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A functional representation for fermionic quantum fields is developed in analogy to familiar re-
sults for bosonic fields. The infinite Clifford algebra of the field anticommutator is realized reduci-

bly on a Grassmann functional space. On this space, transformation groups may be represented
without normal ordering with respect to a Fock vacuum, and a projective representation for the
two-dimensional conformal group is found, which is compared to the corresponding representation
in terms of bosonic fields. When a quadratic Hamiltonian for the Fermi fields is posited, a Fock
space can be constructed after a prescription for filling the Dirac sea is selected. Different filling

prescriptions lead to inequivalent Fock spaces within the functional space. Explicit eigenfunction-
als exhibit the peculiarities of fermionic field theory, such as fractional charge, Berry s phase, and
anomalies.

I. INTRODUCTION

The Schrodinger picture is frequently used to give an
explicit representation for various phenomena that arise
in a bosonic quantum field theory. One considers func-
tionals of the dynamical variable —the field at fixed
time —and realizes the canonical momentum operator by
functional differentiation. Composition is achieved by
functional integration, and a natural inner product may
be defined. In this way one arrives at explicit wave func-
tionals, which describe effects of interest either exactly or
approximately, and physical/mathematical intuition de-
rived from ordinary quantum mechanics may be used to
advance understanding.

An important advantage of this approach is the ability
to discuss kinematical topics in representation theory,
without reference to dynamics. This is to be contrasted
with the usual field-theoretic procedure where the need to
regularize and renormalize kinematical objects, such as
generators of transforrnations, brings in dynamics
through the normal-ordering algorithm (or equivalently
through the operator-product expansion), which is
defined with reference to a Fock vacuum, i.e., to the
lowest eigenstate of some quadratic Hamiltonian. As we
shall review below, within the Schrodinger picture one
may regularize and renormalize intrinsically, without
reference to any vacuum state. At the very least this is a
stylistic advantage —quantum representations in field
theory should be achieved independently of dynamics,
just as in quantum mechanics. Moreover, when there is
no well-defined notion of a Fock vacuum, as in de Sitter
space, the intrinsic method is the only one available.

While the Schrodinger picture for a bosonic quantum
field theory is well understood, ' the analog for a fermion-
ic field theory has not been developed, and is presented in
this paper.

In Sec. II we review and enlarge upon our previous
work on the functional Schrodinger picture for bosonic

quantum field theory, ' while our approach to models
with fermions comprises Sec. III. Since the functional
representation that we introduce for ferrnions is new and
unfamiliar, we illustrate it in an especially transparent ex-
ample: "field theory" on a finite number of spatial points,
i.e., fermionic quantum mechanics.

Although our main purpose is to represent functionally
fermion (anti)commutators without reference to dynam-
ics, we also describe within our formalism fermion dy-
namics governed by quadratic Harniltonians. For these,
the eigenfunctionals may be constructed and they explic-
itly exhibit the field-theoretic peculiarities of fermions:
the need to define a Dirac sea, fractional charge,
anomalies, and Berry's phase. Some further explanatory
remarks are relegated to the Appendix.

II. BOSONIC FIELD THEORIES

A. The function space

We consider at fixed time a space of functionals of
P(x), and view them as kets:

~
4)~%(P). An inner

product is defined by functional integration,

~+)
~
+2) = f &Q+)(p)+2(p), (2.1)

so that the dual space of bras consist of complex-
conjugated functionals: (4

~

~%*(P). Operators are
represented by functional kernels:

0
~

~)-f ny 0(y, y)~(y) . (2.2)

The field operator 4&(x) is represented by a diagonal ker-
nel P(x)5($ —P), the canonical momentum operator II(x)
by (1/i)[5/5$(x)]5(P —P). Evidently, the former acts on
functionals of P by multiplication, the latter by (function-
al) differentiation.

Fock bases in this space and in the dual space are
readily constructed. The Fock vacuum

~

0) is represent-
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I
Q &~det' exp —— 01

(2.3a)
Q=Q„+i Q„Q(x,y) =Q(y, x);

(Q
~

det'" exp ——,
' f PQ'P (2.3b)

[An obvious functional notation is used throughout:

f $Q$= f dxdy))I)(x)Q(x, y)$(y)

ed by a Gaussian functional with specific covariance Q,
which is symmetric, can be complex, but possesses a
positive-definite real part 0„:

inequivalent representations for operators that are nor-
rnal ordered with respect to different bases. As will be
seen below, this means in practical terms that results de-
pend on the covariance O. An equivalent statement is
that given any normal-ordering prescription one may al-

ways perform a Bogoliubov transformation, which
changes results because it is not unitarily implementable,
owing to the infinite number of degrees of freedom.

However, calculations can also be performed directly
on the function space, without choosing a Fock basis. In
this case one is dealing with a "field basis" consisting of
field eigenstates

~ P & with functional 5-function normali-
zation:

and the determinant is functional. ] The reason for the
nomenclature is that the above Fock vacuum is annihilat-
ed by an operator A that is linear in 4 and H:

aexp i ax ~x—
X

The functionals %(P) may be viewed as overlaps,

(2.9)

f Q„-'" Qy+
2

A ~Q&=0.

(2.4)

(2.5)

(2.10)

and the functional kernels 8())I),)t) ) as matrix elements:

(2.11)

A satisfies the annihilation-creation commutation rela-
tions:

[ A (x), A t(y)] =5(x—y),
[A(x), A(y)]=0 .

(2.6)

Higher basis states are polynomials in P multiplying

~

Q&, and they are orthonormalized if linear combina-
tions corresponding to "functional Hermite polynomials"
are taken. This de6nes a Fock space within our function
space.

In our function space, different Fock bases constructed
with different covariances can be inequivalent. This hap-
pens because field theory possesses an infinite number of
degrees of freedom. For consider two Fock vacua with
covariances 0, and Q2. Their overlap is

(2.7a)

Provided the functional kernels can be well defined, one
gets results that make no reference to any preselected
Fock basis; i.e., they are independent of Q.

When specific dynamics is in mind, and a specific
Hamiltonian is given, it may be that a unique Fock vacu-
um is determined by the quadratic part of the Hamiltoni-
an. In this case a "natural" choice for the covariance, for
the normal-ordering convention, is at hand, and one of
the inequivalent Fock spaces is selected. But it seems
preferable to use a framework which yields well-defined
and unique representations without preselecting dynam-
ics or a Fock vacuum. Moreover, there certainly exist
Hamiltonians for which the concept of ground state is
inapplicable. Examples are the Liouville theory, which
does not possess a lowest-energy eigenstate owing to the
exponential interaction, and field theory in de Sitter
space, where the Hamiltonian is time dependent.

0)+02N= —,
' trln

2(Q)„Qi„)'
(2.7b)

B. Representing transformations in bosonic
quantum Seld theory

For example, when the covariances are real and transla-
tion invariant (i.e., the dependence on x and y is through
the difference and the covariance kernel may be diagonal-
ized by Fourier transformation) N is given by

Q, (k) Q2(k)
(2.8)

In a canonical, fixed-time framework for field theory, a
Lie group of transformations acting on fields 4 can be
represented infinitesimally by constructing generators Q,
which typically are polynomials in 4 and II. The genera-
tors effect the field transformation and generically follow
the Lie algebra of the group:

[Qi Qil=&Q(), i) (2.12)

Here 0,.(k) are the Fourier-transformed kernels and V is
the volume of space. Even ignoring the (infrared) infinity
associated in the spatial volume, N/V will still diverge in
the ultraviolet unless 0] and Q2 approach each other rap-
idly at large k. Since the integrand is positive, the diver-
gence sets e to zero, and the overlap (2.7a) vanishes.
Then also all higher states built on

~
Q, & and

~
Qi &, re-

spectively, are mutually orthogonal.
The existence of inequivalent Fock bases gives rise to

Equation (2.12) holds in classical field theory, with Pois-
son bracketing. It appears to hold in quantum theory
with canonical commutation, but this is misleading since
Q is an ill-defined quantum-mechanical operator contain-
ing products of operators at the same point.

To arrive at well-defined generators, a three-step pro-
cedure is adopted. First, the formal expression for Q is
regulated in some fashion so that no ill-defined products
occur: Q~Q . Second, the singular portions of Q
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which are ill defined in the absence of the regularization„
are isolated and removed. For the simple models that we

consider, a c-number subtraction q" suffices. Finally„
third, the regulators are removed from the subtracted ex-

pression, leaving well-defined generators, which we

denote by:Q:, even though the colons do not necessarily
signify normal ordering:

:Q:—= lim(Q" —q") .
R

(2.13)

The generators, :Q:, well defined in the above manner,
continue to generate the infinitesimal transformations on
the canonical variables. However, nonlinear relations
such as (2.12) can be modified. From (2.13) one gets

['Ql ' 'Q2'] ) 'Q(1,2)'+1 I m 7(1 2) (2.14)

If the limit of q [& 2] is nonzero, the quantum-field-
theoretic realization of the Lie algebra acquires an exten-
sion, not seen in the classical theory —this is the origin of
an anomaly.

