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Flow-gauge Slavnov-Taylor identities for Zwanziger’s gauge fixing
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The generalization of the Slavnov-Taylor identities for the stochastically quantized Yang-Mills
field theory with either Zwanziger gauge fixing or, equivalently, Faddeev-Popov flow-gauge fixing in
one higher dimension is presented. Those exact relationships among Green’s functions in the sto-
chastically quantized theory are derived by extending suitably Slavnov’s method. As a consequence
there is no renormalization of the longitudinal part of Green’s functions in a=0, to all perturbative
orders. Based on the general identities, the divergent longitudinal part of the two-point Green’s
function is calculated to second order for a=1, and it is found to agree with other independent cal-

culations.

One of the gaps to be filled in accomplishing the pro-
gram of stochastic quantization of non-Abelian Yang-
Mills field theory"? with Zwanziger’s gauge-fixing term?
is the obtainment of the analogues of the Slavnov-Taylor
identities.* Another gap, among others, is to use them, as
much as possible, to get dynamical results which general-
ize those derived in the standard Faddeev-Popov case
through, for instance, Slavnov’s method.* In fact, the
lack of such identities has been mentioned repeatedly in
Refs. 2 and 5. In this paper we derive such identities by
exploiting the equivalence of Zwanziger’s gauge fixing
with Faddeev-Popov flow-gauge fixing,%” in one higher
dimension and make use of them later. Further details
concerning these gauges and the equivalence are found in
Ref. 6.

There have been other approaches in this direction: in
Ref. 8, the Ward identities associated with the back-
ground gauge invariance of the generating functional
were derived and in Ref. 5 the stochastic gauge-fixing
terms is not considered, so that only gauge-invariant
quantities were treated. Other previous works® have used
a different symmetry of the stochastic action: namely, its
so-called hidden supersymmetry associated with the sto-
chastic time-reversal invariance. The related identities
have been used, for instance, to prove the renormalizabil-
ity of the stochastically quantized theory.!® On the other
hand, we must point out that this supersymmetry is hard-
er to analyze when the stochastic gauge-fixing term is
considered.

Following Ref. 6 we begin with the following five-
dimensional gauge theory, in which we have included a
diffusion parameter y:
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whose gauge invariance is maintained with the five-
dimensional field strength
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Sywm is the usual Euclidean Yang-Mills action in four di-
mensions and D ;” is the covariant derivative, namely,
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The flow gauges as a class are ghostless and infrared soft,
and the particular choice
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corresponds to the usual Zwanziger gauge-fixing func-
tion. Indeed, the Zwanziger gauge-fixed Langevin equa-
tion
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is the Nicolai map of the .Ls with this particular flow-
gauge choice. 7;(x,?) in (6) is the Gaussian correlated
noise.

The starting point of our analysis is the generating

functional for the flow-gauge-fixed five-dimensional gauge
theory [J5; =J; (x,1)]
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which was also found in Ref. 11 using the Fokker-Planck
equation associated with (6). In order to extract from (7)
the flow-gauge Slavnov-Taylor identities we shall extend
suitably Slavnov’s method* to (7). That is, we perform in
(7) a functional change of integration variables which is
given, precisely, by an infinitesimal gauge transformation
depending also on the fifth time:

a ab nb
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6%(x,t) being the infinitesimal parameters of the gauge
transformations. A similar transformation with a -
independent 6 parameter was considered in Ref. 8, in or-
der to show the usefulness of the background field

Slavnov-Taylor identities as is our purpose here.

Since Z [J] in (7) remains unchanged under (8) and by
expanding the exponential in (7) to the first order in
6%(x,t) we arrive, after some algebra, at the following re-

method, rather than to derive the nonperturbative lation:
J
0= [ [DAlexp | [ dtdPx(—Ls+J24 )]
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We introduce in (9) the explicit Zwanziger’s gauge fixing (5) and extract the infinitesimal gauge transformation parame-
ter 6%x,t) as a common factor. After some nontrivial algebra, the resulting expression is the general stochastic
Slavnov-Taylor identity for any J:

0= [ (DAlexp |[Ly+ [ drdPxspas

o Ta 45 8,80, + La,pet — Lgraes, (3, 4¢)

8,589, —

Y pdeg (10)
a

Remarkably, (10) has turned out to become independent of Sy, as expected, however, for Slavnov-Taylor identities.
Nevertheless, its maximum order in g, in the term multiplying the exponential in (10), is g* (terms of higher orders in g
have canceled by symmetry properties in the color indices). Thus, the identities are more complicated than the usual
ones found within the four-dimensional Faddeev-Popov gauge-fixing procedure. As we will use systematically dimen-
sional regularization throughout this paper, we have dropped the term proportional to 8'?)(0) in (9) that acts as a coun-
terterm.!° When J =0, (10) yields an identity between complete Green’s functions of one, two, three, and four points
(that is, including disconnected terms and pieces which are not one-particle irreducible).
We now turn to verify explicitly (10) in g =0. In this limit Z [J]=Z,[J] and Eq. (10) is seen to become
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where Z,[J] can be expressed after performing a Gaussian integration as
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G;"’f,“”(x1 —X,,t, —t,) is the free propagator that has been previously given in Ref. 11. Some algebra shows that (12) is
identically verified for any J}; (x,?) and any gauge parameter a.

