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Comparison of quantization methods for anomalous chiral models
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Based on knowledge of the (1+ 1)-dimensional chiral Schwinger model, different methods of
quantizing Abelian anomalous models are analyzed by means of the Becchi-Rouet-Stora-Tyutin
procedure giving indications of the corresponding physical states in 3+ 1 dimensions.

I. INTRODUCTION

The quantization of anomalous chiral models might be
a way to give mass to gauge bosons without need of
Higgs particles. This would happen because, due to the
quantum anomaly, first-class constraints would turn into
second-class ones increasing the number of degrees of
freedom.

Jackiw and Rajaraman' have shown in the (1 + 1)-
dimensional chiral Schwinger model that the arbitrari-
ness in the regularization may produce a massive mode in
addition to the massless one. Faddeev and Shatashvili?
have introduced a Wess-Zumino field to transform
second-class into first-class constraints. It was shown by
Babelon, Schaposnik and Viallet® and by Harada and
Tsutsui* that a gauge-fixing procedure may originate, due
to the regularization arbitrariness, a kinetic term for the
Wess-Zumino field, and that the functional integration
over fermions leads to a gauge-invariant effective theory.
Rajaraman® has indicated that the chiral Schwinger mod-
elin 1 + 1 dimensions has two degrees of freedom for the
regularization parameter ¢ >1 and only one for a =1.
Similarly Falck and Kramer® have analyzed the model in
the gauge-fixed form to see that for @ > 1 there are two
first-class constraints to which two second-class ones add
for a=1, and Boyanovsky’ has shown that the positive-
norm Wess-Zumino field cancels a massless negative-
norm mode of the gauge field.

Hagen® and Das’ have preferred a minimal regulariza-
tion procedure which preserves as much symmetry as
possible paying the price of an additional explicit mass
term for the gauge bosons to have a unitary theory.
Ball'” has indicated the equivalence of the minimal regu-
larization and the minimal renormalization which does
not require new counterterms but needs the arbitrary reg-
ularization parameter, showing moreover the relation of
these procedures with the cancellation of anomalies by
means of very heavy fermions, a method due to D’Hoker
and Farhi.!! In the above spirit Rajeev'? has included for
the (3 + 1)-dimensional chiral electrodynamics model a
kinetic part for the Wess-Zumino field corresponding to a
gauge-invariant mass term, which explicitly introduces a
new degree of freedom. Finally, Thompson and Zhang'3
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fixed the Wess-Zumino field to the one necessary to trans-
form the gauge field to the Lorentz condition, as done
previously'* for the quantization of massive boson fields,
giving for the (1 + 1)-dimensional case a single massive
mode similar to that of the normal Schwinger model.

Other contributions relevant to the subject of quantiza-
tion of anomalous models have recently appeared in the
literature."

The purpose of this work is to analyze the physical
states for the (d +1)-dimensional model (d=1,3) by
means of the Becchi-Rouet-Stora-Tyutin (BRST)
method'® applied to the treatments of Jackiw and Rajara-
man (J), Faddeev and Shatashvili (F), Rajeev (R), and
Thompson and Zhang (T) models. It will appear that,
without solving the fermionic part, the gauge field sector
will correspond to d degrees of freedom in the cases J and
R and to d —1 degrees with the choices F and 7. The
possibility of obtaining massive bosons will depend there-
fore on the procedure of quantization of anomalous
theories with F being a particular case of J (or R) and T
an alternative method.

II. QUANTIZATION OF ANOMALOUS ABELIAN
THEORY

We consider the Lagrangian in d + 1 dimensions,

_ 2
L=~ 1P 4ifBy+ed, It + 2 Bo- 4 +d4c0,c

+mK(3,0,4,)+16P(3,4,) (1

which corresponds to an Abelian gauge theory coupled to
the fermionic left current J{ and quantized in the gauge
d- A =B with ghosts ¢,¢. The second line of Eq. (1) is the
Wess-Zumino part which should compensate the change
of the fermionic measure in the functional integral to
make the quantized theory gauge invariant. K is the pos-
sible kinetic term related to the gauge group variable 6
and P is the Chern-Pontryagin density. The constant A
depends on e whereas m ? may be an independent parame-
ter.

