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Beta-function computation without the use of normal coordinates
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The complete one-loop regularization of a two-dimensional generalized cr model is performed by
means of the Schwinger proper-time method. The result for the P functions is in agreement with

the previous computations. The explicit expression of the wave-function regularization, required to
make the theory finite off shell, is also obtained.

I. INTRODUCTION

The recent interest in two-dimensional generalized o
models is motivated mainly by their connection with the
string theory. ' In the above framework, one of the clas-
sical problems is to compute the P function of the o mod-
el.

This problem is not trivial. There are first some techni-
cal difficulties because the Lagrangian in general contains
infinitely many interaction vertices with two space-time
derivatives. Second, some troubles may arise on what is
meant here by renormalizability of the models. The
point is that in general the infinitely many coupling con-
stants of the model are not related to each other by some

symmetry. Therefore, in carrying out the renormaliza-
tion there are a priori infinitely many constants to be
fixed. In standard terms, this means that the theory
looks like a nonrenorrnalizable theory. However, as
shown by Friedan, with some extensions of the standard
criteria of renormalizability it is still possible to study the
properties of the models. Needless to say, the fact that
the generalized cr models represent an extension of a
standard renormalizable field theory makes the whole
subject more interesting.

In Ref. 3 the form of the P function has been argued
from the knowledge of the two-point function, whereas
all the subsequent computations appearing in the litera-
ture make use of the normal-coordinate expansion.
Therefore, a complete computation of the the divergences
of the model (on shell and off shell, in the terminology of
Ref. 5) is still lacking. The purpose of the present paper
is to fill this gap.

In particular, I compute all the one-loop ultraviolet
divergences (that is, the quadratic and logarithmic diver-
gences) for a o model with torsion without making use of
the normal-coordinate expansion. I use the Schwinger
proper-time regularization; this regularization is particu-
larly convenient at the one-loop level and can also be ex-
tended to higher loops, of course.

The result for the P functions is essentially in agree-
ment with the previous computations. More precisely,
the regularization of the logarithmic divergences of the
model induces a change in the metric of the target mani-
fold and in the antisym metric tensor. These
modifications of the metric and of the antisyrnmetric ten-

sor coincide with the already computed expressions of
the P functions modulo an appropriate reparametrization
of the target space which can be interpreted as a wave-
function regularization. The precise expression of the
wave-function regularization, which is required in order
to make the theory finite off shell, was missing in all the
previous computations.

II. THE MODEL

The interactions of the field P'(x) (i =1,2, . . . , D) with
itself are described by the two functions 6;J(P) and

E;,(P); 6; =6,; just represents the "metric" of the target
manifold, whereas the Wess-Zumino term in (2.1) is con-
structed in terms of the antisymmetric function K;J(P).
In practice, the presence of a nontrivial Wess-Zumino
term in (2.1) introduces a torsion on the target space

T,,„=,'(a, sc,„+a„z,,-+a, sc„, ) .

The equations of motion following from (2.1) are

x„a„y'—=a„a„y'+r,'„a„y~a„(I)"

+ i T,„~~"a„yja„y"=0,
where

(2.2)

(2.3)

I,"k = ,'G'(a GIk+akG( ——aIG.,k) (2.4)

is the usual Christoffel connection.
From the classical action (2.1) it is also easy to see that

an infinitesimal coordinates transformation of the target
space

hP'(x)= V'(P(x)) (2.5)

induces the following transformation s on the metric
6 1 (P ) and on the antisymmetric tensor E~ (P):

bG;, (P)=V; V, (P)+&, V, (P), (2.6)

The action of the generalized cr model with torsion in
flat two-dimensional Euclidean space-time is

s=, f d'x[6,, (y)a„y'a„p i~~"sc,, (—y)a„y'a, p) .

(2.1)
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bK, (p)=2VI, (p)T;"(p) . (2.7)

Our purpose now is to compute all the one-loop ultra-
violet divergences of the model (2.1). The one-loop
effective action I [P],

and C;. displayed in Eqs. (2.12)—(2.14). In the following
we also omit the target indices i and j, and write simply
A, B",C to indicate the corresponding matrices. One can
write

Tr(e ' )=f d xtr(x~e 'H~x), (2.17)

6S
—,'Tr ln

fiy'fiyj
(2.8) where the trace tr refers to the target indices and the

states
~

x ) satisfy

is regularized in the manner of Schwinger: q" ~x)=x" ~x) . (2.18)

I [P]=——f Tr(e 'H) . (2.9)

The trace Tr in Eq. (2.9) means the sum on the indices of
the target space as well as the integral over the space-
time coordinates. The H operator in Eq. (2.9) is of the
form

The amplitude tr(x
~
exp[ eH(p—,q)]

~

x ) is computed
by using the method introduced in Ref. 7. The details of
the computation can be found also in Ref. 8, where the
amplitude (x,i

~
exp( eH)

~

—x,j) is computed in pres-
ence of an arbitrary gravitational background. One first
notices that

H;, (p, q)=p A;, (q)p„+~'[p B/,'(q)+B/,'(q)p„]+C;,(q), tr(x ~e
' '~'q'~x)=tr(0 ~e

' ' ' +"'~0), (2.19)

where

(2.10) where

q" ~0) =0. (2.20)

(2.11) Then, by means of a Taylor expansion of H(p, q +x) in

powers of q" one gets
and from the expression (2.1) one finds

A; (q) = AJ;(q) =G;~ (P(q}), (2.12)
H(p q +x)=Ho(p'x)+Ht(p q x)~

where

(2.21)