It still remains to decide how the regularizing subtrac-
tion q" should be determined. In the conventional ap-
proach, a Fock vacuum is chosen, q" is the expectation
of Q in that state and:Q: is normal ordered with
respect to that vacuum. While this procedure may pro-
duce well-defined results, they depend on the covariance
of the vacuum; specifically, the extension in the Lie alge-
bra can depend on the vacuum. An equivalent statement
is that a Bogoliubov transformation changes the normal
ordering prescription and can modify the extension. In
this way, one is led to inequivalent representations.

We propose that the subtraction be carried out in
terms of field states. Because the representation of the re-
gulated generator

and (t 2, as well as on the regulators. So its behavior when
the regulators are removed may be explicitly studied.

Generically, U becomes singular in the absence of re-
gulators, but in the simple models that we consider, the
infinities are confined to a (t)-independent phase, e

R
Thus e "q U (i))„(I)2) possesses a well-defined limit and
provides a representation for the finite transformation.
Since

irq UR(y y ) &y
~

ir(g— —q )
~ y ) (2.19)

C. Two-dimensional conformal transformations

1. Intrinsic method

Quantum-field-theoretic representation for conformal
transformations on two-dimensional space-time illus-

trates well our program, and we review and expand our
analysis of this problem. ' Conformal transformations in
two dimensions form a doubly infinite transformation
group, whereby x+t are taken into arbitrary, and in gen-
eral, different functions of x+t. At fixed time, the
infinitesimal transformation law for the coordinate x,
5fx= f(x), obey—s a Lie algebra given by the Lie
brackets:

the regularizing subtraction for the generator is q
which in our approach is determined intrinsically,
without referring to any Fock space or preselecting any
vacuum. Note finally that when q [& 2] survives in the lim-
it that the regulators are removed, the above construction
yields a projective representation for the transformation
group, with an explicitly determined two-cocycle whose
infinitesimal form, limz q[, 2], is a Schwinger term in the
generator algebra.

[5f,5g ]x = —5(f g)x

(f g)=fg' gf'. —
(2.20a)

(2.20b)

(2.15)

which implements the (regulated) transformation on
states:

e-"~
~

4) J X)P U"(P,P)P(P) . (2.17)

Evidently, U" satisfies a functional Schrodinger-type
equation:

is a functional distribution involving a functional 5 func-
tion, expression (2.15) does not yield useful information
about the singularities of Q" when the regulators are re-
moved. However, one may also consider the functional
representation kernel for the finite transformation,

(2.16)

To obtain a representation in terms of quantized boson
fields„we consider a field operator X(x) that satisfies the
[equal-time] commutation relation

[X(x),X(y)]=(5'(x —y)—:k(x,y)

[One may think of X as ( I/v'2)(II+4'), where II and 4
are canonically conjugate and the dash signifies
differentiation with respect to argument; but this is not
necessary. ] The formal generator of the transformation

Qf
———,

' f dx X(x)f(x)X(x) (2.22)

transforms the field operator 7 as

i
~

U"((t)),$2) =Q $„.5 U (Q(, Q2),
O'T 15

U (y„y, ) ~, =5(y, —y, ) .

5fX 1 [Qf X]=(fX)'

The generators follow the Lie algebra (2.20),
(2.18)

[Qf Qg ]=iQ(f, g)

(2.23)

(2.24)

U"((I)„$2) is a functional of p) and i)I)2 [rather than a
functional distribution], with specific dependence on P)

when the commutator is evaluated formally, without care
about the product of 7 with itself at the same point.
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Q"=Q~ ———,
' f XFX, (2.25)

while removing the regulator consists of passing to the lo-
cal limit:

To regulate the generator, we promote f to a bilocal
function F (x,y) and define,

formal transformations, rather general linear canonical
transformations.

In the field representation for the above quantities, we
represent X by

(y, ~
X(x)

~ y, ) = — —. +pi(x) &(y/ —42) .} I 5
v'2 i 5$,(x)

F(x,y) —,
' [f (x )+f (y) ]5(x —y) . (2.26) (2.27)

F (x,y ) is taken to be real and symmetric in (x,y) and
sufficiently well behaved near x =y to permit all formal
manipulations. Of course, QF no longer generates con-

I

The regulated transformation kernel U (pi, pq)

=U($„$2;F)=(p, ~e
F

~pz) may be found; it is a

Gaussian times a normalization factor NF (Ref. 1):

U(pi, p2', F)=NF exp —f pik&2 exp —' f (p, p2)KF—(p, —p2) (2.28)

N =det ' F' sin —F'~2
F —e (2.29)

K =F ' 9'cot —F
2

(2.30}

P=F'~&kF'~2

In the local limit, KF attains a well-defined expression

(2.31)

KF(x,y)~KI(x, y)= (A, cot —,'A, ) exp —iA f1 dz

f(x) 2~ ', f(z)
1

f (y)

(2.32)

qF
———' trFco,

co(x,y)=
~

k
~
(x,y)= f e 'i"" ~'

~p ~

dr —i (x — )

277

(2.33)

(P means principal value. ) The normalization constant

NF, however, diverges. The divergence resides in an

unimportant constant factor Z (which may be removed

by redefining the measure of functional integration) and

in a phase e ", which is determined in imaginary
r(~F~ i rF):—

:QI.—= lim (QF ——,
' trFco) .

F~f
(2.36)

Notice that the renormalizing subtraction q:—qF has
been determined without choosing any vacuum state.
Since qF is a numerical quantity, independent of P& and

P2, the subtraction is a c number which does not change
(2.23). But the nonlinear commutator (2.24) is modified
as in (2.14), and the Lie algebra of the renormalized gen-
erators acquires a central extension:

[ Qf Qg. ]= ':Q(f g)+ f f'kg

(x —y)'. (2.34}
1= ':Q,Is&.— c f (fg'" gf"'), c =1 . —

[We use the notation
~ ~

on a kernel to represent the
absolute-value kernel, defined through its spectral repre-
sentation by taking the absolute value of the eigenvalues,
as in (2.21) and (2.34).] It follows that

'«4i 4z'F }=Z
(2.35)

possesses a well-defined local limit, and we are led to
define a renormalized generator

(2.37)

Of course, the subtraction is ambiguous up to terms that
are finite in the local limit: these are obviously "trivial"
in the sense that they may be adjusted at will by a finite
redefinition of the generators. But the result for the non-
trivial part of the extension —not removable by
redefining generators —is unique and it is not specific to
the representation (2.27) for X, which may be generalized
to



2210 R. FLOREANINI AND R. JACKIW 37

(Nil&l42) a +pk((l 8(kl 42)V'2 5$,

(2.38a)

provided

pectation of QF in a Fock vacuum of the form (2.3). (For
simplicity, here we take n to be real. ) The problem is

that without specifying a dynamical Hamiltonian, which
determines a unique ground state, the covariance is un-

determined. The expectation value of QF in the state

ln) is

—,'(akp +pka )=k (2.38b) qF =(nlQF ln)

as required by (2.21). One may verify that the representa-
tion kernel which arises from the more general formula
(2.38) possesses a different Gaussian P„Pz dependence
and the infinite constant Z is modified. But the F-
dependent infinity (2.33) is unaffected by the generaliza-
tion (2.38), so the center in (2.37) remains the same. Fi-
nally, note that in our derivation the sign of the center
would change if the analysis of divergences were per-
formed after an unconventional continuation to imagi-
nary ~: ~F~i~F rather than ~F~ —i~F. The latter
choice, which we made, is appropriate to theories with
energy spectra bounded below, but not above.

= —,
' trF(n —(Q —k )p(n+k ) ),

where p is the two-point function for the field:

p(x,y):—(Q
l
p(x)p(y) l

n) = —,'Q '(x,y)

(2.39)

(2.40)

The conventional subtraction therefore depends on Q,

qP = ,' trF(n—+k Q 'k ), (2.41)

as do the conventionally renorrnalized generators:

:QF":—= lim (QF qF } . —
F~f

(2.42}

The 0 dependence survives in the center of the algebra
(2.24). For example, for translation-invariant vacua,

2. Conventional method

The above approach is to be contrasted with the con-
ventional one, wherein the subtraction is given by the ex-

I

Q(x,y) = e 'i'" 'Q(p)
d
2'

the last term in (2.37) is replaced by

(2.43)

g g ] z y z g y
P p P( —y) q+& cq —& — q —& cq+

2 2 2 2

(2.44)

where C is constructed from 0:

c( )
2

I p I
n(p}

(2.45)

With our approach, a unique (up to finite terms) covari-
ance is selected: Q=co, C(p)= lp l.