We shall extract from (10) a specific nontrivial identity which generalizes one obtained by Slavnov.*
(10) with respect to J £ (y,t') and take J =0. The result is
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where (H(A)) represents the corresponding correlation function of H(A4). Equation (13) is more readable in

momentum-energy space. In fact, by Fourier transforming (13) we get
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where GZ: Z: are the n-point Green’s functions in
Fourier space.

This exact flow-gauge identity is the generalization, to
the stochastic quantization formulation including the sto-
chastic gauge-fixing term (5), of one of the Slavnov-
Taylor identities for non-Abelian Yang-Mills theory.

It has been stated in Ref. 5 that the actual form of the
identities is the same as in the Faddeev-Popov quantiza-
tion, the only difference being in the stochastic Green’s
functions themselves. It is to be remarked that this result
was obtained without introducing the Zwanziger gauge-
fixing term, that seems unavoidable in computing nonin-
variant gauge quantities, so that it holds only when all
the quantities related through the identities are gauge in-
variant.

The relation of Eq. (14) to the one derived from
Faddeev-Popov quantization (see Refs. 4 and 12 for in-
stance) may be obtained multiplying (14) by

2y /

and integrating over w. When these operations are car-
ried out, we see that the Slavnov-Taylor identity*!? for
the two-point function is modified by the contributions
coming from the terms in (14) that involve three-, four-,
and five-point Green’s functions, respectively, as follows:
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is the equilibrium two-point function and Df 63)(p),
D/>*)(p), and D" (p) are the corrections due to the
three- four-, and ﬁve -point functions, respectively. Note
that the tadpole contribution of G4(0,0) may be safely
disregarded in (14) as can be easily proved by symmetry
arguments in the color indices or dimensional regulariza-
tion.

There is a specific choice of the gauge parameter «,
namely, a—0, for which we have been able to perform
the integrals over ® and Q in D/>®(p), D/>“(p), and
Dﬂ’ "3)(p). In this limit, the equilibrium Green’s func-
tlons are conjectured'® to approach the Landau gauge
Faddeev-Popov results, as has been shown to the one-
loop order in Refs. 2 and 14. Assuming finiteness of
Green’s functions as a—0 (Ref. 15), the result is
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It is not difficult to show that the usual Faddeev-Popov 15.(3) (g/2)7C,(G)8® 7 p

result, namely, the transversality of the renormalized DP’ (p)= (47)4 —e€) E_z

propagator in the Landau gauge, is contained in (16). P

Similar D-dimensional Ward identities are derived in Ref. t finite parts+0 (g?) (18)

15 by other methods. In fact, the contributions coming
from the three-, four-, and five-point Green’s functions in
(16) vanish when the propagator is assumed transverse.
For instance, the three-point Green’s function may be
written as

Gl (p.g,—p —q)=GLL (p)G¥.(q)G.(—p —q)
xTLd%(p,q,—p —q) (17)

and the right-hand side vanishes when contracted with
(p+q), as in (16), because we are assuming
G;‘ﬁ'( —p —¢q) to be transverse. The same argument
holds for a generic N-point Green’s function. This is not
true for other choices of a, as may be seen in (15).

Thus, for the gauge parameter choice a=0, we have
shown that there is no renormalization of the longitudi-
nal part of Green’s functions in the equilibrium limit to
all orders. This is precisely the stochastic analogue in
a=0 of Slavnov’s result for the two-point function [see
Eq. (23) in Ref. 4]. Accordingly, the counterterm of the
mass renormalization for a =0 will vanish.

We have also calculated the divergent part of D> to
the total order g? (those of D{,b’“’ and D’{b'm are of
higher orders in g; we should have considered also non-
connected contributions, to total order g2, coming from
the four-point Green’s function. However, it is not
difficult to show that they cancel when dimensional regu-
larization is used): this amounts to integrating the three-
leg vertex at the tree level. Some lengthy calculations
show that such divergent contribution to D‘{b'm is

where e=(4—D)/2, and C,(G) is equal to N for a gauge
group G =SU(N). Comparing with Refs. 2 and 14 we see
that (17) equals the longitudinal part of the propagator
that arises in stochastic quantization to the one-loop or-
der in the gauge (a=1).

The identities derived in (14) and (15) are, as we have
shown, useful in order to analyze longitudinal parts of
dynamical Green’s functions, and, so, they are the sto-
chastic counterparts of some of Slavnov’s ones, but it is
not, as yet, clear whether they may give relations between
renormalization constants that would ensure the renor-
malizability of the theory. It seems that, in order to ac-
complish the latter task, we should derive more compli-
cated identities, by essentially taking more derivatives of
(10). This rather complicated task lies beyond the scope
of the present work.
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