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Berry connections are shown to be invariant under the action of symmetry groups on parameter
space. This observation allows one to use the theory of invariant Yang-Mills potentials to evalu-

ate these connections without computing the instantaneous energy eigenstates. Hamiltonians be-
longing to the algebra of a Lie group are examined in this light. They provide a wide class of sys-
tems admitting nontrivial adiabatic holonomy. The special case of the generalized harmonic oscil-
lator is analyzed and the SO(2, 1) invariance of the associated Berry connection is exhibited.
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The matrix one-form A shall be referred to as the Berry
(local) connection. Under a change of bases )

n&' h
~
n),

it transforms like a Yang-Mills potential A' h 'Ah
+h 'dh. When the system is slowly cycled around a
closed circuit C in parameter space, A can lead to a non-
trivial holonomy, i.e., to a nontrivial Wilson loop

r
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with F dA+A AA the curvature two-form.
Various authors have provided examples of systems

where such a phenomenon occurs. In some of these exam-
ples, the Hamiltonian is invariant under transformations
of the dynamical variables if these are accompanied by
appropriate transformations of the parameters. When
this is so, the Berry connection proves to be invariant up to
gauge transformations under the group action thus in-
duced on parameter space. Let us mention three of these
cases. The first one analyzed by Berry (see Ref. 1) deals
with spins s in slowly varying magnetic fields. When s is
rotated, the Hamiltonian H(B) tcB.s is obviously invari-
ant if the magnetic 6eld is transformed by the same rota-
tion. The U(1) connection A corresponding to this prob-

As shown by Berry' and then Wilczek and Zee, gauge
potentials arise in the description of quantum-mechanical
systems whose Hamiltonians H(a) depend on a set of pa-
rameters {a;l which vary slowly. Let f~n, a, a(t)&l be a
choice of bases for the instantaneous eigenspaces of
H(a(t)),

H(a) ) n, a;a& E„(a) ( n, a;a& .

The index a accounts for possible degeneracies. As shown
in Refs. 1 and 2, the adiabatic evolution of ( n, a, a(0)& is
given by

r nE

[ t, a& exp i d—t 'E„(a(t ') )

x U.b(t) I n, b;a(t)&,

where U(t) is the path-ordered integral Pexp[f+(t')]
and A is given by

lem is that of a magnetic monopole located at the origin of
g space and is well known to be invariant under rotations.
The second case has been obtained by Moody, Shap«e,
and Wilczek. s They showed that the Born-Oppenheimer
Hamiltonian for nuclear motion in a diatom contains a
U(2) gauge field which was subsequently proven to be in-
variant under rotations of nuclear coordinates by Jackiw.
The last example that we would like to quote arises in

chiral gauge theories when the fermions are treated as fast
variables and the gauge 6elds as slow variables. Again,
the U(l) Berry connection de6ned on the space of static
Yang-Mills potentials is seen to be invariant under the ac-
tion of the gauge group. The purpose of this note is to
demonstrate that this is a general pattern: Whenever a
symmetry group acts on parameter space, the Berry con-
nections will be invariant up to gauge transformations un-
der this action.

Briefly, the reason for this state of affairs is the follow-

ing: Let g be the transformation of the dynamical vari-
ables which renders the Hamiltonian invariant when the
external parameter a is transformed into att. (When there
can be no confusion, we shall denote by g, indifferently,
the abstract group element and its representation on state
vectors. ) The pullback of the Berry connection under
a~ as is obtained by substituting (n, a& =g(n, a& for
)n, a& in Eq. (3). This will correspond to a change of
basis with respect to the initial choice ( n, as& and hence
lead to a gauge transformation of the original connection.
From here on, I shall consider the case of a Hamiltonian
that belongs to the algebra of a Lie group G with the ac-
tion of G on parameter space now given by the adjoint
representation. This will allow for a more concrete discus-
sion and no generality will be lost in the conclusions.
Moreover, we shall thus describe a fairly wide class of sys-
tems with nontrivial adiabatic holonomy.