3. Discussion

We have seen that the intrinsic renormalization in field

space produces a unique result for the center, in contrast
with the state-dependent answer which emerges with the
vacuum subtraction. The reason for the more specific re-
sult is that in the intrinsic approach we have constructed
a representation for the finite transformation group, rath-
er than only for the infinitesimal Lie algebra; i.e., our
generators can be exponentiated.

In the conventional vacuum subtraction method for re-
normalizing the conformal algebra, one may place addi-
tional regularity requirements, which limit the allowed
vacua —the allowed covariances 0—and within this lirn-

ited class, the center is essentially independent of Q. This

further program cannot be carried out in all cases. For
example, in de Sitter space, only our intrinsic method is
available. However, for the specific problem of the con-
forrnal algebra in Minkowski space, the additional devel-
opment is interesting and we now discuss it. We restrict
ourselves to translation invariant Q, so that (2.44) and
(2.45} are relevant, and we assume that no singularities
arise at finite momenta.

First, it is natural to demand that the center be finite;
i.e., the q integral in (2.44) converges. Note that (2.45)
implies that C(p) cannot grow more slowly than

l p l
for

large p; therefore each of the two terms in the q integra-
tion of (2.44} produces at least a cubic divergence. Con-
sequently, the integration variable must not be separately
shifted in the two terms. Indeed if separate shifts were
made, cancellations could be effected and one would con-
clude that the center is proportional to f (fg' gf'). —
This could be removed by redefining the generators —it is
trivial. Growth with p faster than lp l

renders the
center infinite. So if we require the best possible behav-
ior, Q is restricted to behave as

(2.46a)
p~ oo
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and Second, we consider the variance of the generator:

c(s) ~ Is I
. (2.46b) (~Qf }'=&Q

I (Qf —&Q
I Qf I

Q&')
I

Q& . (2.47)

[If Q(p)=n
I p I, the center is as in (2.37) except that

c = —,'(n + I /n ) ) 1 (Ref. 5).]
This is also recognized as the norm of the state:Qf.

I
Q &.

One finds

(bQf) =—' f dx dyf(x)f(y) f e ' '" ' f [C(p+q)C(q) (p—+q)q] . (2.48}

(2.49)

In particular, for a Gaussian with covariance 0, the
transformed state is again Gaussian with transformed co-
variance:

Q~=Q —(Q+k)(Q iK~) —'(Q —k) . (2.50a)

Also the transformed state acquires an additional phase
OF.

e~ =q~ +1m[lnN+ ——' tr ln( Q iK+ ) ]—. (2.50b)

The Fock vacuum of a massless theory possesses A=co,
which is invariant for the SO(2, 1}subgroup of conformal
transformations generated by f (x)=(l,x,x ) (Ref. 1).
More generally, 0 is a representation for the conformal
algebra without center; the latter resides in the represen-
tation provided by the phase 8~ (Ref. 1).

III. FERMIONIC FIELD THEORIES

A development for fermion theories, analogous to the
one in Sec. II for boson theories, is presented here. We
shall discuss charge-neutral Majorana fermions, g=g,
while charged fermions of the Weyl (massless) or Dirac
(massive) variety can be described by a pair of neutral
ones: P=(1/&2)(g +iig ), 2g =(I/&2)(gi —if'). We
shall be concerned with theories in two space-time di-
mensions, i.e., fermions on a line, where a Majorana or

It is natural to demand that this quantity be finite, which
requires C and Q to behave asymptotically as

I p I
(i.e., n

above must be unity).
Thus the two above requirements, the second being

necessary for the operator:Qf. to be self-adjoint in the
Fock space constructed on a vacuum with covariance 0,
fix the asymptotic behavior of the covariance. Clearly, co-
variances that differ only in the nonasymptotic region
give rise to equivalent Fock spaces. Moreover, they pro-
duce centers that differ by trivial terms. This is so be-
cause if 0] and 02 lead to C, and C2 and C, —C2 de-
creases rapidly, integration shifts may be performed in
the formula for the difference of two centers [Eq. (2.44)
with C replaced by C, —Cz]. The result then is trivial as
explained above.

In conclusion, note that our functional transformation
kernel allows computing how states transform under con-
formal transformations:

Weyl field has only one component: f=g(x). Our ideas
may be applied in other dimensions, but regularization
results may differ owing to differences in singularities.
Two dimensions are simplest; moreover these days it is in
vogue because of the string. For an illustration in an
even simpler setting, we shall also discuss fermions on a
space with a finite number of points: /=1((i); this is just
fermionic quantum mechanics.

Iu(x), u(y)] =0, (3.1)

and we associate each functional with the ket

I
%&~%(u). We need a rule for realizing on this space

the operator g(x ), which is Hermitian and satisfies
canonical anticommutation relations:

(3.2)

I li (x ),P(y) I
=&(» —y)—:I(x,y) . (3.3)

In other words, we seek a representation of the (infinite)
Clifford algebra (3.3) in terms of Grassmann variables
(3.1). To this end, we represent the action of g(x) on the
state

I
4 & by

g(x)
I
qi&~ — u(x)+ 4(u)1

2 5u(x)
(3 4)

and thereby satisfy (3.3). To verify (3.2), we must define
an inner product on the functional space with respect to
which the operator in (3.4) is Hermitian.

The inner product involves a Grassmann integration
over u of an element in the functional space, composed
with an element in the dual functional space. For the bo-
sonic case, the dual is constructed by complex conjuga-
tion. Here this will not su%ce, as the following example
shows. It is possible for a functional to be u independent.
If the dual functional were its complex conjugate, the
inner product would vanish, since a Grassmann u in-
tegral over a u-independent quantity is zero. The "state"
would have zero norm, and this is undesirable.

To understand how the dual must be constructed, we
analyze first the problem on a space I x [ consisting of two
points with two fermion operators P(i), i =1,2, satisfying
a Clifford algebra:

A. The function space

Our function space consists of functionals I'(u) of a
Grassmann field u (x) at fixed time,
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[1i(i),1i(j)) =5, (3.5) the dual (3.9) may be written as

(When we model generic continuum field theories with a
discrete example, we use an even number of discrete
points. This is appropriate to the charge-conjugation-
invariant situation with no unpaired, charge self-
conjugate states. ) A specific state

~

1I1I ) is represented by
a function of u (i} that can be expanded in a four-
dimensional basis:

~
VI)~VI(u)=f0++ f, (l )u(i')

%'g(u)= go —gg*, (i)

2

+ —,
' gg2 (i,j ) . 5 (u) . (3.12a)

5u (j)5u (i)

Another way of representing our dual state is the follow-
ing. Introduce auxiliary variables u (i); also define an "in-
termediate" dual functional %s(u ):

+ (u ) =go +g 1 (1)u(1)+g 1 (2)u(2)

+g2 (1,2)u(2)u(1) . (3.12b)

=fo+f 1 (1)u (1)+f, (2)u (2)

+f2(1,2)u(1)u(2) . (3.6)

Then our %*(u) in (3.9}or (3.12a) is given by the Berezin
integral

The f s are numbers with f2(1,2)= —f2(2, 1). The
inner product with a second state

~ ling ) is defined in the
natural way:

lp (u)= f du(2)du(1) exp g u(i)u(&') pg(u )

(3.12c)

+ —gg2 (1 J}f2(' J}

With these definitions, the Hermitian conjugate of u (i)
is 5/5u (i) and g, given by

(3.7)
it(0= — u(0+1 . 5

2 5u i)
(3.13)

This can be expressed as

(%g ~%'&) = f d u %g(u) lp(Iu} (3.8}

is Hermitian.
Of particular interest are the states

~
Q) which are

represented by Gaussian functions:

provided the dual of
~

1Ils ) is represented by

( 1I/
i

4'(u) =g2 (1,2)+g 1 (2)u (1)

—gl (l)u(2)+gllu(1)u(2) . (3.9)

~

Q)~lan(u ) =det ' Q exP[-,'(u Qu )]

1 [1+Q,2u(1)u(2)] .
Q, 2

(3.14)

Equation (3.7) follows from (3.6), (3.8), and (3.9) since
only one Grassmann integral is nonvanishing:

(Here Q is an antisymmetric 2 X 2 matrix, hence it
possesses one entry Q12.) Using (3.9) or (3.12) one finds

that the dual state is represented by

duu 1u 2=1. (3.10) (Q
~

~lan(u)=det ' (Q ') exP[ —,'(uQ 'u)]

