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Quantization on the light cone: Response to a Comment hy Hagen
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We show that, if carefully defined, light-cone commutation relations are not inconsistent with the
charge and Lorentz invariance of the vacuum. We demonstrate this for charge invariance with an
explicit example.

The method of discretized light-cone quantization
(DLCQ) has recently been applied to a series of field
theories in one space and one time dimension, including
Yukawa theory' (charged fermions coupled to scalar bo-
sons), quantum electrodynamics, and quantum chromo-
dynamics (for arbitrary N„&„) (Ref. 3). By diagonalizing
the Hamiltonian defined at a given light-cone time on a
discrete momentum Fock basis, one obtains not only the
charge-zero spectrum but also the bound-state wave func-
tions of each field theory for arbitrary coupling constant
and fermion mass. The numerical results agree with pre-
vious calculations of the spectrum where they are avail-
able.

The preceding Comment by Hagen raises several is-
sues concerning the consistency of field theory quantized
on the light cone. These should not be confused with
gauge-fixing problems, such as the choice of light-cone
gauge 3+=0. A recent discussion of such problems is
given in Ref. 5. Indeed Hagen's remarks are directed to
the application of DLCQ to Yukawa theory where there
are no gauge fields.

Hagen's first remark [see his Eq. (1)] concerns a possi-
ble unwanted term in the Poincare algebra. Our choice
of periodic boundary conditions trivially eliminates this
term. The remainder of his Comment reiterates claims
made in his earlier papers that the light-cone vacuum is
neither charge nor Lorentz invariant. Although these is-
sues are not directly related to our paper, they should be
evaluated on their merit, independently of their rele-
vance to our work. In fact, we will present an explicit
counterexample to the central theorem on which Hagen's
main objections rely. In particular, we will investigate
the claim that a charge-invariant light-cone vacuum can-
not be defined; the discussion of Lorentz invariance is
similar.

Hagen's theorem assumes a conserved current, the ex-
istence of a spectral decomposition for vacuum expecta-
tion values of this current, and standard light-cone
equal-x+ commutation relations for scalar fields. To
avoid any possible ambiguity or controversy arising from
light-cone quantization techniques we will employ nonin-
teracting scalar fields of mass m quantized at equal time.
Although quantized conventionally, these fields will be

shown to satisfy all the requirements necessary to test
Hagen's theorem.

For simplicity, we work in the relevant two dimensions
throughout. In equal-time quantization, commutators
are fixed at x =0, but because in this example the fields
are free, they are known for all x. In particular,
([$(x),$(0)]) is known atx+:—x +x'=0, where

j"(x) =:(b2(x )t)t'p, (x }—p, (x)t)t'pz(x ):
may be expressed in a general spectral form

(2)

([J (x),J "(0)]&=(g "a'—a t)")

X f dM o(M')il)(x;M'}, (3)
0

where, for free fields,

4mo(M )=e 1—
M

' 1/2
4m1—
M

2aM
(4)

The assumptions of Hagen's proof are therefore satisfied.
The charge operator on the light cone may be comput-

ed, also unambiguously:

Q—:f j+(x)

J X +J X

=i f dk'[ &a(kf')a (k2') —a2(k')a, (ki)], (5)

where a;(k ') and a; (k ') are the usual equal-time
creation and annihilation operators. The charge defined

([y(x),y(0)] &„, ,=—ih(x;tn'), ,= ' e(x-) .

This will be demonstrated below. [e(x} is the antisym-
metric step function. ]

Now allow for a conserved current by making (b(x)
complex, with (1/&2)$, (x) and (1/&2)(b2(x) the real
and imaginary parts. The commutator of P and P* is as
in Eq. (1). The current-current commutator, with
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in Eq. (5) is thus explicitly identical to the charge Q
defined conventionally at equal time,

Q= I dx'j'(x),

as current conservation guarantees. It is obvious that

Q i0)=0

and that, since BpQ =0 and Big =0,

a,Q=0,

in conflict with Hagen s published claim that a charge-
invariant light-cone vacuum does not exist. In this case
the light-cone and ordinary vacuum are identical. We
reemphasize that although quantized at equal time, free
charged scalar fields satisfy all the assumptions enumerat-
ed in Hagen's theorem, and yet contradict his result.

