
PHYSICAL REVIEW D VOLUME 37, NUMBER 8

Chiral-symmetry breaking in QCD. I. The infrared domain
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The Dyson-Schwinger equation for the quark propagator is handled in the infrared in three ways:
(i) by a sharp cutoff; (ii) by an automatic infrared cutoff, which yields a pseudolinear equation; (iii)
by considering the full nonlinearity. The last treatment is rendered possible by detailed comparison
with the pseudolinear case; and it is found that chiral symmetry can be dynamica11y broken if the
effective coupling is strong enough.

I. INTRODUCTION

We continue the study of dynamical breaking of chiral
symmetry in massless QCD in the context of Dyson-
Schwinger equations for the quark propagator. Our pre-
vious work involved a truncation scheme in which the
quark-gluon vertex and gluon propagator remain free, '
and we found that dynamical syrnrnetry breaking occurs
when both infrared (gluon mass) and ultraviolet (Pauli-
Villars) cutoffs are made. 3 The ultraviolet cutoff is neces-
sary because of divergences in the integration over an
internal loop in the Dyson-Schwinger equation. Actual-
ly, the behavior of Green's functions in the ultraviolet is
subject to constraints imposed by asymptotic freedom in
the perturbative regime, and one can develop a natural
ultraviolet truncation scheme by using these constraints.
However, there is no unequivocal understanding of the
infrared behavior of Green s functions in non-Abelian
theories.

Some time ago, it was suggested that an artificial in-
frared cutoff is unnecessary, in that the nonlinearity
present in the Dyson-Schwinger equation for the quark
propagator provides a natural truncation in the infrared
region. Indeed, such an insensitivity to infrared effects
would clarify and simplify certain issues in dynamical
symmetry breaking. When a constituent gluon mass is
introduced in the truncation scheme, one must analyze a
coupled system of integral equations for the two scalar
functions in the quark propagator, even in the Landau
gauge. ' Furthermore, the results may be sensitive to the
infrared structure of the gluon propagator; especially in
the continuum limit as the ultraviolet cutoff is removed.
Nonlinearity in the Dyson-Schwinger equation may well

play a vital role in the character of chiral-symmetry
breaking. We have made a study of a truncation based
upon spectral Ansatze of Salarn and Delbourgo, in which
a linear equation for the quark propagator spectral func-
tion is obtained. ' An ultraviolet cutoff is required in this
approach, in which chiral symmetry is spontaneously
broken. However, in the continuum limit as the cutoff is
removed, chiral symmetry is restored.

In this paper we consider the Dyson-Schwinger equa-
tion in the Landau gauge with free gluon propagator and
vertex. We show in Secs. II and III that a linearized
form of the truncated Dyson-Schwinger equation is sensi-

tive to an infrared truncation, but the sensitivity is re-
moved when linearization is effected by replacing the
quark propagator by its value at zero momentum, in ac-
cordance with the approach of Miransky and co-workers
in Ref. 5. In Sec. IV we show that solutions to the non-
linear truncated equation exhibit chiral-symmetry break-
ing and are insensitive to the infrared. The results are
discussed in Sec. V.

II. SHARP INFRARED AND ULTRAVIOLET CUTOFFS

When the vertex function and the gluon propagator are
replaced by bare values, the truncated Dyson-Schwinger
equation for the quark propagator S in momentum space
1s

~ 2

, f~ p'xp(p')rA""(p' p} .— (2.l)

In the Landau gauge, for which

Dt (k) g +
k2+ie

we obtain

(2.2)

S '(p) =/+a( —p'),
where a satisfies the nonlinear integral equation

( ) g f" dy ya(y)
xmax y +a (y)

(2.3)

(2.4)

f (x)=A, f f (y),
+max

(2.5)

p(x (A. This integral equation is equivalent to the
Sturm-Liouville system consisting of the differential equa-
tion

[xf'(x }]'+Af (x }=0,
with boundary conditions

(2.6)

with the notations A, =3g /16sr and x,„=max(x,y).
Equation (2.4) always has the trivial solution a —=0, but

the existence and behavior of a family of nontrivial solu-
tions may well be sensitive to cutoffs. With sharp in-
frared and ultraviolet cutoffs, the functional derivative of
Eq. (2.4) evaluated at a(x) =0, is
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f '(p) =0, (xf)'(A) =0 . (2.7)

f (x)= ~x-'"+ +Bx-'"-. , (2.8)

(2.9)

Let us analyze this system in three regimes of the param-
eter A..