Thus the star operation signi6es complex conjugation on
numbers such as f„and g„, but it dualizes Grassmann
variables in a way similar to differential forms. Since the
two-dimensional Grassmann 6 functions is also given by
a product,

[u (1)u (2)+Q12] .
1

QQ*12
(3.15)

Note that these states are not normalized to unity:

( Q
~

Q ) detl/2(Q1/2Qtl/2+ Q
—I/2Qt —1/2) (3 16)

5 (u —u ) =[u (1)—u (1)][u(2)—u(2)),

f d u 5 (u —u)%(u)=V( ), u

(3.11a)

(3.11b)

Also of interest are polynomials in u multiplying
~

Q).
These can be generated from a Gaussian with a
Grassmann source:
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~
Q;f )—:fo+g f, (i)u(i)+ '—g f&(&,J)u(&)u(j)

~

Q)

5
5J(') ' ~ ' 5J( )5J( ')

I

det '~ Q exp[ —,
'

( u Qu ) + (Ju )] (3.17)

The dual is given by

2

(Q,f ~

~ fo +gf I (i) . + —,
' gf f(i,j ) . det ' (Q ')exp[ —,'(u —J)Q '(u —J)]

5J(i) ' . .
' 5J(j)5J(i) ' J =o

(3.18}

Further properties of this formalism are discussed in the
Appendix.

The representation (3.13) of the Clifford algebra (3.5) is
four dimensional, as is seen from (3.6). Consequently, it
is reducible, since a two-dimensional, irreducible repre-
sentation is given by any two Pauli matrices:
f(i) =o'/&2. More generally, a 2n-dimensional Clifford
algebra possess an irreducible matrix representation with
dimensionality 2, while our formalism gives a reducible,
2 "-dimensional representation.

It is possible to give an irreducible representation in
terms of Grassmann variables by splitting the Clifford
elements in two, representing half of them as in (3.13) and
the other half by ( I/~2i)[u (i) 5/5u(i—)], which is also
Herrnitian, satisfies (3.5) and anticommutes with (3.13).
However, for the continuum field theory we do not adopt
this approach for the following two reasons. First, there
is no a priori natural choice for the splitting. [When a
Hamiltonian is posited, one could effect a splitting by
reference to the positive and negative frequencies —this
is essentially the holomorphic representation (see the Ap-
pendix}. But our whole purpose is to develop representa-
tion theory without reference to dynamics. Moreover,
the division into positive and negative frequencies can
change if the Hamiltonian is time dependent, or depends
on other varying parameters. ] Second, as will be dis-
cussed below, the reducibility seems desirable, since it al-
lows making inequivalent choices for filling the Dirac sea
when defining the vacuum of a dynamical model.

For the continuum field theory we use the above results
extended to a continuous infinite of points. A member of
the functional space

(q/
~

~q/(u)
r

= fo —f ff«)
5u (x)

$2
+ —,

' f f2 (x„x,) + 5(u),
u xp 5u x)

(3.20)

(4
~
4&) =f 2)u 4'(u)%&(u)

=(eI
~ e, )' . (3.21)

For a Gaussian state, which we also call a Fock vacuum
in analogy with the bosonic case,

r

~

Q)~+n(u)=det ' Qexp —,
' f uQu (3.22)

the dual is

(Q
I
~+n(u)=det '~ (Q ')exp —,

' f uQ" 'u

(3.23)

Here 0 is an antisymmetric kernel. A polynomial in u,
multiplying the Gaussian

where the functions f„are totally antisymmetric in their
arguments. The inner product is defined by functional
Grassmann integration:

0 f )~%f(u)

=fo+ f f, (x)u(x)

+-,' f fz(x»xz)u(x&)u(x2)+

possesses the dual

(3.19)

~Q,f)= fo+ f f, (x)u(x)

+2 2X1~X2 9 X1Q X2 +

can be generated with a Gaussian source,

(3.24)

~

Q f )~ fo+ f f (x) +—f fi(x, ,x2) + . det Qexp f ( ,'uQu+Ju—)
5J(x) 2 ' ' ' 5J x&}5J(x2)

7J=0

(3.25)

while its dual is generated by
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5 1, 6&&f
I fo+ f f) «) + —f fz(x) ~)5 5J +5J(x) 2 5J xz 5J x(

Xdet ' (0 ') exp —,
' f (u —J )Q '(u —J) J=0 (3.26)

1 . t 1—(g, +i g~), g = —(ti') i g~—),v'2 (3.27)

so their representation is constructed accordingly: func-
tionals depend on u

&
and u z or equivalently on

u=(ii&2)( u)+iud) and u =(1/&2)(u, iu~)—, while
operators are realized by

Of course the field-theoretic dual may also be represented
by a Berezin integral, as in (3.12b) and (3.12c).

The above concerns charge-neutral Majorana fermions.
Charged fermions (g, P ) are described by a pair of Ma-
jorana fields (li)(, li)z),

[Notice that this is as (2.26) with the interchange k~5;
see also below. ] QF satisfies

[QF Q)G]=iQ(F G)) (F,G)= i [F,—G] . (3.33)

i U(u(, uz, rF)= —,
' dx dy u)(x)+1 2 5u, (x)

The representation and intrinsic renormalization of these
quantities is an important application of our formalism.

The kernel U (u „uz,F) that represents the finite trans-
formation satisfies the differential equation

1 y 5u+ t ) (t) = — u
&2 5u

' v'2 5u
(3.28)

5
&& F(x,y ) u, (y)+

u, y

etc.
Because our inner product is numerically valued, there

is no field basis for our functional space: functionals of u
are not overlaps with field states and operator kernels are
not matrix elements. This is unlike the bosonic case.

&& U(u &, uz,'rF)

with a boundary condition at ~=0:

U(u), uz', 0)=5(u, —uz) .

The solution is Gaussian:

(3.34)

(3.35)

B. Two-dimensional conformal transformations

Two-dimensional conformal transformations of the
type discussed in Sec. II C above, act also on fermion Ma-
jorana fields and can be represented by these variables.
The formal generator

Qf ———f dx [li (x )f(x )P'(x ) —g'(x )f(x )g(x ) ]4.

U(u„uz, F)=NFexp — u, uz

l
)& exp — (u )

—u z )EF(u )
—u z )

2

(3.36)

gives the field transformation law

5f4=& l Qf 0]=(f0)' ,' f'0——
(3.29)

(3.30)

XF ——det i sin —,
2

'

EF ——COt —.
2

(3.37)

(3.38)

Qf formally satisfies the algebra (2.24), but suffers from
singularities owing to the coincident-point operator prod-
uct. For a well-defined regularized generator we take

Constants are adjusted in NF so that (3.35) holds. That U
is indeed the correct transformation kernel, satisfying the
composition law

QF= —f /FAN . (3.31}

Equation (3.29) is regained when the antisymmetric Her-
mitian kernel F (x,y ) tends to

f 2)u U(u, , u;F)U(u, u~;G }=U(u), u~;Fo G),
Fo G =F+G+ ) (F,G)+ .

(3.39)

(3.40)

F (x,y )~—[f (x ) +f (y ) ]5'(x —y)
2

=—'[f (x)+f (y)]k(x,y) . (3.32}

can be verified explicitly when F is proportional to 6; the
more general case has been checked up to third order in
the expansion of Fo G.

The definition of the inner product on our space deter-
mines the form of the adjoint kernel:
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U (u„uz, F)=N& exp — u~u2 exp —— (u, —u2)K&(u, —uz)
1 (3.41)

Since F and K~ are Hermitian, the above is just U(u, , u 2; F—); hence, the representation is unitary.
The kernel (3.36) should be compared to the corresponding bosonic one (2.28). The first exponential is similar with

the commutator of the bosonic fields, k, replaced by the anticommutator of the fermionic fields, I=—6. The analogy of
the remaining formulas is brought out, if we similarly replace k in 7 by I, i.e., replace 7 by F. Of course, differences in

the Jacobian factor between fermions and bosons have to be taken into account.
The local limit when the regulator is removed can be as evaluated as in the bosonic case. Kz attains a well-defined

expression
r

1 dA x
Ky (x)y)~Kf (x,y) = cot— exp —i k

&f (x) 2~ 2 y f (z)
1

&f(y)

1 dz 1P cote
&f (x) y f (z) V'f (y)

(3.42)

The normalization factor diverges. The analysis, as in
the bosonic case, is performed for imaginary
~(rF~ i' }, w—here Ny becomes e("'""""'' ' ' and
the antisymmetric kernel F is replaced by the absolute
value kernel. The result, after returning to real ~, is

unaffected by the following generalization of (3.4):

1 , 5au+a*
2 5u

—,'(a'a +aa )=I,

(3.48a)

(3.48b)
—iq+N~~Z exp i e

q+= —-'«/F
/

Z =det ' 2, (3.43)

k= ——,
' trF +(terms that vanish

in the local limit) . (3.44)

The last equality is obtained by manipulations similar to
those of the bosonic case.

