X)+X& (14)

and has considerable experimental as well as theoretical support. It is this which is our starting point.
There can in addition exist chirally invariant Lagrangians which contain higher powers of derivatives and/or masses.

The complete set at next order (called E below) has been written out and discussed by Gasser and Leutwyler. The re-
sult is

X~=y, [Tr(D„XDI'X )] +y2Tr(D„XD„X )Tr(D"XD "X )+y3[Tr(m X)] +m y4Tr(D„XDI'X m X)

+@5m [Tr(r3X)] +y6Tr(F„„D"XD"X D"XF„„D"X)+y~—Tr(X F„„XF""), (15}

where

(D„D„D„D„)X=F„„X— (16)

and the y; are dimensionless coeScients typically of or-
der 10 . The y5 term arises because of isospin breaking
from m„&md. We will need this general structure in our
work, but the specific values of the coeScients wi11 not be
important.

Loop diagrams can be handled within this framework.

Indeed, they must be included if unitarity is to be respect-
ed. The renormalization program is somewhat different
in nonlinear theories such as this, due to the "nonrenor-
malizable" character of the theory. One-loop divergences
arising from Xo will generate modifications not only to
Xo itself, but also to the y; coefficients which character-
ize higher-order interactions. One needs then to absorb
the divergences into a new value of y; to determine the
renormalized y,- from experiment. The nonrenormaliz-
able nature is apparent in that at each subsequent loop
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order more unknown constants appear. Nevertheless, a
perfectly sensible low-energy theory emerges, as all of
those constants are negligible [suppressed by (E/A)" for
A-1 GeV] at low-enough energies. At the very lowest
energies only F„,m, and e are required, while at some-
what higher energies, y, , i =1,7, becomes significant.
The energy scale where this expansion breaks down is
empirically of order 1 GeV.

The theory can be extended to chiral SU(3)L SU(3)a
(including kaons and rl's) in a straightforward fashion.
The X matrix becomes a 3 X 3 element of SU(3):

gAyA
X=exp i F„

where A,
" (A =1, . . . , 8) are the Gell-Mann SU(3) ma-

trices and P" are the fields of the pseudoscalar octet. The
lowest-order Lagrangian then has a form similar to Eq.
(14):

F2
Tr(D XD"X ) Tr —m

4 P

where now (assuming approximate isospin symmetry)

occurs at order E, and arises from terms such as

Tr(D„XD„X }FgF ', Tr(D„XDI'Xt)F& F (20)

At low-enough energies these forms will be unimportant
and can be distinguished from loop corrections by their
distinctive energy dependence.

Despite the lack of tree-level couplings, yy~m m. can
(and must) be generated by loops. The most obvious dia-
gram is that required by unitarity: yy ~~+a. —+m. n. .
At low energies one-loop corrections will be the dom-
inant contribution to the energy expansion, as they are
formally of order E . The lack of tree-level couplings at
order E yields then a very powerful result: The one-loop
correction must in fact be finite. This is required because
there exist no possible counterterms with which to absorb
any divergences. Thus the cross section is entirely ex-
pressible in terms of F, m, and e. This makes

yy ~~ m. a direct probe of loop effects in chiral theories.
The one-loop diagrams for this process are shown in

Fig. 1. Figures 1(a} and 1(b) are related to yy ~n+n
while Figs. 1(c) and 1(d) also are required by the chiral-
symmetric couplings. The five vertices which enter these
diagrams are given in Fig. 2. We define the transition
amplitude as

m= 0 m
A(yy~n m }=@„(k,)e„(k2)M4", (21)

0 0 2m+ —m
I

Chiral SU(3) is not expected to be as good a symmetry as
chiral SU(2), because the kaon and g masses are not small
compared to the chiral scale. Nevertheless, a good deal
of work has been performed with this effective Lagrang-
ian and some of the chiral SU(3) loop predictions have
been worked out. One result is particularly interesting in
relation to our present calculation. The weak decay
Ez~yy shares with yy~m. ~ the property that it is
first generated by one-loop diagrams which must be finite
as there are no E counterterms possible which could ab-
sorb any divergences. The finite result is a direct test of
the loop structure of chiral SU(3}, and it has recently
been confirmed, within experimental errors, by the exper-
imental measurement of K&~yy at LEAR.

The one-loop renormalization for mm. ~me has been
worked out in detail by Gasser and Leutwyler. The
one-loop effects in m ~yy, which turn out to be finite,
have been given by us in Ref. 7. In the next section, we
turn our attention to the corresponding one-loop calcula-
tion of yy m. ~ .

where k& and k2 are the momenta of the two photons.

