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The stochastic quantization method is applied to the calculation of the conformal anomaly of
Polyakov’s string theory in Fujikawa’s string path-integral formalism. The calculation is based on
the stochastic quantization of Bose fields and Fermi fields. As a result, the standard dimension

D =26 is obtained once again.

The string field theory has received much attention re-
cently, in view of rising prospects for a unified theory
with gravity.! When one deals with the quantum string
field theory, however, some of its fundamental sym-
metries are spoiled by the quantization procedure (i.e.,
various anomalies appear), as in the case of ordinary
quantum field theory.? In the case of the string path-
integral formalism, the integration measures lose some of
their classical symmetries.>* In this paper, we calculate
the conformal anomaly of Polyakov’s bosonic string
theory® in Fujikawa’s path-integral formalism® using the
stochastic quantization method.® Since it was first pro-
posed, the stochastic quantization method has been ap-
plied by many authors to derive the chiral anomaly”? and
to clarify the quantum origin of the chiral anomaly.*'°
The stochastic quantization method was applied recently
to calculate the conformal anomaly of Polyakov’s string
theory by Koh and Zhang,!! and they used the bosoniza-
tion technique to treat the ghost fields. However, the sto-
chastic quantization method can be more simply applied
to Fujikawa’s Becchi-Rouet-Stora- (BRS-) invariant
string path-integral formalism,® because the space-time
manifold is effectively flat in this formalism. In this pa-
per, we directly apply the stochastic quantization method
for the Fermi fields!? and the Bose fields,'® respectively,
to the ghost fields and the weighted string variables that
appear in Fujikawa’s string path-integral formalism. The
solutions of the corresponding Langevin equations are
then used to calculate the conformal anomaly.

Let us briefly review the conformal anomaly in
Fujikawa’s string path-integral formalism.> We start
with the Polyakov string Lagrangian® (our conventions
are those of Ref. 3):

L=—1Vggh3,X(x)d X (x) (0

with the string variables X%x), a =1, ...,D, the two-
dimensional parameter x*, and the two-dimensional
gravitational field g#*(x). Here

g =detg,, . ()
Taking the conformally Euclidean gauge
8uv(X)=p(x)8,, , (3)

and following the conventional Faddeev-Popov prescrip-
tion, Fujikawa obtained the partition function

Z = [ DVp(x)IDX “x)DE(x)Dij(x)

xexp | [ ax|-13, | 2= |3, ‘)57)]
+& |Vpd— |7 ’ 4)

with the Faddeev-Popov ghost and antighost
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=l m) §2] ©)
and
3=0'd,40%9, (6)
and
X %x)=Vp(x)Xx) . 7

Let us ignore DV p(x) for the moment and regard p(x) as
the background field. Then the partition function be-
comes

Zo= [ DX “x)DExIDF(x)
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The conformal anomaly is defined for the variations
X “x)—exp[ia(x)]X “x) ,
&(x)—exp[ —Jal(x)]E(x) ,
fi(x)—explal(x)]i(x) , ®

p(x)—expla(x)]p(x) .

The action S in (8) is invariant under (9). Therefore, if
the integration measure of (8) were also invariant under
(9), we should obtain

Wle%l=WIp] . (10)
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The existence of a conformal anomaly means that this relation is invalid, and the functional W [p(x)] is not conformally
invariant. Therefore, we intend to calculate the variation of W by an infinitesimal conformal transformation:

- _ML=< _§§_>
)4 fdxla(xl)p(x’)8[a(x1)p(x1)] fdxlp(x])Sp(xl)
X 1 S T P I
_ 1 B P SR W IV S P Ve R >
_,<f dx | —33,0, \/p+2§ pap n+& pﬁpn
—SW,+8W, , an
where
Sa ~ Xa Xa
[ DX x) [ dx | —10,0, p—— [fdx o au‘/;Hl
8W1'— — (12)
% i | X2 X°
f@X x)exp fdx 70, Vs 9, Vs
and
[ Deopmix) [ dx | ¢ \/pa 7+EVpd pl exp | [ dx §\/,_)B%‘77
[ DeCDAexp | [ dxg\/BB%T]
8W, and 8W, will be calculated using the stochastic quantization method for Bose fields!®> and Fermi fields,'? respec-

tively. In calculating the quantum average, §W, and 8 W,, we use the ultraviolet regularization scheme introduced by

Breit, Gupta, and Zaks,'* and the infrared regularization scheme,®

involved operators.

which assumes finite, nonzero eigenvalues for the

We calculate § W, first. Remembering that the index a runs from 1 to D, §W, becomes