To renormalize, we absorb the constant divergence Z
in the definition of functional integration measure, and
remove the divergent phase. Thus Z 'e U(u, , u2, F)
possesses a finite limit, but the composition law (3.39) ac-
quires a trivial cocycle,

%(u)~4~(u)=e ' f 2)u U(u, u;F)%'(u ) . (3.49)

In particular, the transform of the Gaussian (3.22), prop-
erly normalized, is again a Gaussian with transformed co-
variance,

Q~=Q+(I Q)(Q+iK~—) '(I+A), (3.50a)

the last condition being required by (3.3). But also, as in
the bosonic case, the opposite sign for the center results if
the analysis of divergences is carried out after continua-
tion to imaginary ~ in the opposite sense from ours:
~F~i~F rather than ~F~i~F, the latter being the con-
ventional one for theories with energy spectra bounded
below but not above.

The action of the transformation kernel on a generic
state %(u ) is given by

co2(F, G) = —,
' tr(Fo G F G)——k

(3.45)
and an additional phase 0+.

which becomes nontrivial in the local limit, where its
infinitesimal form is 9~ =q~+Im[ln NF+ —,'tr ln(Q+iKy )] . (3.50b)

5co2(f,g) = lim ——tr[F, G]
l k
8

'
/k/

(3.46)

This implies that the renormalized charges

k
:Qf ..——lim Qz+ —,

' trF
fk

i

(3.47)

satisfy (2.37} with c = —,', in agreement with a general
theorem. '

As in the bosonic case this central extension is not sen-
sitive to the way that the field operator is represented.
One can verify that the divergent phase in (3.43) is

As in the boson case [compare (2.50)], Q is a representa-
tion for the conformal algebra without center; the latter
resides in the representation provided by the phase Oz.

Charged fermions give similar results. The formal gen-
erator is

Qf ———1 dx [g (x)f(x)g'(x) —1i' (x )f(x)g(x)]
2

(3.51)

and the transformation kernel is modified from (3.36) in
an obvious way, due to the doubling in degrees of free-
dom:
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U(u &, u&, u&, uz', F)=NF exp — (u &uz —uiu~) exp & (u
&

—uz)K+(u& —u&) (3.52)

As a consequence the center on the algebra is twice the
Majorana value, i.e., c = 1 in (2.37) (see Ref. 11).

invariant model:

h (x,y}=i5'(x —y) . (3.62)

C. Fock-space dynamics

In the previous subsection our discussion of the two-
dimensional conformal group exemplified representing
transformation groups on fermions without reference to
any specific dynamical Hamiltonian. Now we examine
dynamical second-quantized fermion theories in our for-
malism. This we do in order to explore further properties
of our fermionic Schrodinger picture and also to give ex-
plicit realization to some of the peculiarities of fermion
field theory: Dirac sea, fractional charge, anomalies, and
Berry's phase.

Let us begin by recalling the algebraic structures asso-
ciated with the field-theoretic Majorana-Weyl Hamiltoni-
an:

I
0) =det ' Qexp —,

' f uQu (3.63)

where 0 is antisymmetric. The eigenvalue equation

HIQ)= —,
' f u+ h u+ IQ)=E~IQ)

(3.64)

requires that

(I —0)h(I+0) =0 (3.65)

We now seek eigenstates of H within our Grassmann
functional space. For the Fock vacuum we choose a
Gaussian,

H= —,
' f 1(hP .

and the vacuum energy is
3.53

The "first quantized" Hamiltonian h is antisymmetric
and imaginary,

Ev= —,
' tr~A (3.66)

h (x,y) = —h '(x,y), (3.54)

with a complete, orthonormal set of "first quantized"
eigenmodes:

hf~ =~f~

f dx f& (x)fz(x) =5(A, —A.'),

f dA f&(x)fz(y)=5(x —y) .

(3.55)

(3.56a)

(3.56b)

(Whenever appropriate, summation over discrete eigen-
values and replacement of the 5 function by a Kronecker
delta is understood. ) According to (3.54), the eigenvalues
are paired in sign,

hf~ = —"f~ (3.57)

and we assume that there are no isolated vanishing eigen-
values. The field operator may be expanded in the first-
quantized modes:

P(x)= f dk, azfz(x), (3.58)

az ——a z
——f dx fz(x)g(x),

[a„,a ~
J
= Ia„,a ~

I =5(A, —A. ') .

(3.59)

(3.60)

The mode operator a& is a shift operator for the second-
quantized Hamiltonian:

[aq, H]=iraq . (3.61}

Hence, the spectrum of 8 is unbounded from above and
below, unless a& annihilates states. Of course, all this is
familiar, and is realized, for example, for the Poincare-

Excited states are polynomials in 1( operating on
I
0),

which in our formalism become polynomials in
—,'(I+0)u—:u+ multiplying the Fock vacuum.

We now show that 0 is not determined uniquely by
(3.65). Take 0 to be simultaneously diagonalized with h,
so (3.65) requires 0 =I; in the A, representation, h is di-
agonal and we have

0(A, , k') =0(A, )5(A, —A,'),
0(A, ) = —0( —A, ),
0(k) =+1,

(3.67a)

(3.67b)

(3.67c)

1, 5—ff; u+ IQ)

—[1+0(A.)] f flu I
0) . (3.68)

From (3.68) it is seen that a& annihilates
I
0) whenever

0(A, ) is —1. Thus choosing 0 is equivalent to choosing
the prescription for filling the Dirac sea to define a field-
theoretic vacuum. When 0(A, )= —1 for positive A, and
+ 1 for negative A, , i.e.,

0(A, ) =e( —A, ), (3.69)

where the variation in sign can occur for any matrix ele-
ment. In other words, there is an infinity of solutions for
0 depending on the different ways one assigns signature.

To understand further the form of 0, and to select one
from the infinity, we compute the effect of a&.

a~
I
0) = f f~f I

0)
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a i annihilates
~

Q ) for A, & 0 but not for A, & 0. This is

the conventional choice of filled negative-energy sea, and
corresponds to

E,= '-f—-d~~,
2 0

(3.70)

where Vis the volume of space.
More generally, —,'[I+Q(A. )] is the filling factor, van-

ishing for empty states. Choices other than (3.69) for Q
are also possible, corresponding to other filling prescrip-
tions, but they would be unconventional, and would in

general define inequivalent theories. Note that the over-

lap between two vacua is proportional to

(Q,
~
Qq) ~ det' (Q, +Q2) . (3.71)

Since 0
&

and Qz can differ only in the sign of one or more
eigenvalues, 0&+02 has a zero eigenvalue. Whether the
overlap vanishes, depends on the weight of the zero in

0,+02. If different signs are associated to a discrete
mode in 0& and 02, then the determinant certainly van-

ishes; for continuum modes, a sufficiently infinite number
of modes must be differently filled between 0& and 02 for
the determinant to vanish. When the overlap of two va-
cua vanishes, so will the overlap between corresponding
excited states, and the Fock spaces —the different
theories built with sufficiently different Q s—are ine-
quivalent.

Let us further observe that for the energy of states
built by multiplication of

~

Q) by P will in general de-

pend on Q. But repeated application of the shift operator
a& will result in the same energy spectrum being attained
regardless of the choice of Q. Hence, there is a large de-
generacy in our formalism —this comes from the reduci-
bility of our representation. However, we see no
difficulty with this (see below); on the contrary, the de-

generacy rejects the true circumstances that in a fer-
mionic quantum field theory, with a given Hamiltonian, a
prescription for defining a vacuum must also be chosen.