(0)

(b)

III. THE yy —+m n. AMPLITUDE

The process yy~m. m- involves only neutral particles.
It follows from this fact that none of the terms in either

or X4 can produce a tree-level amplitude for
yy —+m m . This is obvious for the terms involving the
covariant derivatives, as the commutator of Q with the
neutral components vanishes. It is less obvious for the y7
term in L4, but is easily seen to be true by direct calcula-
tion. Thus the tree-level amplitudes vanish at order E
and E . This has been previously discovered by
Terent'ev. In fact, the first nonvanishing contribution

(c)

FIG. 1. The Feynman diagrams for yy~m m in the chiral-
Lagrangian approach.
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The general S-wave Lorentz structure of M"" is restricted
by gauge invariance to be

M""=A (g~"k].kz —k~~k, )

+B(g""k,kz k",—k]kz —k~kzk, +k, kzk"]kz) .

(22)

For on-shell photons only the first term contributes. In
e+e interactions the o8'-shell behavior of yy scattering
may be studied. Single-tag experiments, with one photon
at k &0, also involve only the amplitude A, although its
value changes with k . The B amplitude only is relevant
if both photons are off shell, unless there are 1/k terms
in B, which does not occur in our calculation.

The four diagrams for yy ~m. ~ yield, respectively,

2
e2g p.v 4 2s —m ~ —2 —

p&
—p2

3F (2n) (1 —m )[(1—p, —pz) —mz]

dsl (2I+k~) (2l ks) [2s —m —2(l+k, ) (I —ks)]
3Fs (2s ) (I —m )[(Iyk, ) —m, ][(I—ks ) —m ]

4e „„d1 1

3F (2m) 1 —m
s

(23)

M~d" ——— d 41 (21—k, )]'(21—k] )" (21—kz )"(21—kz )"

3F2 2~ 4 2 ~2 2 ~2 2 ~2 2 ~2

The terms in M, and M, have similar structures, as do those in Mb and Md. They can be combined overall to deter-
mine the complete matrix element

28 d41F„" (2n) (I+k]) m—(l —kz) —m 1 rn— (24)

which is easily seen to be finite since the potential logarithmic divergence, i.e., the term proportional to (g„,l —41 1 ),
cancels. The amplitude M„„can also be seen to be gauge invariant, via

2e d 1
k, M""= [s —m ]f (2~)'

(21+k, —kz }" (21—kz )"

[(1+k]) m]—[(1—kz ) m„] [—(1—kz ) —rn „](1—m )2e', d41 1

F (2m)
" [[1+I](k]+kz)]—rn I [[1——,'(k]+kz)]z —mz

]

1

[(1—kz/2) —m ][(1+kz/2) —m „]
=0. (25)

Here the integrands are both odd functions of l„and hence integrate to zero. (In going to the second line, a shift of in-
tegration variable was used. We have also checked gauge invariance by a more tedious method without using the shift
of the variable. )

At this stage the integral may be parametrized and integrated using standard Feynman-diagram techniques. We find
that the A amplitude, which fully describes on-shell or single off-shell photon amplitudes, is given by

28

F 16+
(g„,k, kz —k]zk "])

(1+2I}
1 2

(26)

with

1 1
—z](1—z, )k] z2( z2)k2I= dz, dzz8(1 —z] —zz)

0 0 2z]z&k] kz+z](1 —z] )k] +zz(1 —zz)kz —m +i@' (27)

Let us agree to keep photon number one as the possibly
off-shell photon, and set k2 ——0. In this case the integral I
may be reduced to a simpler form by performing the z2
integration

Nl k
I(s,k] )= [F(s)—F(k] )]— [G(s)—G(k] )],

s —k, s —ki
(28}

where
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F(a)= f ln
1dZ

0 Z

m —a(1 —z)z i—e

(29)

and, for a &0,

F(a)=2 arcsinh
a

4m

' 1/2 2

1 m —a (1—z)z i—e
G(a)= dzz ln

0 m

for a & 4m, the integrals may be calculated by first fac-
torizing

G(a)= —1+
1/2

4m
+ 1 arcsinh

0
a

4m„

' 1/2

J

For clarity, we display the full on-shell amplitude

(32b)

m —a(1 —z)z =a(z —z+ )(z —z ),
Iy(i m /a) ~

Z+—
2

with the result

(30)

X 1+
2m„

T—l 28
F2

2s —m
(g„„s—2k&„k,„)s

1+(1—4m „/s)'
1 —(1—4m /s )'

2'

1F(a)= ——n —2 arctan
2

1/2 2
4m„ —1

4m
G (a)= —1+— —1

2 Q
' 1/2

4m
m —2 arctan —1

F(a)=—,'(lnz+ /z i n )—

G(a)= —1+—,'(1 —4m„/a)'~ (lnz+/z —in. ) .