(i) For A, & —,', (2.6) has the solution
x + P(x)=0,d qdP kx

dx dx ~ +m
(3.3)

along with the infrared condition (3.2) and the ultraviolet
condition

in comparison with a solution of the nonlinear equation
(2.4). Equation (3.1) is equivalent to the Sturm-Liouville
system" consisting of the difFerential equation

The boundary conditions require that

2
—CJ

2+CD P

B(A)=0,

(2.10) where

8(x)= [xP(x)] .
d

dx

Note that

which cannot be satisfied for 0 &0. Consequently, (2.5)
has only the trivial solution for A, & —,'.

(ii) For A, = —,', (2.6) has the solution

(3.4)

(3.5)

f(x)=x '~ (C+D lnx), (2.11)
8(0)=m . (3.6)

and the boundary conditions require that

A
ln —+4=0 .

p
(2.12)

p (g & )1/2 (2.13)

Since this relation is not satisfied, there is no nontrivial
solution of (2.5) for A. =—,'.

(iii) The case A, & —,
' may be treated by making the re-

placement 0 ~ip in (2.8}and (2.10},where

X
P(x, m) =mF —,'+o, —,

' —o",2;—
m

(3.7)

with o given in (2.9). We shall make use of several simple
relations involving hypergeometric functions, which are
given in Appendix A. Applying Eq. (A6) of Appendix A,
we obtain

The solution to (3.3) subject to the infrared condition
(3.2} may be expressed in terms of hypergeometric func-
tions as

The boundary conditions are met for p in the monotonic
sequence [p„p2, . . . I, where p„ is the unique positive
solution of

P (x, m) = — F —'+cr, —' —o;3;—I (3.8)

A
p„ln —+2 arctan2p„= 2n m. . (2.14}

Equation (A8) with c=2 implies

Therefore, nontrivial solutions occur for A. in the set
IA,„=—,'+p„J. As the ratio Aip becomes large, these ei-

genvalues become dense over the whole domain A, & —,'.

8 (x, m) =mF —,'+cr, —,
' —o", 1;—

m

and finally we apply (A6) to (3.9) to get

(3.9)

III. AUTOMATIC INFRARED CUTOFF
8'(x, m) = ——F '+0, ' —cr;2;———

m m
(3.10)

p( ) g j dy P(y)
+max y +m

for 0 &x & A, where we make the identification

P(0) =m

(3.1)

(3.2)

One obtains the integrand of the linear integral equa-
tion (2.5) by making the replacement y +a (y)~y in the
denominator of the nonlinear equation (2.4). Such a re-
placement is reasonable at large y when the function a(y)
is uniformly bounded, but at small y it is unreliable unless
a(0) =0. In fact, the divergence of the solutions of (2.6)
at small x [Eq. (2.8) with o ~ip] is an artifact of this un-
controlled approximation. It would be much more reli-
able at small y to make the replacement
y+a (y)~y+a (0), and to eliminate the infrared, but
not the ultraviolet, cutofF.