Therefore, in our Schrodinger picture the first step for
defining a theory, even with specific dynamics in hand, is
choosing A. But there remains yet another subtlety,
another degeneracy. As mentioned before, higher Fock
states are polynomials in —,'(I +Q)u—:u+ multiplying the
vacuum Gaussian. However, we may also consider poly-
nomials in —,'(I —Q)u —= u . Because —,'(I+Q) are projec-
tion operators, polynomials in u+ are orthogonal to
those with u . Also multiplying by u does not affect
the energy of a state. But there is no operator construct-
ed from f which can produce factors of u . [The projec-
tion u arises when

~

Q ) is operated on by

( I/&2i)(u —5/5u); but this combination does not corre-
spond to any operator constructed from
g-(I/&2)(u +5/5u). ] Hence, we may safely ignore
states involving polynomials in u, provided we

remember to consider only operations with the Fermi
fields. (Note, however, that the Gaussian does contain
u, since —,'uOu =u u+, consequently, by varying 0
one does produce polynomials in u —this remark will

be iinportant in our discussion of Berry's phase below. '
)

As a final check of our formalism we compute the

= —,'(I —Q)(x,y) . (3.72)

For the Hamiltonian (3.62), and the choice (3.69) for the
vacuum, this is J (dp/2')e ' '" '0(p), which is the

conventional result.
In summary, let us contrast our fermionic Schrodinger

picture with the familiar bosonic one. In both cases the
functional space contains inequivalent Fock spaces.
Choosing a specific quadratic Hamiltonian can select a
specific Fock space for bosons, but not for fermions. In
the former case, there is no sign ambiguity for the Gauss-
ian covariance 0 because we require convergence of a
Gaussian normalization integral, hence ReQ~O; in the
latter, the integral is Grassmannian, all integrals con-
verge, and the sign of 0 is not fixed. Stated differently, a
particle state is localized in the bosonic functional space,
while there is no concept of localization in the
Grassmann space. A unique fermionic Fock space re-
quires prescribing a filling factor and restricting to prop-
erly projected polynomials in —,

' (I+Q )u.

D. Anomalous commutators

The choice for filling the Dirac sea, which in our for-
malism corresponds to a choice for the covariance 0 of
the vacuum state, affects the symmetry behavior of fer-
mions, and gives rise to phenomena not present in the
classical theory, for example, Schwinger terms in current
commutators.

As an example we shall discuss within our formalism
two-dimensional Weyl fermions, described by a Hamil-
tonian containing one-component, charged fermion fields:

H= J Qhg. (3.73)

As a consequence of the canonical anticommutator

( 1t (x), P(y) ) =5(x —y ),
the charge density

(3.74)

(3.75)

defined through the commutator so that it is odd under
charge conjugation (p~f ), formally commutes with it-
self, even at different points; but this is false, owing to
operator-product ambiguities. As soon as a definition of
the Dirac sea is fixed by selecting 0, the commutator ac-
quires an anomalous c-number term.

Using the realization (3.28) for the operators f and g
to solve the Hamiltonian eigenvalue problem, we find a
Gaussian ground state,

~

Q)=exp j u Qu (3.76a)

where as before the covariance satisfies (3.65) and

0 =I. (3.76b)

Hence the normalization factor in (3.76a) is a phase, and
has been ignored.

For a well-defined regularized charge density we take

equal-time correlation functions. Following the rules we

have put forward, it is easy to show that

p(x,y):—( Q
~

P(x )it (y)
~

Q )
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jF= ,' -u (x)+ F(x,y) u (y)+
5 5

5u x) '
5u t(y)

——,
' trF . (3.77)

The symmetric Hermitian kernel F(x,y) tends to an arbitrary diagonal kernel f (x)5(x —y) in the local limit. The ac-
tion of (3.77) on the vacuum is easily computed:

jF ~

Q&= —,
' trFQ+ —,

' f u (I —Q) F(I +Q)u
~

Q& . (3.78)

In the same way one can compute the action of a second charge operator jG on jF ~

Q &, and then evaluate the commu-
tator of the two. The result is

r

[jFjG] l

Q&= '«[-F, G]n+ 'f -u'(I Q)[F—, G](I+Q)u
~

Q& . (3.79)

» the local limit, the off-diagonal part vanishes, while the diagonal part, proportional to
~

Q &, remains:

[jf,jg] ~

Q&= ——' f dx dy f(x)g(y) f e '~'" ~' f Q q+ —Q q— [Q&. (3.80)

We have taken the translation-invariant case, and Q(p) is

the Fourier-transformed covariance, antisymmetric with
square one. Provided Q(p) does not alternate between
+1 ad infinitum, the q integral converges For .an evalua-
tion we write that integral as

f "q f' dz&n q+I'-z2' —1 2 2

Q'(p) = —2 g e„5(p —p„), e„=+1 . (3.81}

Thus the q and z integrations leave —cpln. , where
c —=g„e„=+1—the value depends on the direction of
alterations, the total number of them being odd, since
Q(p) is. an odd function. This gives finally

[j(x),j(y)]= 5'(x —y) .2' (3.82)

Positivity of the energy spectrum requires c = 1, which is
the answer obtained with the conventional choice
Q(p)=e( —p), and coincides with the usual Schwinger
term in the commutator of charge densities for Weyl fer-
mions, whose current components coincide in the time
and space directions.

Q'(p) is a superposition of 5 functions with alternating
signs, concentrated at the finite number of points where
Q(p) jumps between —1 and + 1:

Let us note that here the intrinsic method does not give
definite results. The transformation kernel with the regu-
larized generator (3.77) is of the same form as in (3.52),
times an additional phase factor e' '" coming from the
last term in (3.77}. Also, F is now symmetric. Upon tak-
ing the local limit, the kernel in the Gaussian attains a
well-defined expression

KF(x,y)~Kf(x, y)= cot 5(x —y) .f (x)

The normalization factor for imaginary v ise"'"""" 2+ '. Because F is symmetric, tending to an
arbitrary diagonal kernel in the local limit, there does not
seem to be any well-defined way of extracting a unique
finite part. Thus we see that the Schwinger term in the
commutator of fermionic current densities is not deter-
mined intrinsically, but by the form of the Dirac sea —a
fact established over a half-century ago. '

Finally, let us consider the commutator of conformal
generators of Sec. III B by the same above method that
gives the current commutator. For charged Weyl fer-
mions, the form of the commutator anomaly is the same
as (3.79) except that the kernels F and G now are the an-

tisymmetric ones, appropriate to the regularized confor-
mal transformations; see (3.32). We find in the local limit
the extension

dJ —i (x — )

277
—,
' tr[F, G]Q= ——,

' f dx dy f(x)g(y) f e '~' ~' f q Q q++ —Q q ——
2' 2 2

(3.83)
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The q integral is rewritten as y„=f dr.A„(r), (3.85)

q2 dz gt q
2K —1 2 2

aA'„(ri=i «;r, «;r) .
Br'

(3.86)

with Q' as in (3.81), this leaves

jj py 2

12m

An equivalent formula can be given in terms of the curva-
ture

(3.87}

where as before c—:gn e„. Thus

(3.84)

integrated over any surface enclosed by the adiabatically
evolving closed path:

f dyij yij (3.88)

The connection A' undergoes a gauge transformation

The second term is trivial, and may be reabsorbed in a
redefinition of the conformal generators. The first agrees
with (2.37), except now c =+I, with the positive value re-

quired by positivity of the energy spectrum. This is
reproduced when Q(p)=e( —ji).

For charged fermions one may also obtain c & 1 by us-

ing "improved" generators, :Qf.+a f fj'. These efFect a

conforrnal transformation supplemented by a U(1) gauge
transformation, 5&/ = (ff}' ( ,'+i a )—f 'P—, and satisfy

(2.37) with c = 1+12a & 1. The device of increasing the
center by "improving" the generator is analogous to what
can be done with bosons, but is not applicable for the
Majorana fermion, since there the improvement (j) van-
ishes. So we can represent conformal algebras with c = —,

'

and c ) l, but thus far we have not found field-theoretic
representations for the remaining discrete series between
—,
' and 1 (Ref. 10).

E. Berry's phase and chiral anomalies

Berry showed that there is a correction to the quantum
adiabatic theorem as stated in textbooks. ' Consider a
Hamiltonian h (r) depending on parameters r(t), which

evolve in time periodically and adiabatically: r(T) =r(0).
A state that coincides with an instantaneous eigenstate of
h,

~
n;r(t}), at t =0 evolves as an instantaneous eigen-

state for all times, but it acquires a phase, which after the

cyclic evolution is exp[ i fad—t e„(r(t))+iy„], where

e„(r) is the instantaneous eigenvalue and y„ is Berry's
correction expressed as an integral over a connection A „:

A'„~A'„— (3.89)

when phases of the eigenstates are changed,

~

n;r&~e'e
~
n;r&, (3.90)

h'—= . h .
ri

(3.91a)

(3.91b)

The above holds when the state
~
n;r) is nondegen-

erate. In the case of degeneracy, one generalizes to a
non-Abelian connection:

A, ;, I«,««;r . «, b;r) .
Br'

The non-Abelian curvature

(3.92)

~n;ab = IAn;ab 'An;ab lAnIAn )abdr' ' Brj
(3.93a}

may still be represented in terms of matrix elements of
derivatives of h:

but Berry's phase is gauge invariant. As an alternative to
the formulas (3.86) and (3.87) involving variation of wave
functions, the curvature V„may also be presented in
terms of matrix elements of operators in the theory:

(n;r
~

h'
~

n';r)(n';r
~

h j
~
n;r)

2
l~J I

(e„—e„)

(n, a;r
~

h'~ n', c;r)(n', c;r
~

hj
~
n, b;r)

2
l~j )(e„—e„)

(3.93b)

Here a, b, and c label the degeneracy.
It has further been shown that anomalous gauge theories, such as Weyl fermions in an external background gauge

field, exhibit this phenomenon. ' The analogy is drawn between the operators in h and the fermion field operators, the
parameters r and the background gauge potential. The Fock states of the field theory —the analogs of

~
n;r )—depend

on the background gauge potential, taken in the Weyl, A =0, gauge. Moreover, when the potentials are varied
through a gauge transformation —this may be viewed as an adiabatic change —the Fock states of an anomalous theory
acquire Berry's phase.

