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Chiral-symmetry breaking in QCD. II. Running coupling constant
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The quark-propagator Dyson-Schwinger equation, with a running coupling constant to provide
an ultraviolet regulator, with no infrared cuto8; is calculated numerically in the Landau gauge. It is
shown that, for one or more generations of quarks, the chiral symmetry of the bare QCD Lagrang-
ian is dynamically broken, so that quark masses are engendered.

I. INTRODUCTION

The notion that quark masses are generated by a mech-
anism of dynamical chiral-symmetry breaking has been
widely studied. ' ' In the preceding paper, " we exam-
ined the infrared domain in detail and we found that,
even without the infrared cutoff that we and others had
used, there exists a critical value of the QCD coupling,
above which chiral symmetry can be dynamically broken.
We used a sharp ultraviolet cutoff in Ref. 11, so that nu-
merical results were not of interest; the principle was
however of importance.

In this paper, we refine the treatment by introducing a
running coupling constant that has the inverse logarith-
mic ultraviolet behavior characteristic of the asymptotic
freedom of QCD. The mass scale is set by the renormal-
ization point; and the effective coupling is expressed in
terms of the ultraviolet asymptotic behavior of the quark
propagator. It is found numerically that this effective
coupling is indeed greater than the critical coupling for
the onset of chiral-symmetry breakdown and consequent
mass generation.

The basic method consists in the investigation of the
truncated Dyson-Schwinger equation for the quark prop-
agator in the Landau gauge. We use a bare vertex and
gluon propagator, along with the running coupling, to
which we have already alluded. In earlier work, ' we en-
countered difficulties in other gauges, associated with ul-
traviolet divergences of loop integrals. These difficulties
can plausibly be traced to the replacement of the vertex
function by its bare value: such a replacement is incon-
sistent with the Ward identity, except in the Landau
gauge, as we now show.

In general, the inverse of the quark propagator can be
written

S '(p) =u(p )+PP(p ),

Moreover, the contribution of the term involving k„
drops out of the Dyson-Schwinger equation for S '(p) in
the Landau gauge because the gluon propagator D„„(k )

is orthogonal to k„ in the Landau gauge. Hence only the
bare y„contributes to the Dyson-Schwinger equation,
and in this case it is known that P(p ) is identically equal
to unity (this result is true in any number of dimensions).
Admittedly, this is not a proof that p= 1 and I „=y„in
the Landau gauge; but at least there is consistency with
the Ward identity, in terms of the ansatz (1.3), which is
lacking in other gauges.

In Sec. II we introduce the Dyson-Schwinger equation,
with the above approximations. The only parameters we
use are the renormalization mass, which is implicit, since
it can be scaled out of the equation, the number of quark
flavors, and the infrared limit of the effective coupling.
In Sec. III we reduce the integral equation to a nonlinear
differential equation, with ultraviolet and infrared bound-
ary conditions. Guided by the general findings of our
analytical study of the equation with a sharp ultraviolet
cutoff, " we set up a numerical method to look for non-
trivial, non-chiral-symmetric solutions. A fourth-order
Runge-Kutta algorithm is used to integrate the
differential equation back from large p down to p =0.
To begin the integration at a very large value of p, an
asymptotic series is used, as we explain in Sec. IV.

Section V is devoted to the presentation and discussion
of the numerical results, which are given for two, four,
and six quark flavors.

II. DYSON-SCHWINGER EQUATION
WITH RUNNING COUPLING

We replace the vertex function and the gluon propaga-
tor by their bare values, and introduce a multiplicative
running coupling function,

1
where p is the momentum. The quark-gluon vertex func-
tion satisfies the Ward identity

k
to(k )= ln

M
(2.1)

k, I „(p,p —k)=S '(p) —S '(p —k), (1.2)

as a consequence of gauge invariance. This condition is
met when P(p ):—1 and

I „(p,p —k) =y, + [a(p') —ct((p —k)')] .

