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We consider the problem of a fixed source of charge Z in a classical electromagnetic interaction
with a scalar field of mass m. We find that partially screened solutions with energy less than the en-
ergy associated with pure Coulomb configurations (with zero scalar field) exist for Z > Z, where Z,
is the value at which the Klein-Gordon equation for a particle of mass m in the external Coulomb
field of the source has zero-frequency solutions. Our model thus allows for the exact construction of

a classical “charged vacuum.”

We recently studied the (nonlinear) problem of a fixed
source of charge Z in interaction with a charged scalar
field of mass m within the framework of classical electro-
dynamics.! We found, as expected on general grounds,?
that there exists a critical charge Z =Z_ such that, for
Z>Z,, the Coulomb solution (i.e., the bare source
configuration with zero scalar field) no longer is the solu-
tion with minimum energy. Indeed, we explicitly con-
structed for Z > Z_ partially screened solutions (with
nonzero scalar field) with energy less than the energy E.
associated with a pure Coulomb solution. The critical
value Z =Z_, in this problem is determined by that value
of Z at which the linear Klein-Gordon equation for a par-
ticle of mass m in an external Coulomb field of charge Z
yields an eigenvalue o = —m.

We were motivated to further study this problem by a
recent paper on the instability of large-Z nuclei with
respect to electron-positron pair creation,’® a problem of
great current interest.* The instability of such superheavy
nuclei is expected to occur at Z ~170, i.e., the value at
which the single-particle Dirac equation has eigenstates
with o= —m, eigenvalues (m, is the electron mass). Ac-
cording to the authors of Ref. 3, electron-positron pair
creation could occur at Z ~ 150, which roughly corre-
sponds to o =0 eigenvalues of the Dirac equation. These
authors further argue that, contrary to current belief,’
the ground state of the system is not correctly described
by a “charged vacuum.” In view of the many approxima-
tions used in the quantum-field-theoretic study in Ref. 3,
we have deemed of interest to study in more detail wheth-
er a similar result could be obtained within a simple ex-
actly soluble model such as classical electrodynamics
with an external source. Our main result is the following.
The value of the external charge for which partially
screened solutions, with charge Q <Z, start having a
lower energy than the pure Coulomb solution is indeed
given by Z =Z, < Z_,, where the value Z is the Z value
at which the Klein-Gordon equation for a particle of
mass m in an external Coulomb field has zero eigenvalues.
However, as discussed in Ref. 2, this does not mean that
the pure Coulomb solutions are unstable for
Zy<Z <Z_. Only for Z >Z_ does one expect them to
become unstable, as the Klein-Gordon equation then has
complex eigenvalues.?

In order to see this in detail, we start with the equa-
tions of motion for a charged scalar field ¢ in interaction
with the electromagnetic field A* in in the presence of an

external source j
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and working in the radiation gauge V- A =0, one finds,
from (1), (2), and (4),
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provided we look for solutions of the form'
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The total energy E associated with a given solution is
given by

E=4r [ 0°° Toor2dr , (10)

where
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From (5) and (6), we find, in the linear approximation1
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In contrast with Ref. 1, we now look for solutions to (5)
and (6) with an arbitrary frequency o, i.e., with boundary
conditions at infinity:

fr) ~ or+aQ , (15)
r—oo

g(r) ~ Cexp[—(m?*—w?®)'?r]. (16)
r— o

The boundary conditions at the origin remain unchanged

fr) =~ fir, (17)
r—0

g(r) =g (18)
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FIG. 1. Values of the total charge Q as a function of the
external charge Z. The indicated numbers give the different
values of w/m. In particular, the curve labeled —1.0 corre-
sponds to w/m =—1 and starts to depart from unity at
Z =27Z.=290, while the curve labeled O corresponds to ©=0
and Z =Z;=190. All the curves shown have been calculated
for the parameter x =mr,=0.567.
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FIG. 2. Values of the total energy E (compared to the
Coulomb energy Ec) as a function of the external charge Z for
different values of w/m. For the sake of clarity, we do not show
curves for 0> w/m > —1. All of them start to depart from uni-
ty at Zy < Z < Z,,, decrease monotonically, and are comprised
between the =0 and w= —m curves.

The quantities f;,g,,C, and aQ are to be determined.
Equation (6) also requires
, , aZ
f 'r=70+e_f |r=ro_.5=-—ro_ . (19)
There are only two dimensionless parameters within
the model: namely, x =mr, and w/m. The value of the
total charge Q of the external source as a function of Z is
plotted in Fig. 1, for a typical x value. One can see that
partially screened solutions (Q < Z) exist for any value of
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FIG. 3. Shapes of the fields f and g in configuration space for
Z =400, ®=0, and x =0.567. The curve labeled p. gives the
charge density of the condensate for this particular case (scale
on the right-hand side).
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Z. For any value of w, the screened solution exists for
Z >Z%, where Z? is the value at which the lowest eigen-
value of the linearized Klein-Gordon equation (12) is
equal to . However, as shown in Fig. 2, only for Z > Z,,
[the value at which Eq. (12) has @ =0 solutions] do these
solutions have a lower energy than the pure Coulomb
(g =0) solutions. Note that for Z > Z_, solutions with
o=0 have lower energy and large screening than
®/m = —1 solutions. Figure 3 shows how f and g vary
with r for ©=0 and Z =400>Z_. Also shown is the
variation with r of the charge density of the condensate
pc- An expression for p, may be derived by integrating
Eq. (6) from zero to infinity, after multiplication by r.
Using (15), one gets

Q=Z +4rw fow rp.(r)dr (20)
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As stated above, the fact that the pure Coulomb solu-
tion no longer is the minimum-energy solution for Z > Z,
does not imply that it becomes unstable. Actually, our
model allows for an exact construction of a classical
analogue of the quantum-field-theoretic charged vacuum
discussed in Ref. 5. Although it has been recently ar-
gued? that such a charged vacuum should not exist in na-
ture, we did not find any support for this thesis in our
classical model.
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