In the field-theory application with a nondegenerate ground state,
~
Q; A), one is dealing with an Abelian connec-
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tion, which is a functional of the background potential A, with "components" labeled by i (spatial indices), a (group in-

dices), and x (spatial coordinates):

A,'(x;A)=i 0;A . 0,;A6
5A,'(x)

(3.94)

The Abelian functional curvature is

Vb(xy; A) = . A'&(y; A) — . A', (x; A)
6 j 6

5A,'(x) 5A](y)

and may also be presented in terms of current matrix elements,

&."&(x,y; A)=i g (A; A
~
J,'(x)

~
n; A)(n; A

~
J](y)

~

0; A) (i, a—,x~j,b, y),1

„~0 (E„—Ep)

(3.95)

(3.96a)

the current being the variation of the Hamiltonian:

5H = —J, (x) .
5A, (x)

(3.96b)

h ( r ) = —,
' o"r . (3.97)

It is interesting to study this effect in our formalism.
However, before presenting field-theoretic results, we ex-

amine first a fermionic quantum-mechanical problem—
Berry's paradigm for his phase. ' This we do to clarify
some of the issues that arise within our representation
(3.4) for fermionic variables.

Let h ( r ) be h;,fjo
——0,

fj QJ

(3.103a)

(3.103b)

and operates on functions of three Grassmann variables
u (i). Evidently, this is an eight-dimensional space
with basis: 1, u '= u (i), v'—= —,

'e'~"u (j)u (k), and
w —= ,'e'~"u —(i)u(j)u(k); u' and v' are duals of each other
and so are 1 and w. Therefore, there is a fourfold degen-
eracy in our description, which is reducible.

Notice that in contrast to our previous quantum-
mechanical example in Sec. IIIA, here we are dealing
with an odd number of variables, hence the "first quan-
tized" Hamiltonian h; necessarily possesses a zero mode:

The eigenvalues of (3.97) are +r j2, r =
~

r ~, and the cor-
responding eigenvectors +;r) are readily constructed.
From (3.86) and (3.87) one finds a Dirac monopole con-
nection, with curvature

The other first-quantized eigenvalues are +r:

h; f~~ =+rf'

f' = (8+i/ ) .v'2

(3.104a)

(3.104b)
~l.

Vg=+ 2E
y2

(3.98)

h =-,'g(i)h;, 6(j),

Aij =l Eil,&y {t)

(3.99a)

(3.99b)

This also follows directly from (3.91).
In order to apply our formalism to this problem we

consider a Hamiltonian with three fermion variables g(i):

(r, 8, and (() are spherical three-dimensional orthonormal
vectors. ) Because of the unpaired zero mode, this "field
theory" behaves differently from what we have seen be-
fore. In fact, the example models vacuum degeneracy
and fractional charge in continuum field theory, which
arise when a zero mode is present. '

The fourfold degenerate eigenstate of (3.99) with nega-
tive eigenvalue r l2,

~

—,a;r), a—=1,2, 3,4, is
represented by

[ 6(& ), Q( j) I =6;

is realized irreducibly:

(3.100)

(i)=
v'2 (3.101)

That this coincides with Berry's model is recognized
when the canonical anticommutator ~

—,1;r ) = —( 1+i r v), .1

v'2

~

—,2;r)=f v,
1

~

—,3;r) = —(w —ir u),v'2

/

—4;r)=f .u .

(3.105a)

(3.105b)

(3.105c)

(3.105d)

P(i) = — u (i)+1 . 6
v'2 fiu(i)

(3.102)

With this two-dimensional representation for g(i), (3.99)
coincides with (3.97).

On the other hand, in our formalism P(i) is given by

The four states with positive eigenvalue,
~
+,a;r), are

obtained from the above by application of the creation
operator g, f'+ P(i) [We do no.t use the previous Gauss-
ian notation, which needs elaboration in the presence of
zero modes. Two linear combinations in (3.105) are
Gaussians; the other two are obtained by applying the



37 FUNCTIONAL REPRESENTATION FOR FERMIONIC QUANTUM FIELDS 2221

(3.106)

Nevertheless, the curvature V, determined from A by the
non-Abelian formula (3.93a) is Abelian:

~k

Vg = + -'e""—
2 2r

(3.107)

zero-mode operator g, r'P(i) to Gaussians. ]
Because of the degeneracy, Berry's connection is non-

Abelian:

general takes one out of the Fock space of the theory, by
producing expressions that depend not only on the pro-
jected Grassmann field u+, but also on the complementa-
ry u . On the other hand, formula (3.96) for the curva-
ture involves matrix elements of the current operator
J—:—6H/6A. This does not take one out of a definite
Fock space.

We consider two-dimensional Weyl fermions (one com-
ponent complex spinors) interacting with an external
electromagnetic gauge field, which in the Weyl (A =0)
gauge possesses one component A. If the first-quantized
Hamiltonian without electromagnetism is h(x, y), the
Hamiltonian for the field theory is

H=f Ph„f, (3.108)
This rederives (3.98) within our formalism, and shows

the Berry's connection and curvature belong to a U(1)
group, since the degeneracy is an artifact of our represen-
tation. Therefore, there is a gauge —a linear combina-
tion of states (3.105)—such that the matrix connection
(3.106) factorizes into a function times a four-dimensional
unit matrix, putting into evidence the essentially Abelian
nature of the connection. This may be verified by explicit
and lengthy computation. But is is easy to circumvent
the unnecessary complications of the artifactual non-
Abelian structure, by calculating the curvature directly
from (3.93b), which involves only matrix elements of
operators and not variations of states. (It is the variation
of the state which connects to the degenerate copy
spaces. This is avoided by varying operators. See the dis-
cussion at the end of Sec. III C above. ) The computation
from (3.93b) is especially simple, because the sum in-
volves only one state and thus (e„e„)=r .—Agreement
with (3.98) is readily obtained.

We now turn to the field-theoretic example. From the
above quantum mechanical exercise we know that the de-
generacy of the representation gives rise to a connection
which appears non-Abelian in the space of degenerate
states. On the other hand the curvature is Abelian. The
formula for the connection (3.94) involves variation with
respect to parameters —the vector potentials. This in

hz(x, y)=exp ie f— A(z)dz h(x, y) . (3.109)

[For the familiar case (3.62), h„(x,y)=i5'(x —y)
—eA (x)5(x —y).] With the representation (3.28) for the
charged fermion fields, the ground state is Gaussian,

~QA)=exp f u'Q„u (3.110)

with the covariance Q „satisfying the usual equation

(I Q„)h„(I—+Q„)=0 . (3.111)

(I—Q)h(I+Q)=0 (3.112)

then (3.111)is solved by

Q „(x,y) =exp ie f —dz A (z) Q(x,y)
V

(3.113)

and it also follows that Q„=I, since 0 =I. Therefore,
the ground-state wave functional is

The solution to (3.111) is presented in terms of the ap-
propriate covariance in the absence of interaction. If 0
satisfies

~
Q; A ) =N(A) exp f dx dy u (x) exp ie f d—z A(z) Q(x,y)u(y) (3.114)

Si~~e Q„=Q„=Q„',the normalization factor N( A) is a phase whose form we cannot determine but which can de-
pend on A.