Accordingly, we sha11 consider the linear integral equa-
tion

Consider first formulas (3.7)—(3.10) for the case 0& A, & —,
'

so that the parameter o is real. The parameters (a, b, c, )

in the hypergeometric functions in (3.7)—(3.10) are real,
and conditions (Al) are met, so that these hyper-
geometric functions are all positive, viz. , (A3). Conse-
quently, we have established that, for 0&x & oo and all

P(x) &0, P'(x) &0, 8(x) &0, 8'(x) &0 . (3.11)

The asymptotic behavior of P(x) or 8(x) at large x can
be obtained from Eq. (A9). The leading asymptotes are
of the form given in (2.8) for A, & —,', and for A, =—,

' it is of
the form given in (2.11). For A, & —,

' the functions P(x) and
B(x}are positive at all x and decrease monotonically to
zero at large x. In particular, because of the third rela-
tion in (3.11), condition (3.4}cannot be met for any cutoff
parameter A when A, & —,'.

For k & —,
' one must make the replacement cr ~ip, with

p defined by (2.13), in the formulas (3.7)—(3.10). The
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function P(x) becomes infinitely oscillatory at large x —a
precise asymptotic formula can be obtained from (A9}.
The corresponding asymptotic formula for B(x), valid
for x &&m, is

8(x,m)=2m Re
I (2ip) x

I ( —,'+ip) m

—1/2+ip '

(3.12)

There is an infinite set of zeros of B(x} at locations
x„=m r„, n = 1,2, . . . , where the values of the mono-
tonic sequence I r„ I can be estimated from (3.12). In par-
ticular, the first zero occurs at x =m r „where

1 m I (2ip)lnr
&
————arg

p 2 I'( —,'+ip)

a(z)—:—a
m

2
m

z
1

(4.7)

I

a(x)=m —A, dy 1 ——x y a(y)
0 x y+a (y)

from which one obtains

i( )
~ "d ya(y)
x' 0 y+a (y)

and

(4.8)

(4.9)

The solution a(x) of (4.3) and (4.6) satisfies the integral
equation

The parameter m in Eqs. (3.1}and (3.2) is arbitrary, and
it may be chosen so that, say, the nth zero of 8 (x) occurs
at x =A; i.e., take m =(Alr„)', so that

' 1/2'

BA, ' =0. (3.14)

A(x)=m —A. f dy
y +a'(y)

Let us define the domain

$(a)= (x
~
x & 0;a(y) & 0 for y G [O,x] I .

(4.10)

(4.11)
rn

Therefore, the system (3.1) and (3.2) has an infinite num-
ber of solutions for every value of I, & —,'.

For y in S, the integrals in (4.8)-(4.10) are non-negative,
so that a(x}and A (x) are monotonically decreasing in S
and subject to the constraint

m & a(x) & A (x) . (4.12)

() „I ()
xmax y +a (y)

(4.1)

to be considered for 0&x & A. For any real (integrable)
function a, the magnitude of the right side of (4.1) is
bounded by

IV. NONLINEAR EQUATION

We make an ultraviolet (but not infrared} cutoff in (2.4}
to obtain

and

a(x}&P(x) & m (4.13)

The smallest positive zero of A (x) must occur at x to the
left of all positive zeros of a(x).

Since the Sturm-Liouville system (3.2) and (3.3) is a rel-
atively reliable approximation to the nonlinear system
(4.3)—(4.6) in both the infrared and the ultraviolet, the be-
havior of the function P(x) is expected to be similar to
that of the function a(x). It is shown in Appendix B
that, for x in 2)(a) the domain of positivity of a,

~ dye'y
2 0 X

(4.2) A (x) &B(x)&m, (4.14)

d 2da ~ a(x)
dx dx x +az(x)

along the boundary condition

A (A)=0,
with

(4.3)

(4.4)

A (x)=' [xa(x)] .
dx

(4.5)

We shall seek solutions of (4.1) by integrating Eq. (4.3),
starting from the initial value

a(0)=m, (4.6)

with m & 0 by convention.
The solutions of (4.3) with arbitrary initial value r may

be obtained by a scale transformation:

so one need consider only bounded, continuous functions
a. Any solution of (4.1) will also satisfy the differential
equation

the functions A and 8 being defined in (4.5) and (3.5), re-
spectively. It follows from (4.13) that if P(x) develops its
first zero at x =x„then a(x) must have a zero at a point
xo&x, . Similarly, it follows from (4.14) that the first
zero of A (x}must precede any zeros of B(x). Since we
have established in Sec. III that 8 (x}has finite zeros for
every value of A, greater than —,