Bp~ —— B(,'= ,'(a; G—„—a G—;„)a"p" i T„; e""a—„p", (2.13)
Ho ——A (x)p (2.22)

c;,=c,; =-,'a;a, G„a„p"a„4'——,'a„[(a,G,„+a,.G,„)a„y"] and

(a TI i, +a, Tka)&"a„4'"aA'. (2.14)

Ht ——a A(x)p„q "pq+ —,'a„a A(x)p„q "q p„

+2iB"(x)p„+i a+ "(x)(p„q"+q "p„)

The cutoff dependence of I [P] can be obtained by con-
sidering the logarithmic derivative of I with respect of e:

+C(x)+ (2.23)

=—'Tr(e 'H
)

dl
(2. 15)

In the e~O limit, only the first two terms of the asymp-
totic expansion of Tr[exp( —eH )] survive:

1—b, +b0 ~ (2.16)

Clearly, b
&

is related to the quadratic divergences of the
model and b0 to the logarithmic divergences. Note that
in this formalism it is not required that P satisfies the
equations of motion. In fact, the effective action I [P] is,
by definition, a functional of the classical and arbitrary
functions P'(x). So, the divergences that we shall find are
all the one-loop divergences of the theory.

Let us compute now b, and b0. The computation is
done with the general form of H given in Eq. (2.10); only
at the end we substitute the particular values of 3, , B,~~,

(0)=tr(O~e ~0)= I d ktr(e '""
)

(2m. )

tr(A ') .1

4m@
(2.24)

First order:

(I)= ef da —tr(0
i
e 'He '

i
0)

0

[tr(A -'C)+-,'tr(A —'a„a„A)] . (2.25)

Second order:

At this point, a perturbative expansion in Hj of the am-
plitude (2.19}is performed. The results, order by order in

H&, are the following.
Zero order:
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0 0

[—,', tr( A 'B„A A 'B„A ) —tr( A 'B„A 'B„)] . (2.26)

There are no other contributions in the e~O limit. Note also that in Eqs. (2.25) and (2.26) terms which vanish in the
a~0 limit have been omitted.

From Eqs. (2.24) —(2.26) one obtains finally

1 1
—,
' Tr(e- ) ~, ,= d'x tr(A -')— d'x tr(A -'C+ A -'B„A -'B„+-,' A -'a„A A -'a„A ) .

8m.e 8m
(2.27)

III. THE P FUNCTIONS

By inserting in the expression (2.27) the particular values (2.12)—(2.14) of the matrix elements of A, B",and C, one
finds

f d x G "((f(x))+ f d x[R;J —Tk&T&"'+V;(V~ln G —G"'BkG&J )]B&P'd„gj
d C 81TE' 8m

f d x[ V"Tz; +T—;"(Vkln&G —G '8 Gz)]e""d„P'B„P~, (3.1)

1 f d x G "(P(x)},
8m@

(3.2)

which corresponds to the well-known divergence of the
integration measure in the Feynman path integral. The
divergence (3.2} is simply eliminated by the counterterm

where R," is the Ricci tensor constructed with the metric
G; and V, is the covariant derivative defined in terms of
the Christoffel connection (2.4}.

Equation (3.1) shows that I contains first a quadratic
divergence

geometry of the target space; however, a wave-function
regularization with the parameters W; shown in Eq. (3.6)
is necessary to make the Green's functions of the theory
one-loop finite. The presence of a noncovariant wave-
function regularization is easily understood; the point is
that the divergences of a field theory are not covariant
under general field redefinitions.

Finally, suppose that we are not interested on I [(f ] as
a functional of tf}'(x) but only on the value of I [P] when
P'(x) satisfies the equations of motion. In this case the
wave function regularization can be ignored. In fact, Eq.
(3.1) can be written as

S, = xG" x
1

8~@
(3.3) 1 f d x G "(P(x))

More precisely, in deriving the Feynman path integral
from the canonical operator formalism one finds that,
with the action (2.1), the measure of the integral over the
paths P'(x) contains the counterterm (3.3) which cancels
the quadratic divergence (3.2).

Concerning the logarithmic divergence, a comparison
of Eq. (3.1) with the classical action (2.1) shows that

f d'x [(R,, T,„,T,k'}a„y'a„—yJ

+«"Tk;, ~""d„0'd.0']

f d x(V;ln G —G"'BkG~;)2)„B„P' .

4m.p; = —V"Tk,j +2.W"Tq;, ,

where

W; =—,'(V;ln&G —G"'Bk G„. ) .

(3.4)

(3.5)

(3.6)

(3.7)

By using the equations of motion (2.3), it is clear that the
divergence proportional to 8', disappears.

Equations (3.4) and (3.5) coincide with the expressions of
the P functions found by using the normal coordinates ex-
pansion' ' apart from the additive terms proportional
to W;, which represent the effects of a reparametrization
on the metric and on the antisymmetric tensor, see Eqs.
(2.6) and (2.7). A reparametrization has no effects on the

IV. CONCLUSIONS

In the present paper I have computed all the one-loop
divergences of a generalized o. model in two dimensions.
The technical difficulty related to the fact that the model
contains infinitely many interaction vertices has been
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bypassed by using the most powerful one-loop regulariza-
tion: the Schwinger proper-time method. The resulting
expressions for the P functions are in agreement with the
previous computations. In addition, the explicit form of
the required wave-function regularization has been ob-
tained.

In conclusion, the results of the present paper confirm
the validity of the previous computations and complete

also the program of the one-loop regularization of a gen-
eralized 0. model.
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