The dynamical variables, apart from fermions, will be
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in general A4 w 66 and O, with the canonical momenta
given by

oL aP
=0 F,—f-}\.e‘— .
T4 04’ 0 94!
oL d oL
= :—B, _=—_C, ﬂcz—:—, (2)
7TA0 aA 0 7Tc aE B (4
a.L 2 0K
Tg="—_=m " — .
a6 a0

The functional integration is done over A4 o B,c 70,1,
and ¢, where B has no conjugate momentum. The classi-
cal equations of motion for 4, and 6 are

K aP
_ uv __ v__avp _ 2_98H —
a“F eJ] —0'B—m aAV+}\a“088#AV 0,
(3)
2 K Lo
ma“aauo AP =0,

apart from the gauge condition 3- 4 =B, and the decou-
pled ghost equations Oc =0c=0. From Eq. (3) it fol-
lows, using OB =0 [necessary to cancel the anomaly with
the Wess-Zumino part of Eq. (1)], that,

oK oK

* 33,0

—ed- —m?
ed-J, +AP—m*9, A,

=0 4)

which means that ed-J; =AP if K is gauge invariant.
Defining the BRST current through the transformations
of A, ¥, ¢, T, and 0,

v dP
Jy=F"3,c—A6 30,4, d.c+eljc
v. 2 0K
+Ba m 33,9 56 , (5)
its divergence is
K oK
. — . —_ J— 2
d-Jp=ed-J c —AP86—m aAVavc+aaveaV59 ,

so that if the BRST change of 0 is 66 =c and K is gauge
invariant, Jg is conserved. The BRST charge

; oK
d 0i 0 2
QB-——fd x |FYd;c+eJ)c+Bdyc—m 660689
aP
—A .
O g i (6)

generates the appropriate transformations of A, 4,, ¥,
¥, ¢, and 6. Note that the last term of Eq. (6) does not
contain momenta being therefore ineffective for this
transformation.

We shall analyze different choices for K which will be
referred to as those of Faddeev and Shatashvili (F),
Jackiw and Rajaraman (J), Rajeev (R), and Thompson
and Zhang (7).

(i) F: K =0 so that 66=0. The functional integral
over 0 leads to P =0.

(ii) J: K=0,0(;8"0— 4#), 80=c.
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This expression of K, which is inspired by the regulari-
zation arbitrariness of the (1 + 1)-dimensional case,>*
satisfies the one-cocycle property but is not gauge invari-
ant. Therefore, from Egs. (4) and (5),

—edJ, +AP+m?3-A=0 and 3-J3=m?d,(cA").

The constant charge is thus Qz —m? [d“x cA° which
does not modify the above BRST transformations since
the additional term does not contain momenta.

(i) R: K=1(3,0—4,)% 80=c.

K is gauge invariant but does not verify the one-
cocycle property so that it must be interpreted as a mass
term for the gauge boson in the original Lagrangian.

(iv) T: K=9,D(3"6— A4¥), 86=c.

K is again gauge invariant and does not satisfy the
one-cocycle property. In the functional integral there is
an additional integral over the scalar field D which pro-
duces the constraint (00 —9-4 =0 indicating that the
original functional integral, before the introduction of the
Faddeev-Popov identity, included the Lorentz condition
as an anticipation of the possible appearance of mass for
the boson field.

III. (14+1)-DIMENSIONAL CHIRAL
SCHWINGER MODEL

Since this is a model that can be exactly solved, we will
use it to show the solutions corresponding to the above
choices as well as the insight which may be obtained be-
fore performing the functional integration over the fer-
mion fields.

Exploiting the fact that the fermionic determinant can
be exactly expressed, and using a nonminimal regulariza-
tion procedure in terms of an arbitrary parameter a, the
Lagrangian of Eq. (1) (for the choice J above) may be
rewritten as*

2
L= —%F2+itzﬂ¢+eA”Jf+BT—Ba-A +323,0
2
+e-[(@a—19,030-24")-260¢"8,4,] . (7

The integration over fermions' leads to an effective La-
grangian

3,95
O

2
Log=—1F+ g—fr A, |agh"—(gh*+€)

X(gP —€P) | 4

v

BZ
+2-—Bo- A+,

2
e — v
+ 87T[(a—1)8#0(8“0—2A")—206“ 9,4,] (8)

which, taking A# =6#17—ew6‘p, can be expressed as’
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2 2
Log=—1F24 f;[( 14-a)p0p+(1—a)nOn—2q0p]+ 52— —BOn+3"Td,c +§;[( 1—a)(§06 — 601y —7010) +260p]
(9a)
€2 BZ
=—1F24 ?7;[(1+a )pOp+(1—a )(7]—9)E|(7]——9)—2(17——9)E|p]+-Z——BD'q+8"Eaﬂc (9b)

which is clearly BRST invariant.

In Eq. (9a) we have kept distinct the O(e?) term com-
ing from fermions and the one corresponding to the
Wess-Zumino part. The shift in the variable of integra-
tion 6—60+n+p/(a —1) allows us to rewrite Eq. (9b) as

- o2 a?
=-1 — — O
Lg +F +87r a—lpr+(1 a)606
BZ
+7—an+aﬂza#c , (10)

from which it is clear that for a > 1, p corresponds to a
massive mode

2 el 02

" T 47 a-—1

and 6 to a massless mode, whereas 7, €, and c refer to
gauge fixing and ghosts. For the particular case a =1,
corresponding to the choice F above, Eq. (9b) shows that
the shift 60+ transforms 6 into a Lagrange multi-
plier which fixes Op=0 so that p remains as the only
(massless) mode.