Let jx;l be (some anti-Hermitian representation of) a
basis for the Lie algebra g of G and lct, / 1, . . . , rank g) a
basis for one of its Cartan subalgebras. We shall consider
Hamiltonians of the form

H(a) -a(a)HDo '(a), (5)
with HD stet and et imaginary constants. In the above
formula, cr represents local sections of G~ G/C (HD)
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with C(HD) the centralizer of HD. The parameter space
M is thereby identified with G/8(HD)x(ilR)"" ~. We
shall denote by ~n, a&D, a 1, . . . , n the eigenstates of
HD. They are independent of the parameters and form a
representation space for k:C (HD) U(n) .Given Eq.
(5), a natural choice for the states

~ n, a, a(t)& in the adia-
batic approximation is

~ n, a, a(t)& cr(a(t))
~
n, a&D . (s)

From Eq. (3), it is clear that the Berry connection does
not depend on the s parameters. For our purposes, we

may therefore omit these parameters and simply take
M G/8 (HD ).

The adjoint representation defines a natural G action on
the parameters. Indeed, we may define a ag through

H(as(t)) at (t)x; g(t)H(a(t))g '(t) .

This action can further be identified with left multiplica-
tion on the cosets G/8(HD). Note also that the eigenval-
ues E„(a) are invariant under these transformations,
E„(a ) E„(a), since they are not affected by conjuga-
tion s.

We would now like to know how the Berry connection
on M, defined in Eq. (3), transforms under this action of
G on the parameters. As already mentioned, the pullback
of A under a~ ag is given by

In the case we are considering, we need u(n)-valued
one-forms A on G/8(HD) that are invariant under left-
G-multiplications on the cosets. The general theory im-
mediately gives the answer. Decompose g according to

g c(Hn) m (i4)

Let co cr 'do stand for the pullback under a(a) of the
left-invariant Maurer-Cartan forms on G. Relative to the
reductive decomposition (14) of g we shall write

N N+N

The invariant connections are then of the form

Ay&, +O'Nm,

(is)

(is)

where k+..c u(n) is the differential of X and 4:m u(n)
a linear map satisfying the constraints

e[x„x]-[Z~(x, ),e(x)], Vx, c c .

In the specific case of invariant Berry connections, we fur-
ther have @(x) 0(nxn) with n the projection on the A, -

representation space and @an application into u(n) of the
corresponding restriction of the representation of g on the
eigenstates of HD. The local forms A on parameter space
define a connection one-form on the U(n)-principal bun-
dle E ~ G/8(Hn) obtained by factoring the trivial U(n)
bundle G x U(n) by the equivalence relation

(g A),b (gn, a, a)d ~n, b, a& (8)
(g, u)-(gk, Z '(k)u), gcG, km'(Hn) . (18)

go(a) -cr(as)h(g, a) . (io)

For consistency under group composition, h must satisfy
the two-cocycle condition

h(g~, a ')h(g2, a) h(g~gq, a), g~, g2 6 G . (11)

From (8), we then have

g A D&n )h '(g, a)o '(a )d[cr(a )h(g, a)] ~n&D,

leading to

g'A -Ada '[h(g)]A+X '[h(g)]c6, [h(g)],

(12)

(13)

where k:C (HD) U(n) is the representation of 8(HD)
on the considered eigenspace of HD with degree of degen-
eracy n. From (13), we conclude that the transformation
of A under the symmetry-group action on parameter
space reproduces the original A up to a compensating
gauge transformation which is provided by the transition
function h. The theory of gauge potentials that are invari-
ant in this sense is by now well understood and can there-
fore be used to compute Berry connections when sym-
metries are present. It will allow bypass of the evaluation
of the instantaneous energy eigenstates. Also, when the
external parameters are quantized and treated in the
Born-Oppenheimer approximation, the work of Jackiw
and Manton will provide the conservation laws.

where

(n, a, a&g= g(n, a, a—& gcr(a) (n, a&D .