For 0 & a g 4m, we find

(31)

(32a)

(33)

Note that the amplitude has a factorized structure, in
that the amplitude for n. +m. ~~ ~ scattering

o oA(n+n ~n n )= (s —m ) (34)

'I

g„,k, kz —k~zk;

2F 16~ k1 k2
(35)

appears outside of the loop integration, so that the chiral
prediction is that yy~~ m. is strictly proportional to

~m. m, at least to lowest order.
If one extends the chiral Lagrangian to include kaons,

as outlined above, there will arise additional loop contri-
butions. These also, of course, must yield a finite answer,
and we find the result

where Iz is the same integral as given in Eq. 27, except
with m replaced with mz. Since one is working far
below EE threshold, one can Taylor expand the Feyn-
man integral to find

= —ie(p —p )+
s1+2I~=—

12m&
(36)

0
7T}

7rO
2

22ie g

I

3F I 2 + —
I 2 7T

2 L2(pl p2+p+ p-)+(p+p )'+m23

We observe that this result is in accord with the general
principles of chiral Lagrangians. Thus the arguments
which we gave above imply that pion loops must give the
full result at order E in the SU(2)I XSU(2)z limit.
Hence kaon loops should enter only at one-higher power
of s. The fact that 1+2' vanishes at s =0 makes mani-
fest this result. Numerically the kaon correction is small
and we will drop it in what follows.

4ie2
3F'

77

IV. CROSS SECTIONS

The threshold value of the on-shell scattering cross sec-
tion can be easily determined to be

2

a(yy n n )=
2S6~'F4

(s —m )

2(8 —p3F2 + — P-
TT X 1—

' 1/2
4m„ 2

1+ f (s)
s

(37)

FIG. 2. The vertices needed to calculate yy~+ m . with
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2

f (s)=2[in (z+/z ) t—r ]+ [ln (z+/z )+tr ]s

(3&)

As used previously,

1+(1—4m /s )'
(39)

It is important to address the question of what the ex-
pected limits of validity of this formula are expected to
be. This can be answered most naturally by examination
of the related process of m.m scattering, because, as noted
previously, the yy~m m amplitude is directly propor-
tional to the m+n. ~m. m amplitude. Indeed an alter-
nate and useful way of presenting the chiral-symmetry
prediction is

2

tr(yy~tr tr )= 1—0 0

8m

1/2
4m

2m~
X 1+ f(s) o(tr+tr ~tr m ),

s

(40)

where

1tr(n+n —+m m )= (s —m„)
32m-SF 4 (41)

is the lowest-order result for mw scattering.
The limits of validity of the lowest-order PCAC (par-

tial conservation of axial-vector current) prediction are
very obvious in the study of ~m. scattering. In the
partial-wave decomposition of the amplitude, only the S
wave is relevant at these energies, and we have

o(n+tr ~trptr )=,
~

T
~

',p p Sm'

9q

where

(42)

I
T

~

=sin (5p 52)

i50 . i52 2=
~

e sin5p —e sin52
I

with 5p (5z) being the I =0 (I =2) phase shift and

4q =s —4m

The lowest-order PCAC prediction corresponds to

T= (e 'sin5p —e 'sin5z)

(43)

(44)

(s —m„) 1—
32m.F

1/2
4m„

(45)

It is clear that this lowest-order prediction, being real and
not yet unitarized will disagree with the unitarity of the S
matrix at some leve1. In fact, the simplest consequence of
unitarity

(46)

is violated at &s =600 MeV, so that clearly no results

+ — 0 0
7T 7T 7T 7T

S —wave unitary limit

-4k
]

I .0 i i

l~ / i(

. I

l~
I

I

I II )[ )r,

I
I -- -- )c
I

I--

Ilail

Delnet et al.
~~ (ii p

0.9—
0.8

0.7

o.s—
0.5

0.4
0.3

0.2
David et o/

~ Cason et al
I I I I

O. I

0.2 0.4 0.6 0.8 I.O
v s (GeV)

FIG. 3. The m+7I. ~77. 7I. scattering amplitude. The data
points are from Ref. 10 [0, Cason et al. ; X, David et al. ; 5,
Deinet et al. ]. Below &s =450 MeV the theoretical curve is
that of lowest-order chiral symmetry. This is continued above
&s =450 MeV as the dashed line, in a region where unitarity
corrections should be important. The solid line above &s =450
MeV represents a proposed continuation of the amplitude to
take into account unitarity.