X | X X X
[ DX(x) [ dx |—13,9, el kv exp‘f dx | =13, | = | v ]
SW,=D — — . (14)
= X X
X 13 | == L
f@ (x)exp [f dx | —39, v 9, Vs J
r
Then our action for X is respect to the random variable {(x,7), and the regulator
_ ~ function a,(7—7') introduced by Breit, Gupta, and
s=[dx1a, X 3, X (15)  Zaks'* has the properties
Vp Vp
as(r)=ap(—r), deaA(T T)=1,
The Langevin equation is given by!? (19)
a% 5 Allm aplr—7)=8(r—7").
1) _ 8S \ eix )=OX +£(x,7) (16) o _
ar 6X The limit A— o will be performed after all the calcula-
tions have been done. The solution of the Langevin equa-
where .
tion (16) reads
ox 8,8, |-X Xox,m= [T Vetx,m)d 2
_7p 0, v (17) ()= [e Elx,mdTy (20)

Here 7 denotes the fictitious time, and the Gaussian ran-
dom variable {(x,7) satisfies the relations

(§(x,7))§=0 5
(18)

(E(x,ME(x", 7)) =28(x —x")a(r—7') .

The angular brackets denote the white-noise average with

According to the prescription of the stochastic quantiza-
tion method for Bose fields,
).

<f dx
(21)

X;(x,'r)
7

Xg(x,'r)
e
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Substituting (20) into (21), § W, becomes

. T T O(r—7,) O(r—7,)
8W,=—1D lim <f dx fo dr, fo dre | 2&(x,m,)0e ‘g(::,m)g . (22)
Performing the { average
T T 0Rr—7,—1,)
SW,=-D li li d d d — o . 23
. lim  lim f X fo T fo Tap(r—1){x | e | x) (23)
At this point, it is advantageous to introduce new integration variables
IZTI—Tz, T‘—"%(Tl""rz) . (24)

Thus, one gets

8W,=—-D Tlim lim fdx [fo”sz fj;dz-f-f:/sz f—Z(zT(,__T)T)dt

— o A—> o

a(t){x |eP2-TO|x) . (25)

Taking the properties of the regulator function a , into account, it is easy to evaluate the ¢ integration for A— co:

2T 1 1 Ar—T) 1 1
dt )=0|T——— |+0 |— |, dt )= |1—T——— |+0 |— (26)
f—zr ax(t) | TO A fz(f_r) ax(1) T A |79 A
Hence we end up with
T—1/2A%
W,=—D li : 200r—T1)
W, Tan:o A11_r)n°°fdx f1/2A2 dT{x |e afx)
=1Dlim lim [ dx({x |12 |x) _(x [eX7=1/2A% | x)) 27

T—>0o A->w

Let us assume that (J always has finite negative eigenvalues. Thus we can take the limit 7— oo, while O is finite. Then
(27) gives

8W,=1D Alim fdx(x |eD“/"2’|x) . (28)

Since we are only interested in the short-distance behavior, we can use the plane-wave representation,'® although in
curved space-time a global definition of the momentum representation is not available:

- d’k  _; 1 1 (1|,
=1 —ikx e —_— | iky . 29
dW,=1D /\11_13100 }1_12 f dx f (27r)2e exp 7 9,0, Vi | a2 e (29)
Recalling the well-known formula®
: d’k _ikx —H/A ikx_ 1 3n +1 P A2
All_{r:o Tr (zﬂ)ze e e —AlgnaD 2 Py (—0,8,lnp)+ ym A, (30)
I
where Tr denotes the trace in spinor space, and %ﬁ(x,ﬂ: —DtDﬁ(x,T)—i-DT?(x,r) ’
H=—p=n+1/2gpngo—n+1/2 (31) 3 . (35)
——£0x, )= —E0, D B Ty (x,7)
we obtain oT § § tv
D , where
SW,=—-—"1im | dx(—3,0,p+6pA°). (32)
' 487 A f uoup TP (ya(x,r)yﬁ(x',r’))y= —<Yﬁ(x',~r')'ya(x,‘r)),,
Similarly, 8 W, can be calculated. From the form of =25a135(x —x")ap(r—7") . (36)
8W,, our action for £(x) and 7j(x) reads Equation (35) gives the evolution of the Fermi fields 7
S— f dx ED7 (33) and & with respect to the fictitious time 7 as
~ T =P P(r—1y)
where n,(x,r):foe D'y(x,m,)dT, (37)
- and
P= _\/pa;)l— . (34)

—B‘Dﬁ*(‘r—r )
: : x,7)= [ "rix, Ydr, . 38
The Langevin equations are given by §lar f o YT T (38)
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According to the prescription of the stochastic quantization method for Fermi fields,