Let h:G x M~ C (HD ) denote the transition function
which relates cr and its image under G; that is,

When the homomorphism A, :C (HD) ~ U(n) extends
smoothly to a homomorphism A:G U(n) the bundle E~
is trivial. Under this proviso, there is a case for which the
Berry connection is irrelevant. Indeed for @:m~ u(n) the
restriction to m of the differential A4, of A, the potential A
is given by

LZ —Y'&0 . (2i)

It is well known' that the operators q, qp+pq, and p
realize the so(2, 1) [or sp(1)] algebra. Indeed, let

U( -——(p' —q'),
4

Uq -—(qp+pq),
4

U3 —(p+q ).
4

(22)

It is not difficult to check that the following commutation

and has zero curvature owing to the Maurer-Cartan struc-
ture equations. '

Let us now consider an example where this analysis ap-
plies: namely, the case of the generalized harmonic oscil-
lator originally discussed by Hannay" and Berry. ' The
Hamiltonian is

H —,
' [X(t)q +Y(t)(qp+pq)+Z(t)p l . (20)

We shall limit ourselves to the bound-state situation by
demanding that the parameters satisfy
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relations are satis6ed:

[U),vz] U3

[U2 U3] -Uj

[U3 U/]

(23)

H(z) -z;(t)V, (24)

Note that U3 is the compact rotation generator. In the U
basis, the Hamiltonian reads

with z~ —t(X —Z), z2 —2iY, z3 —t (X'+Z) .The
quantity

z +z —z 4(XZ —Y)—= —g )0 (25)

is invariant under the adjoint action of SO(2, 1) and ex-
cluding the (positive-) energy scale, the set of parameters
is in correspondence with the points on one sheet of the
two-sheeted hyperboloid SO(2, 1)/SO(2). A convenient
parametrization is given by

z t hcosesinhp, zz hsinesinhp, zs Acoshp, 0= 8 & 2tt, —eo =p = eo . (26)

The (singular) section

cr(8P) e 'e (27)

The explicit expression for the U3 component of the form
o 'da is easily obtained (for instance by using a matrix
representation for the generators U) and one 6nds'

of SO(2, 1) SO(2, 1)/SO(2) maps the reference point
(0,0,h) into (z ~,zz, z3). It can be used to write the Ham-
iltonian as

A ——(n+ —')coshPde .
2

For the curvature two-form, one gets

(32)

H(~, e,p) -z;v;-~(e, p)~v3~ '(e,p), (2S)

thus showing that it belongs to the class of operators that
we have examined in detail. The eigenvalues of U3 are
essentially those of a harmonic oscillator with unit fre-
quency (Ref 14):. U3 (i/4) (p 2+ q 2) (i/2) (n+ —,

' )
and from (28), the energy spectrum is therefore given by

F dA —(n+ —')sinhPdeAdP .
2

(33)

It is a straightforward exercise to check that the expres-
sion for Fgiven by Berry's in Ref. 12,

F- '(n+ -')—(XZ —Y') -'"
4 2

E„vXZ —Y (n+ 2 ), n C N . (29)

A, (e ')
) n&D exp —p(n+ 2 ) ( n&D . (30)

Since SO(2, 1) is simple, the only map 4:(U1, U2] u(1)
that satisfy the constraints (17) is 4 0. According to
formula (16), the Berry connection will thus be propor-
tional to the pullback under o of the canonical connection
on the U(1) 6bration of SO(2, 1)/SO(2):

A —(n+ 2 )o 'dtrlU, . (31)

(Positivity of the energy implies that 5 —2i dXZ —Y .)
The centralizer of HD hv3 in SO(2, 1) is the two-

dimensional rotation group generated by U3. It is repre-
sented on the eigenstates

~
n&D of HD by phase multiplica-

tion:

x (XdYAdZ+ YdZAdX+ZdXAdY), (34)

coincides with (33) when X, Y, Z are expressed in terms
of the variables 6, 8, and p.

This problem was suggested to me by Roman Jackiw
who pointed out the relevance of SO(2, 1) for the general-
ized harmonic-oscillator problem. I bene6ted from fur-
ther discussion with him as well as with John Harnad and
Pavel Winternitz. I would also like to thank Jean
LeTourneux for a careful reading of the manuscript and
Michel Mayrand for his help in the preparation of it. This
work was supported in part by funds provided by the Nat-
ural Science and Engineering Research Council
(NSERC) of Canada and the Fonds Fortnation de Cher-
cheurs et Action Concertee of the Quebec Ministry of
Education.
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