Here k is the Euclidean momentum, M is the renorma1-
ization mass scale, and ~& 1. The inverse logarithmic de-
crease in the ultraviolet is prescribed by asymptotic free-
dom, but the behavior of co(k ) in subasymptotic
domains is unknown. By varying the parameter v., we
can assess the relative importance of the asymptotic and
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subasymptotic domains.
After a Wick rotation, the Dyson-Schwinger equation

for the quark propagator S can be written in four-
dimensional polar coordinates as follows:

S-'(p) =P+ ",f,
"p'dp'r„S(p')r.

d d co(x)
y

ya(y)
dx dx x 0 y+a (y)

(3.1)

d x ~d x
d ( )

a(y)
dx co(x) dx co(x) x y+a2(y} '

(3.2)

X f d'&' co((p' p—)')

XD„„(p'—p ), (2.2)
d

Zx

d xa(x)
dx co(x)

d x
dx co(x)

+A,co(x) z
——0 .a(x)

x+a (x)
(3.3)

with the scale parameter p to be set presently by a
renormalization-group argument. After the further stan-
dard approximation

In general, a(0) is not determined by the integral equa-
tion (2.5), but, as can be seen from (3.1),

co((p —p) )=co(max(p, p' )), (2.3) a'(0) =-
2a(0)in'

(3.4)

S '(p)=/+a(p'),
where the mass function a satisfies

(2.4)

the angular integral in (2.2) may be evaluated. In the
Landau gauge, one finds that

Asx —+ac,

a(x) —Ijfic (x)+vfi(

where

(3.5)

3p ~ co(xmax ) ya(y)a(x) = dy
16m 0 x,„y+a (y)

(2.5)
fR (x)=—(lnx )

'+

fr(x) =(lnx )

(3.6)

(3.7)
with

x,„=max(x,y) . (2.6)

Renormalization-group analysis yields the UV asymp-
totic behavior

1a(x) — —ln
x~oo X M

(2.7)

where

12
33—2f ' (2.8)

3p
16m

(2.9)

Equations (2.8) and (2.9) are used to eliminate the param-
eter p.

The mass M is arbitrary, as may be seen by introducing
the scaling x/M ~x, y/M ~y, a(x)/M~a(x): (2.5)
remains unchanged, except that M is replaced in (2.1) by
unity. In subsequent sections we take M =1, so that the
renormalization mass M sets the scale of momentum.

with f the number of quark flavors that are involved in
the calculation of the gluon P function. ' It is easy to
check that (2.5) is consistent with the regular asymptote
(2.7), on condition that

a(x)-@fan (x), (3.8)

and integrate back to the origin. For general values of p,
condition (3.4) will not be met, so that p must be changed
iteratively until (3.4) is satisfied to a preassigned accura-
cy.

It is convenient to define the functions

JM&(x) =x [co(x)] '+ "a(x), (3.9)

p2(x) =

X a(x)
dx co(x)

Cf X

dx co(x)

(3.10)

Equation (3.3) is then equivalent to the coupled system

On physical grounds, namely, the conservation of the
axial-vector QCD currents in the absence of a bare mass,
the irregular solution f~ must be suppressed, and this can
be done by choosing a(0} in such a way that v=O in the
asymptotic formula (3.5). Indeed, this requirement con-
stitutes a kind of nonlinear eigenvalue constraint on a(0).

Since fi is asymptotically much larger than f„,a step-
wise integration of the differential equation (3.3) from
x =0 to x = 00, with the requirement that the UV asymp-
totics be regular (i.e., v=O), is inherently unstable. Ac-
cordingly, we rather begin at asymptotically large x with

III. DIFFERENTIAL EQUATION AND RUNGE-KUTTA
METHOD

It follows from (2.1), (2.5), and (2.9) that

IMI(x) =@2(x)[co(x)]
A,co(x)p, (x)

X+7

(3.11)
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p~(x) = —A,co(x }
a(x)

x+a (x)

with

p, (x)
a(x }= [co(x}]'

(3.12}

(3.13)

large values, say x=x, and x=xb, x, )xb,' and in addi-
tion we run the Runge-Kutta routine from x, to xb, com-
paring the result with that obtained from the series, eval-
uated at xb. The integration of the differential equation,
and the imposition of the eigenvalue condition (3.14), are
under good numerical control.

The "eigenvalue condition" (3.4) is now replaced by

p&(0)=0 . (3.14)

The numerical method proceeds from a starting value
of p in (3.8). This involves setting

P, &(oo )=P,
p,2( oo )=0,

(3.15)

(3.16)

and integrating the system (3.11) and (3.12) by a fourth-
order Runge-Kutta routine from x = 00 to x =0. Condi-
tion (3.14} will not be satisfied in general, so p, is changed
and the whole procedure is repeated again and again, in
such a way as to decrease

i p, (0)
i

systematically. When
(3.14) is satisfied, pz(0}=a(0), and (3.4) is then also true.