. -1 —
6W2=TIL“; <f dx[%gy(x,r)\/pa-;ﬁy(x,f)+§y(x,r)\/p3%'777,(x,7)]>y . (39)
Substituting (37) and (38) into (39), § W, becomes
. T r oY1) ~.1 -bB'Dr—1)
8W2=71er:°<f dx fo dr, fo dry | +v(x,7))e ‘\/pi!;e ’ 2Dar7()c,'r2)
_55*17_71)‘/—*1 —2'Bir—ry) 4
+y(x,7)e pdg—e D v(x,7,) . (40)
14
Performing the y average of the noise function, we have
8W,=lim li dx [Tdr [Tdn[— -
2= lim lim f X fo T fo Tl —2a (1 —7,)]
- TT—T — _p' T—T.
><<x Tr | le opt ‘)\/plle poirnpt
p
t 1 _p'pir
+e—1w (r—-‘rl)‘/paie D TZ)ET x)
L T T —pp'r—r)_ B BGr—1)
=Tlgr; Al}—{neo fdx fo dr fo dTZZGA(Tl—T2)<x Tr | te ""De D
By ¥ NCECRR L) T
—e De D ||x). (41)
We compute the last trace
t -7 o' T—T. - fT—T —p' T— - K —T|—T
Tr(%e—lm (=), TP R pt DDr=r)p —BBI-n) by 1 1o o (27— =)yt
t
_e—D D(ZT—Tl—TZ)BfD) ) (42)
Using the integral variable ¢ and T and the properties of the regulator function a, as before, we obtain
T . T/2 2T T 2Ar—=T) —DDTZ(T—T) 1
8W,= lim lim [ dx [fo dT f_zrdt+f72dT f_Z(T_T)dt 2a,(1)(x | Tr( Le DD
+
_e~ P m(r—r)yty) |x)
r—A? t t
—21im lim [dx [ dT(x | Tr(1e 222~ Tpp’_e—2'P2-Tp'p) | x)
T—o0w A—> oo A2 2
— lim lim f dx[ {x |Tr(%e—ma*(l/AZ)_e_p*ml/AZ))lx)
T—>wo A>w
—(x | Tr(e —M)"z(f—l/zAz)_e—Iﬂm(r—l/uz))|x ). 43)

Let us assume that BB and BB always have finite positive eigenvalues. Thus we can take the limit 7— o, while oo’
and 2D are finite. Then (43) gives

SWZZAH_I.H@ f dx (x | Tr(de -pp"1/A% _ , ~p'BO1/AY)) Ix) . (44)
Using the plane-wave basis'® same as before and Egs. (30) and (31),
oW,= l\ll_{nw }I_.H'; f dx f (‘;:;2 e~ Tr J€Xp ‘/713#3\/;) -Kl; —exp %BpE% # etk
= lim [ dx |1x2 ﬁ( —3,3,lnp)+L-A? | -2 'ﬁ;(—-a#aﬂlnp)-}- S
2 (45)

= o, Aim [ dx(—8,3,Inp+§pA%) .
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Combining the results of §W, and 8 W, we finally obtain

SW=5W,+8W,

D —26
g J ax(—3,3,Inp)

1 2
+ lim == [ dx[(D —2)pA?] . (46)

A— o

Since the second term can be renormalized to zero by
adding a bare cosmological term to the starting Lagrang-
ian,’ §W =0 when D =26.

In conclusion, we have shown by explicit calculation
that the stochastic quantization method can be applied to
the evaluation of the conformal anomaly of Polyakov’s
string theory and, as a result, we have obtained the stan-
dard dimension, D =26, once again. In this calculation,
we directly applied the stochastic quantization method to
the ghost fields without appeal to the bosonization tech-
nique. Note also that we chose a specific regularization
scheme to achieve the result. In the ultraviolet regulari-
zation procedure,'* we take the limit 7— oo first, keeping
A finite. Then the limit A— « is taken. This limiting

process is physically plausible, since the 7 limit is the
equilibrium limit that is necessary to obtain the Euclide-
an Green’s function and the A limit is the regularization
limit. Our assumption for the infrared regularization of
ghost fields is equivalent to that used by Tzani® and Al-
faro and Gavela’ for the infrared regularization of the
Fermi fields. In this paper we have not clarified the quan-
tum origin of the conformal anomaly in the context of
the stochastic quantization formalism, but we have
shown how to apply the stochastic quantization method
to the calculation of the conformal anomaly expressed in
terms of the string path-integral formalism. The quan-
tum origin of the conformal anomaly in the context of
the stochastic quantization formalism and the generaliza-
tion of this approach to the fermionic string theory re-
quire further investigations.
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