' [viz. Eq. (3.12}], A (x}
must have at least one zero. Let the first zero of A (x)
occur at x =x0. By making the scale transformation
(4.7) with ~= ( m/xylo}', we obtain a function a(x)
which satisfies the boundary condition (4.4}, and there-
fore is a solution of the nonlinear integral equation (4.1).
In summary, Eq. (4.1) has a nontrivial positive solution
a(x) for all A, & —,'.

To analyze the case A, & —,', we first establish that a(x)
cannot become small for su anciently small x. For
y &2)(a), a(y) is positive, and the bound

a(y) 1

y +a'(y) 2v y

may be used in the integrand of (4.8) to show that
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2i,a(x) & m — v'x
3

Under the restrictions A, & —,
' and a & 36m, we have

v'a
a{x}&M=m—— &0

6

(4.16)

(4.17)

d 2dyx = —Ay(x)s(x),
dx dx

(4.18)

where

for x E:[O,a].
Let us define y(x, M) by means of the differential equa-

tion

uum limit A ~ oo, these solutions become a one-
parameter family corresponding to solutions of the non-
linear differential equation (4.3) with arbitrary initial
value a(0}.

By making a less abrupt ultraviolet cutoff we would ex-
pect to obtain more restricted and more realistic solu-
tions for the dynamical quark mass function in the ap-
propriate continuum limit. From a physical point of
view, one should make the ultraviolet truncation pro-
cedure consistent with the constraints imposed by asymp-
totic freedom. We shall explore this latter problem in a
later paper.
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APPENDIX A

0 & y(x, M) &a(x) (4.22)

In Appendix 8 the functions y and G are determined,
and it is shown that, for A, & —,

' and 0 &x & 00,
Selected properties of the hypergeometric function:12

The hypergeometric function F(a, b;c;z), under the re-
strictions

and

0&G(x,M) & A (x) .

0 & Rea & Ree and —00 & z & 0,
has the absolutely convergent integral representation

The domain of positivity of a(x), 2)(a), consists of all
x &0, and A (x) cannot have any finite zeros, for I, & —,'.
The bounds (4.13) and (4.14) guarantee that a(x) and
A (x) approach zero as x ~ 00 for A, & —,', since P(x) and
8 {x)vanish in that limit. Therefore, boundary condition
(4.4) cannot be met for A, & —,', and nontrivial solutions of
(4.1) do not exist.

In summary, we have shown that the nonlinear integral
equation (4.1) has only the trivial solution for A. & —,',
whereas for all A, )—,

' there is a nontrivial, positive solu-
tion of that equation.

F(a,b;c;z)= f dr t' '(1 r)' '—
I aI c —a o

X(1—iz) '. (A2)

F(a, b;c;z) & 0 .

The function F satisfies the differential equation

d2 dz(1 —z) +[c—(a+b+1)z] —ab
dz2 dz

(A3)

When the additional restriction is made that (a, b, c) are
all real, the integrand in (A2) is non-negative and so

V. DISCUSSION

Since the loop integral in the truncated Dyson-
Schwinger equation (2.1) for the quark propagator is po-
tentially divergent in the ultraviolet, the nonlinear in-
tegral equation (2.4) for the quark mass function a(x) is
sensitive to large x. The linearized version (2.1) also ex-
hibits a sensitivity to the small-x region. We have estab-
lished that, in fact, such infrared sensitivity is not a
feature of the nonlinear problem, in that the solutions of
the nonlinear equation (4.1) are insensitive to small x.
Equation (4.1}, which has a sharp ultraviolet cutoff, ex-
hibits dynamical symmetry breaking: only the trivial
solutions exist for couplings k & A,„' and nontrivial solu-
tions of (4.1) occur for every value A, & A,,—in the contin-