IV. ASYMPTOTIC SERIES

The Runge-Kutta method is not well suited to the very
first step, from x = |I) to some large, finite value of x. For
this initial step, we use an asymptotic series expansion for

P(z) =xlnxa(x)-z g P„z
n=0

(4.1)

where z =lnx. For large x, the parameter r in (2.1},and
the function a (x} in the denominator in (3.3) may be
dropped, and one obtains the following linear differential
equation for P:

r 2

V. DISCUSSION OF THE NUMERICAL RESULTS

We have made an ultraviolet cutoff in the Dyson-
Schwinger equation (2.2) for the quark propagator in or-
der to remove ultraviolet instabilities. This cutoff, made
in the context of QCD, consists in replacing the bare cou-
pling g /4n by the running coupling constant

a, (q )= 12~ 1

33—2f in(r+q )
(5.1)

the renormalization mass scale being set to 1. We includ-
ed the parameter v & 1 to set the strength of coupling in
the nonperturbative infrared regime, while maintaining
consistency with the ultraviolet asymptote. For all num-
bers of quark flavors f &0 and for in'&1, Eq. (3.1) is
found to have a nontrivial solution, so that chiral symme-
try is broken. By numerical means, we obtain a quark
mass function a(q ) which approaches a finite limit a(0)
in the infrared, and which has the ultraviolet asymptote

a ( 2) 0'
(1 2)1 —12/(33 —2f) (5.2)

q

as discussed above. The function a, (q ) is found to ap-
proach its ultraviolet asymptote (5.2) for values of q of
order unity. In Table I the values of the parameters a(0)
and p, as determined from numerical solution of (2.5}
with A, given by (2.8}, are presented for various values of
7.

z'(1+z)
dz

—z'(2+z) +A(1+z)' p(z)=0 .
dz

(4.2)

TABLE I. Values of p, and a(0) for various quark flavors f
and various choices of the parameter ~.

a(0)
The starting value (3.15) implies po ——p, and then (4.2)
yields p, =A,(1—A, )p, and, for n &0,

P„~2=—
I [(n A)(n —A, +—1,)+A, ]P„

1

+[(n —A, +1}(n—A, +4}+2k,]p„+,j .

(4.3)

Although the series (4.1) is divergent, it is strongly
asymptotic, ' and it can be used to determine p(z), and
thence p, (x) and pz(x), for sufficiently large x, to ade-
quate precision. As a check on the accuracy, the second
derivative of p(z) can also be estimated from (4.1); and,
thus armed with a, a', and a", we calculate the left-hand
side of (3.3), which should be zero. The larger x is, the
better the estimate given by the series; on the other hand,
one is constrained by the necessity of avoiding unaccept-
ably large rounding errors in the first few Runge-Kutta
integrations. In practice, we evaluate the series for two

0.364
0.414
0.480
0.571

0.364
0.414
0.480
0.571

0.364
0.414
0.480
0.571

0.364
0.414
0.480
0.571

(a) 1n~=1
0.0020
0.0107
0.0417
0.1405

(b) 1n~=0. 5
0.0467
0.0849
0.1604
0.3226

(c) 1n~=0.25
0.0865
0.1365
0.2247
0.4048

(d) 1n~=0. 1

0.1097
0.1630
0.2580
0.4454

0.0420
0.0957
0.1857
0.3326

0.3046
0.3966
0.5219
0.7079

0.5620
0.6675
0.8070
1.0013

0.8556
0.9733
1.1269
1.3370
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TABLE II. Critical values for chiral-symmetry breaking with
various quark flavors.

ln~ (maximum)

1.25
1.43
1.67
2.01

a, (0) (minimum)

0.91
0.91
0.91
0.89

When the parameter r in relation (5.1) for a, decreases,
the infrared coupling increases; whereas an increase in
the number of quark flavors leads to an increase in the
overall strength of coupling. Our numerical results indi-
cate that, below a certain critical level of coupling, solu-
tions of the differential equation (3.5) cannot satisfy both
infrared condition (3.4) and ultraviolet condition (3.8). In
such a circumstance, the integral equation (2.5) has only
the trivial solution, and chiral symmetry is preserved. In
Table II our findings on the critical coupling level are
presented for various numbers of quark flavors, as ex-
pressed in terms of the (maximum) parameter r, as well

as the (minimum) coupling strength at the infrared point
a, (0), that are required for breaking of chiral symmetry.

On the basis of our model (5.1) for the running cou-
pling constant, we conclude that chiral-symmetry break-
ing can occur if a, (0) is at least of order unity (almost in-
dependently of the nutnber of quark flavors). Thus the
phenomenon of dynamical mass generation is governed
by the low- and intermediate-energy domains, and not by
the asymptotic UV tail. If the low-energy strong interac-
tion were an order of magnitude less [a,(0)-0.1],
chiral-symmetry breaking would have been impossible.
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