The computation of Berry's phase now proceeds as follows. From (3.114) we have

~
Q; A ) = i lnN(A)+e f dy dz u (y)Q& (y, z)[8(y —z)8(y —x)8(x —z) —(y~z)]u(z)

~
Q; A ) .5

5A (x) ' 5A (x)

(3.115)

The second term, being off-diagonal, does not contribute to ( Q; A
~

i 5/5 A (x)
~
Q; A ), which therefore is

[i5/5A(x)]lnN(A). This however does not mean that Berry s connection is a pure (functional) gauge, with vanishing
(functional) curvature. Rather we recall from the quantum-mechanical example that the reducibility of our representa-
tion gives rise to degeneracy in our states and consequently a non-Abelian connection, even though the curvature is ulti-
mately Abelian. More specifically, we see from (3.115) that the effect of 5/5A on

~
Q; A ) produces terms quadratic in

u, where both projections u+ and u occur. However, we have no effective way of labeling the degeneracy and calcu-
lating the non-Abelian connection.
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Fortunately, the above obstacle may be circumvented by proceeding directly to the curvature as given by (3.96). The
sum over the intermediate states now extends over two-particle states; thus, for the case h (x,y) =i 5'(x —y),

&(x y; A)=e'i f",[«A
I
0'(x)0(x)

I

k p &«p
I
0'(yW(y)

I
Q» —(x

(k+p)
This gives

2

V(x,y; A)= — e(x —y)
4m

(3.116)

(3.117)

in agreement with previous evaluations. '

Please observe that apart from the (unknown) normalization, N( A), the vacuum is gauge invariant, in the sense that
a gauge transformation A ~3+8' is compensated by u ~e " u. The anomalous Berry phase arises from the fact
that an adiabatic change in A takes one out of the selected Fock space. This may also be seen by operating on

1
Q; A )

with the Gauss-law generator Q(x):

Q(x) = —.
1 d 5 ——,'[g (x),g(x)] .

ie dx 5A(x)

The effect of each of the two terms on
1
Q; A ) is

(3.118)

1 d 5 1 d lnN(A)+ f "y[u (x)Q~(x y)u(y) —u (y»~(y x)u(x)]
i dx5Ax) ' iedx5Ax

(3.119a)

—,'[g (x),g(x)]1Q; A ) = —,
' f dy dz ut(y)[5(y —x)—Q„(y,x)][5(x —z)+Q„(x,z)]u(z) 1Q; A ) . (3.119b)

The first term involves variation with respect to parameters and gives rise to both physical and unphysical projections

of u and u . When combined with the second term, there remain only the unphysical projections u (I+Q) and

(I —Q)u:

Q(x)1Q;A ) = —. lnN(A) ——' f dy dz u (y)[5(y —x)+Q(y x)][5(x —z) —Q(x z)]u(z) 1Q;A ) .
ie dx 5A (x) (3.120)

Therefore in our formalism, the Gauss generator fails to
leave the vacuum invariant by taking that state out of the
properly projected Fock space.

Also we may operate with a second Gauss generator,
Q(y), on (3.120). By taking the antisymmetric combina-
tion and regularizing, the expected anomalous commuta-
tor is found:

[Q(x), Q(y)]= 5'(x —y) .2' (3.121)

IV. CONCLUSION

We have constructed a Grassmann functional repre-
sentation for fermion quantum fields, which is analogous
to the familiar Schrodinger picture for boson quantum
fields. We employed a reducible realization for the
infinite, field-theoretic Clifford algebra in terms of
Grassmann variables. Within the formalism we found a
projective representation for the two-dimensional confor-
mal group, with central extension in its Lie algebra c = —,

'

and c ) 1, whose form coincides with that of the bosonic
representation, except for variations arising from
differences between the bosonic and fermionic canonical
structures.

The reducibility of the representation gives rise to ine-
quivalent Fock bases in the functional space, even when a

specific Hamiltonian dynamics is selected. This allows us

to survey the manifold of all Fock spaces. ' For quadra-
tic Hamiltonians, we determined the Fock eigenstates,
and were able to identify the peculiarities of Fermionic
quantum field theory: Dirac sea, fractional charge,
Berry's phase, and the anomaly phenomenon. While
none of these results are new, our formalism provides a
fresh point of view, in terms of explicit formulas. For ex-

ample, the anomaly phenomenon was seen to arise be-
cause the Gauss generator takes the Fock vacuum into an
inequivalent Fock state.

We envision further applications of our formalism.
The representation for discrete series of conformal trans-
formations' remains an open problem. We wish to un-
derstand two-dimensional boson-fermion equivalence in
this framework. Supersymmetric theories, in particular
representations of the two-dimensional superconformal
group, are being studied. '

While only linear dynamics was considered in this pa-
per, it should be possible to analyze simple nonlinear
theories, such as the Thirring model. Systems with non-
trivial interactions can be studied by variational methods,
where explicit trial wave functionals can now be con-
structed for fermions as well as bosons. '

Note added in proof. We have learned that a reducible
representation of the Clifford algebra, similar to ours, has
appeared in the mathematics literature [L. Gross, J.
Funct. Anal. 25, 162 (1977).]
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APPENDIX

There are other functional representations for fermion-
ic quantum fields in terms of Grassmann 6elds. They
differ from ours in that they provide an irreducible repre-
sentation of the (infinite) Clifford algebra (3.3), in contrast
with our reducible representation. This is achieved by a
variety of splittings of the quantum field g, as explained
in the main body of our paper.

In the holomorphie representation, described, for ex-

ample, by Faddeev and Slavnov, ' the splitting is

achieved by decomposing g into annihilation and
creation operators and representing the former by
Grassmann multiplication and the latter by functional
Grassmann difFerentiation.

The splitting may be performed in position space when

the fermion operator possesses more than one com-
ponent. Thus for charged fermion fields g, composed of
two Majorana fields f, and 1(12, one may represent g, by

(I/~2)(u+5/5u ) and $2 by ( I/v2i)( u—5/5u ), giving

g=(1/v'2)(itt, +i1(/2) as u and l( as 5/5u This. is the
choice made by Barnes and Ghandour who also intro-
duce the dual space (3.9). Baaquie adopts a related ap-
proach to spinors that possess an even number of com-
ponents, which are split into two sets and are represented
irreducibly.

Clearly neither of the last two methods is applicable
for a one-component fermion, while the holomorphic rep-
resentation is unavailable if one avoids choosing a
creation-annihilation decomposition.

A representation identical to ours for fermionic quan-
tum mechanics is described by De&'itt. ' But the inner
product is quite different; it is Grassmann valued.

To elaborate further on our definition for the dual of a
vector introduced in Sec. III, Eqs. (3.12) and (3.20), we

show a that a similar definition can also be used in a more
familiar case: the Hilbert space of square-integrable
functions on the infinite line.

A complete basis for the space is given by harmonic-
oscillator wave functions, with arbitrary frequency ~,

' 1/2
—~x 2/2

~
n )~u„(x)= e " H„(v'cox),

v'7r 2"n!

n ~UnX = +2cij

2
e cilx /2 (X )

+27760 2 n1

1/2

H„(v cox) (A4)

and define the inner product (rn
~

n ) to be the expression
given in (A3), which can also be written as

& m
~

n ) = f dx u.'(x)u„(x) (A5)

provided the dual of
~

n ) is represented by

(n
~

~u "(x)=(i/2')" +' e "" u„(x)
1/2

)
1/2

2 '

co

n!
e "H„(v'cox) .

(A6)

Using the generating formula for the Hermite polynomi-
als,

H„(z)=( —I )"e' e
8z

one can rewrite (A6) as
' 1/2

u„(x)=( —1)"
nr

6 ' N

GX

2
e

—COX (A7)

Since the above is a basis and a dual basis for any value
of the frequency, we may let co pass to infinity. The rep-
resentation of

~

n ) then becomes

n

t
n )~u„(x)=

( v'2~ n!)'"
with the dual given by

' 1/2

(n
~

u„(x)=( —1}" v'2n

nr
d tl

5(x) .
X

(A9)

These are the one-dimensional bosonic analogues of the
definitions used in Sec. III.

In particular, with (A8) and (A9) one can check that
the dual of a Gaussian (ReQ & 0,

~
fI

~
& 1)

~

II ) qy ( ) Ill/4 xnx/2 (A10}

Out of this basis, a different complete set of vectors

~

6') for the Hilbert space can be defined; the new states
are still orthonormal but with respect to a different scalar
product. We choose

' n+1/2

where H„are Hermite polynomials. The vectors
~

n ) are
orthonormal with respect to the standard inner product:

(f ~ g )—:I dx f"(x)g(x), (A2)

(m
~

n ) = f dx u (x)u„(x)=5 (A3)

is

(II
~

y ( ) (II» —1)1/4 —x1n )x/2

with
—1/2

(A11)

In this case, the dual basis vectors, represented by the
complex-conjugated functions, can be identi6ed with the
original basis, and the space coincides with the dual
space.

&n
~
n) = [(nn» }-'"—(nn»)'/2]

2&
(A12)

The analogy with (3.14), (3.15), and (3.16) is apparent.
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