If one takes 6=m, which corresponds to choice T, Eq.
(9b) shows that p is the single (massive) mode. Finally,
the choice R implies adding in the square brackets of the
last line of Eq. (9a) a term (a —1)(p0Op—n0n), which
simply means an additional contribution (positive for
a>1) to the (mass)* of the mode p of case J without
changing the massless mode.

If we do not consider the fermion contribution to Eq.
(9a) we are left with

2
L,=—1F24 é;[(l—a )60 —26019) +2600p]

B?
+7—BD17+8’78“0 . (11)

Choice F (@ =1) leads to Op=0, i.e., a single massless
mode which is not changed by the fermionic contribu-
tion. Choice T (8=m) gives, fixing n=0 for simplicity, a
single massless mode which acquires mass due to the fer-
mion part as in the normal Schwinger model for a=1.
Choice J corresponds to the general Eq. (11) and again
for 7=0, a shift in 6 gives for a > 1 a massless and a mas-
sive mode whose mass is modified by the fermion contri-
bution. Choice R corresponds to the addition of

e 2 2

S (@a—1)4
to Eq. (11) as said above, giving a further contribution to
the mass of the mode p without altering the massless
mode 8; this choice can be equivalently understood as the

[

regularization with a =1 and an additional gauge-
invariant mass term with arbitrary m.

IV. CONSIDERATIONS FOR THE (3+1)-DIMENSIONAL
MODEL

We wish to analyze the asymptotic states of the model
of Eq. (1) for e—0 and keeping m? and A finite. This
corresponds to the suppression of the fermionic part as
discussed in 1 + 1 dimensions. The idea is that since the
whole model should be BRST invariant and the integra-
tion over fermions is in general not possible, a study of
the gauge-Wess-Zumino terms necessary to cancel the
anomaly will give the required information on the physi-
cal states induced by the fermionic part.

We note that for 3 + 1 dimensions the choice J cannot
be thought of as coming from a general regularization
procedure and is included here merely as an example.

We will attempt to distinguish among dynamical fields
apart from fermions [A# (4), ¢ and ¢ (2), and 6 (1) in the
general case], asymptotic states (those which decouple for
e —0), and physical states (which are annihilated by Qp
and have positive norm). Since A4, in the Lagrangian of
Eq. (1) does not necessarily obey the Lorentz condition,
we will take it as the sum of transverse 4 7 and longitudi-
nal 4% parts with possible different masses.'’

It is obvious that |c) and |Z) are massless asymptot-

‘ic states since they do not interact with other fields. As

Qp |c)=—|0-4), with Qp constant of motion, 4~ will
correspond to a massless asymptotic state too.

For the choices J or R the dynamical field 8 allows us
to build another asymptotic state | 4,—3,0) which is
physical since it is obviously annihilated by Qp and has
positive norm. In fact, assuming that the parameter m in
Eq. (1) characterizes the mass of 47 in the limit e —0,
one would obtain the norms

kK

v
m 2

(Af) [ ATK))=— |g,,— r)?

X2Vk 4+ m?*(k—k'),

k k _
(ALmo| Af(k')>=—ﬁ(2ﬂ>32\/k2+u2

x8(k—k'), p—0, (12)

VL2
(9<k)|9(k')>=¥”—(2m36(k—k'), 1—0 .
m

Therefore | 6) is a positive-norm state which cancels the
negative norm of | AL) to ensure the positivity of the
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normof | 4,—9,6).

For the alternative T, 0 is not a dynamical variable
since it is fixed by the gauge transformation from the
Lorentz condition, so that the gauge field states corre-
spond to massless asymptotic particles. We recall that in
1 + 1 dimensions, the mass of the single mode was gen-
erated by integrating over the fermions.

With the choice F, 0 is again not a dynamical variable
and is not transformed by Qz. Therefore the requirement
Q2|¢) =0 leads to massless states.'® We therefore see
that general BRST considerations lead to the same results
obtained explicitly in 1 + 1 dimensions.

We have analyzed different forms of Wess-Zumino
terms to quantize anomalous chiral models. The arbi-
trariness in the quantization leads to different degrees of
freedom and consequent physical states. With the more
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general treatments J and R massive gauge bosons may
appear. The particular choice F seems to prevent gauge
bosons to acquire mass. The method T in 1 + 1 dimen-
sions gives a massive solution equivalent to that of nor-
mal Schwinger model which might be peculiar of this
dimensionality. Additional criteria should be found to fix
the quantization procedure to obtain definite physical
predictions.
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