F(a, b, c;0)=1 . (AS)

The standard series expansion of F in powers of z con-
verges absolutely for

i
z

i & l.
The hypergeometric function satisfies the recursive for-

mulas:

d abF(a, b;c;z) = F(a + l, b +1;c+1;z),
dz

' ' '
e

(A6)

[z'F(a, b;c;z)]=az' F(a + l, b;c;z},
dz

(A7)

XF(a, b;c;z)=0, (A4)

is symmetric under interchange of arguments a and b,
and obeys the relation
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and

[z' 'F(a, b;c;z)]=(c—1)z' F(a, b;c —1;z) .
dz

(AS)

For x &a, y(x) satisfies differential equation (2.6) and
may be written

1/2 —o ' 1/2 —fJ

+B —,A~-',a
X 4

The behavior of the hypergeometric function at large
(negative) z may be determined from the continuation for-
mula:

yi(x) =
1/2

C+D ln-
a

(87)

I (c}I(b —a) Matching at x =a, for A,&—,', we obtain

1/2+ cr

XF(a, I+a —c;I+a b;z —')
20' dX

y„(x)

+ I (c)I (a b)—
( —z)

I (a)1 (c b)—
XF(1+b c,b;1—+b —a;z ') .

and

1+2', , a=Pl F —+ET, ——0', 2;—M' (BS)

(A9) B=-' "
2cr dx

1/2 —o'

X

APPENDIX B

1. Establishing (4.13)and (4.14)

From the differential equations (4.3) for a(x) and (3.3)
for p(x), we obtain

[x [p(x)a'(x) —a(x)p'(x)] Jdx

1=r(x) = —Ma(x)p(x) x+a (x)

whereas for A, = —,
' we obtain

and

a
C —™F—„—„2,—

M

1 —2o, , a= —m F —'+cr —' —0. 2'—
4

(89)

(810)

(81)

For x &2)(a}fl2)(P), on which a(x) and P(x) lie between
0 and m, we have

[xy„(x)]~, =mF —,', —,';1;— . (811)

We have used identities (A7) and (AS) in establishing
these results.

r(x) &0 .

Integrating (81) from 0 to x, we obtain

(82)

3. Establishing (4.22) and (4.23) for P&g& —'

p(x)a'(x) & a(x)p'(x), (83)

a(x) &p(x) . (84)

the contribution from the lower limit being zero. Doing
another integration, we get

The hypergeometric functions in (86)—(8I 1) are posi-
tive because of (A3), so that yi(x) is positive, the
coeScients A, C, and D are positive, and B is negative.
Therefore, the function y(x) is positive for all x & 0. Let
us use Eq. (4.3) for a(x) and (4.1S) for y(x) to obtain

As a consequence, 2)(a}C2)(p), and relations (82)—(84)
hold on 2)(a). Furthermore, it follows from (83) and
(84) that

A (x}=xa'(x)+a(x)&xp'(x)+p(x}=B(x) . (85)

dx
[x [y(x)a'(x) —a(x)y'(x)]] =r(x),

where

(812)

Relations (4.13) and (4.14) are thus established.

2. Solving Sturm-Liouville system (4.18) and (4.19)

a(x) Mr (x)= la(x)y(x) — 8(a —x)x+a (x) x+M~

(813}
For x & a the function y(x), which satisfies difFerential

equation (3.3) with m =M, is
It follows from (4.17) that, for x E2)(a),

r(x) &0. (814)
X

y, (x}=mF —,'+cr, —,
' —o",2, — (86) Upon integration of the right side of (812), we obtain

inequalities in the opposite sense to (83)—(85); namely,
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and

y(x)a'(x) & a(x)y'(x),

a(x) & y(x),

(BI5) A (x)=xa'(x)+a(x) &xy'(x)+y(x)=G(x) . (B17)

(B16)
Thus, a(x) is positive for all x, and relations (4.22) and
(4.23) are proved.
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