can be trusted above this energy. However, there should
exist deviations from the lowest-order results even at
smaller energies when the imaginary art of T becomes im-
portant. As a crude estimate we could take this to be
when sin5= —,', which occurs around +s =450 MeV. At
such energies one expects unitarity corrections to begin
to become relevant. These are supplied in chiral theories
by one-loop calculations, and have been performed by
Gasser and Leutwyler. While unitarity is restored, a
unique prediction does not result because of the appear-
ance of counterterms from the E terms in the Lagrang-
ian. If we turn to experiment for guidance, we find that
the various measurements are not in agreement. Figure 3
displays the relevant matrix element for those
m p~~ m g and m p~n. ~ 6 experiments' which ex-
trapolated the scattering amplitude to the pion pole (a
crucial requirement). (Experiments which do not extra-
polate are in no better agreement. ) The PCAC prediction
is shown, continued above &s =450 MeV as a dotted
line. Assuming that the lowest-order result is valid below
&s =450 MeV, a smooth continuation up to &s =800
MeV similar to the hand-drawn solid curve is pretty
much forced by the requirement of saturating the unitari-
ty limit around &s =700 MeV. We do not at this time
understand the origin of the experimental disagreement.

The above analysis suggests that one can expect
modifications of tr(yy~tr tr ) to become significant in
the &s =450—600 MeV region. A heuristic way to deal
with this problem is to use the alternate form of our re-
sult, Eq. (40), and simply to impose the unitarity restric-
tions on rr(tr+tr ~tr tr ) by hand. We suspect that this
is sensible physics, but we emphasize that it is not yet a



37 THE REACTION yy —+m' m AND CHIRAL LOOPS 2429

20 2.0
I 8

l.6

1.4

c IQ

l.2

I.O

0.8

0.6—

vs =05OGeV

vs = 0.40GeV

vs =0.32GeV

I

200 400 600

v s (MeV)
FIG. 4. The yy ~n. m cross section. The chiral-symmetry

prediction is below &s =450 MeV. The dashed line and solid
line above ~s =450 MeV correspond to the similar curves in

Fig. 3.

0.2
I

O. I

I I

0.2 0.3
GeV

I

0.4
I

0.5

FIG. 5. The off-shell behavior of the yy~m m cross section
as a function of the off-shell four-momentum k, .

real prediction of PCAC. To justify this, one would re-
quire a two-loop calculation of yy~~ m . For now let
us limit our firm prediction to energies below &s =450
MeV, although we will display one proposed extrapola-
tion (based on the solid curve in Fig. 3) in addition. The
result is given in Fig. 4.

This cross section has also been predicted by Morgan
and Pennington" using the dispersion relation. Their re-
sult is larger in the threshold region. We expect that this
difference is primarily due to a different parametrization
of the m.m scattering amplitude. Whether or not just
higher-order chiral corrections would bring these into
closer agreement would be an interesting question to
study.

The single-tag off-shell behavior is given simply by the
modulation of the cross section for transverse photons,
0.~ in standard notation. The functional dependence is
of the form

o(s, k, )

o(s, 0)

l +2I(s, k 2i )
~

~

l+2I(s, 0)
~

[l —ki/2s]

V. CONCLUSIONS

We have calculated the threshold behavior of y ~m m

for on-shell photons and for single-tag experiments with

where I(s, k i ) is given in Eq. (28). The second factor is
the modification of incident flux. This ratio is plotted in
Fig. 5. Note that cross sections have been compared at a
common value of s with s =2k

&

.k2+ k j.

one off-shell photon. The process requires one-loop dia-
grams at the lowest nontrivial order. These are necessari-
ly finite in chiral perturbation theory. The result is a pre-
diction solely in terms of known quantities e, F, and m

The result is small near threshold, and careful knowledge
of systematic effects will be required in order to extract
the result from experiment. However, results on this pro-
cess should soon be produced from the Crystal Ball ex-
periment. ' It will be important to try to compare the
PCAC prediction with the data as it becomes available.

On the theoretical side, there remains the possibility of
estimating the effect of higher-order contributions to mn.

scattering. These do modify the threshold behavior in
vrm~mm significantly, and they may be of importance in
yy~m. m. also. However, this is not an easy task to car-
ry out completely, and more work will need to be done in
order to evaluate its feasibility.

Note added. After the first draft of this paper was writ-
ten, we learned of a recent paper by J. Bijnens and F.
Cornet which has some overlap with the present work.
They also considered charged-pion production, while we
treat off-shell effects and unitarity modifications of
~+~ ~~ m. in addition. Our results for yy ~sr ~ ap-
pear to agree with theirs. We thank M. Pennington for
bringing this paper to our attention.
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