To uncover the source of the discrepancy between this
example and Hagen's theorem, it is necessary to examine
his calculation in detail. From Eq. (3), for a general field
theory,

([j ( ) J (0)])= 48 I dM o(M )ib(x;M )
0

so the evaluation of Eq. (9) and related commutators at
x+ =0 may depend on the procedure employed. Hagen
formally shows ([8+Q,j+(0}])to be nonzero by first
differentiating Eq. (9}with respect to x+ and performing
one x derivative, then setting x+ identically to zero and
replacing b, (x;M ) with the standard equal-x+ commu-
tator. Finally, he performs the second x derivative and
integrates over x

Several features of Hagen's procedure imply that it
produces results which are unreliable. First, it gives zero
for ([Q(x+=0),j+(0)]), a possibly finite number for
([8+Q(x+ =0),j+(0)]), and divergences for higher
derivatives in x+. However, as Q is conserved, it should
have no x+ dependence, and there is no good reason to
set x+ to zero at an intermediate step. Had it been left
arbitrary, Hagen would have obtained the conventional
result that ([Q(x+),j+(0)]) is zero for all x+. Higher
derivatives in x+ computed at this stage would then
trivially give zero for all x+. Also, it can be seen from
Eq. (9) that these quantities all involve an integral over a
total derivative in x . That Hagen does not obtain zero
for this, and that his result depends on a particular se-
quence of integration and differentiation, suggests that he
is not working with well-defined integrals. That this is
the case may be seen by carefully defining the commuta-
tor in Eq. (9). The formal representation in two dimen-
sions,

(9)

The commutator h(x;M ) is singular on the light cone,
I

d k
ib, (x;M )=I 5(k —M )e(k )exp( ik x)—

21T

is, in light-cone variables,

(10)

ib(x;M )= lim I exp k+(x —ii))+ (x+ i')—dk+ —i + . M +
p+ o 2mk+ 2 k+

i + . M
exp ——k+(x +i ri)+ (x ++i ri)

2 k+
J

Convergence factors are explicitly and necessarily includ-
ed to ensure that the integral exists, and that manipula-
tions such as the rearrangement of integration and
differentiation make sense.

Near the light cone Eq. (11}reduces to

The damping prescription in Eq. (11) uniquely defines

e(y) and 8(y) in Eq. (12}to be zero and one-half, respec-
tively, when y is identically zero. It therefore reproduces
the standard equal-x+ commutator

ib(x;M ) 2
—— [e(x+)+e(x )]+O(x') ib, (x;M ) + p

—— E(x ) . (13)

or equivalently,

2
e(x )8(x )+O(x ) . (12)

Substituting Eq. (11) into Eq. (9}yields, after appropri-
ate difFerentiation and integration,

M([8+Q(x+),j+(0)])= liin f dM M o(M )I dk+5(k+)exp x+-
0+ 4 p 2 k+

M g

2fk+/
(14}
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[If desired, a limiting procedure could also be introduced
to explicitly define 5(k+), with the same conclusion. ] As
long as all the steps leading to this were well defined, that
is, as long as g was kept infinitesimal but not zero, then
Eq. (14) and all higher derivatives in x+ are unambigu-
ously zero independently of x+. This is consistent with
an invariant vacuum as illustrated in our initial free sca-
lar field example. Hagen's result is obtained if both x+
and g are set to zero identically, but then his intermedi-
ate manipulations are apparently suspect.

Finally, if one insists on employing the commutator at
equal-x+ explicitly, Eq. (11) with x+ at zero has been

shown to provide an adequate definition of the scalar
light-cone commutator, and it produces consistent results
as long as q is taken to zero only at the end.

Computations involving singular quantities in a field
theory are always potentially ambiguous. In general, one
must define such quantities by a prescription, when one
exists, consistent with the desired properties of that
theory. That at least one prescription does exist for the
light-cone commutators in question consistent with the
charge and Lorentz invariance of the vacuum has been
demonstrated above.
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