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Motivated by the theory of anomalies, the theory of classical dynamical systems described by
quasi-invariant Lagrangians is reexamined in the present paper. A mathematical structure similar
to the one describing anomalies in quantum field theory is found in systems for which an invariant
Lagrangian description requires central extensions of the symmetry groups of the equations of
motion. The case in which the symmetry group does not allow for nontrivial central extensions is

also discussed.

I. INTRODUCTION: QUASI-INVARIANCE

In the study of dynamical systems described by a La-
grangian L(q,q) there are many cases where both the
Lagrangian itself and the equations of motion derived
from it are invariant under a point-transformation group
G acting on the coordinates with its lift acting on the ve-
locities as well.

It happens ever so often that we have a symmetry
group G acting on (q,q) which leaves the equations of
motion unchanged but does not leave the Lagrangian in-
variant; instead, transformations change it by a total time
derivative. These cases deserve special study as they are
likely cases of central extensions of the group G. The
best known examples of this are mechanical systems
which have equations of motion which are invariant un-
der the 10-parameter Galilei group but for which the La-
grangian is only quasi-invariant, changing by a total time
derivative. In these cases we know that we have to con-
sider the central extension into the 11-parameter extend-
ed Galilei group, the eleventh generator corresponding to
the total mass of the system. We shall discuss the sim-
plest of such Galilei systems, the free particle, in Sec. III.

The general situation is as follows. (As for notations,
we follow as closely as possible Refs. 1 and 2.) Let the
configuration space be an n-dimensional manifold Q, let
TQ be the tangent bundle with natural coordinates
(g7,¢7), and let L be a Lagrangian function on it,
L=L(q,4). A group G acting on Q has infinitesimal
generators, i.e., vector fields X, X,, ... ,X”, dimG =y,
such that they close on the Lie algebra of the group:
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[X;, X, 1=C5X, . )

This action of G on Q has a natural lift"? to TQ with
infinitesimal generators {X} which still close on the
same Lie algebra G of G, i.e.,

xFxl=csxr. @)

In local coordinates if we write X; = A4 fa /3g*, then the
lifted vector fields X jT are given by

k
k0 4 94; y d
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Now we can state our problem. Let us assume that

d
Lyl =517 3)

T_
X;=4

where f; is a function of g only. Since the Lagrangian is
changed only by a total time derivative, the equations of
motion

£ 0 )

are unchanged.

One may try to compensate this quasi-invariance of the
Lagrangian by changing it with the addition of a total
time derivative F of a function F € F(Q ), hoping that

Z(q,q)=L(g,q)—2F (5)
dt
is actually invariant, i.e.,
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L X{Z =0 (6)

for any vector field X JT It follows that we are looking for
a function Fsuch L  rF = [ or, equivalently,
k

LXkF=fk+Ck ’ (7)

where ¢, is some additive constant. Now we can think of
Eq. (7) as a system of partial differential equations for F,
where X, is given and f) is given up to an additive con-
stant cy.

These equations may or may not admit of integration.
Necessary and sufficient conditions for their integrability
have been given® when Q is a homogeneous space of G;
i.e., G acts on Q transitively. When the integrability con-
ditions are not satisfied, we shall go to central extensions*
of our group action in a way that is explained in the fol-
lowing sections, and obtain an invariant Lagrangian
description on an enlarged space.

This paper is organized as follows.

In Sec. II we give a general construction, and apply it
to an example where the Lagrangian is quasi-invariant,
showing how the procedure gives rise to a central exten-
sion of the Euclidean group E(2).

In Sec. III we consider the corresponding problem on
the phase space, where a novel problem arises because the
kinematics and the dynamics, both carried by the La-
grangian function on the (g,4) space, now are separately
associated with the Poisson brackets and the Hamiltoni-
an function. Here we show again how central extensions
arise.

In Sec. IV we exhibit an example where central exten-
sions are trivial and therefore strictly invariant Lagrang-
ians can be defined. In Sec. V we discuss the case in
which global projective group representations play a role
in the analysis of quasi-invariant dynamical systems.

Section VI is devoted to the discussion of how one can
build up a momentum map in a Lagrangian context, and
how the problem of the central extensions is connected to
the equivariance of the (Lagrangian) momentum map.
The paper ends with a short section dealing with con-
clusions and further comments. A certain number of
mathematical concepts employed in the text are defined
and briefly discussed in the Appendix.

II. ALAGRANGIAN WITH QUASI-INVARIANCE

A systematic method of dealing with quasi-invariant
Lagrangians is to enlarge the configuration space from Q
to Q XR, i.e., from coordinates (q) to (g;s) where s is a
new variable.

We now claim that it is possible to define an extended
Lagrangian on T(Q X R), say

L=L—5 (8)

(with abuse of notation we write .L for what should be
7*.L, with 7: TQ X TR —TQ) and a central extension of
G, say G, such that .L is strictly invariant under the G ac-
tion on TQ X TR.

We first exhibit a central extension of the Lie algebra
of G (in terms of vector fields on Q) to the Lie algebra of
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G in terms of vector fields on Q X R.
We have the correspondence
Xk—>,?k=Xk+(fk+ck)% . ©)
By computing Lie-bracket commutators, we find
(R Xl =0, X+ (L fi— L f) o -

To express the right-hand side in terms of X we need a
preliminary result.
From L, L = f; we derive
j

L[XJ-T,X,(T]’L =ijrfk —karfj
or, by using Eq. (2),
CikLyrL =Cji f, =LXijk ~Lyif;

[this is similar to the Wess-Zumino consistency condi-
tion, and defines a one-cocycle (see the Appendix)] or
equivalently, upon integration,

Cilfi+e))=(Lx fu —Ly fj)+a

the a;;’s being integration constants.
Using this relation we can write

[X;, X, ]=C;kxl—ajk%
showing that the new algebra generated by vector fields X
is actually a central extension of the Lie algebra by vector
field X.

Remark. The formula preceding Eq. (10) shows clearly
that when it is possible to solve for the arbitrary additive
constants c; the algebraic equations

(10)

k., _
leck—ajl ’

then it is possible, by adding such solutions to f}, to get
rid of @, in formula (10). This means that our central ex-
tension is a trivial one.* This technique has been used by
Bargmann® in discussing the Lie algebra extensions of the
given Lie algebra by the one-dimensional Lie algebra of
U(1); he was able to exponentiate his results to the whole
(simply connected) universal covering group.

Now it is a simple matter to show that .£ is invariant
under the action of G, indeed

Thus now with G acting on T(Q XR) we have assured

that both the dynamics and the Lagrangian .L are invari-
ant.

As for the dynamics, we recognize that £ is a con-
strained Lagrangian since

L
os
and the behavior of s as a function of time is entirely arbi-

trary.
We shall not analyze these “constrained Lagrangians”

=1, (12)
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that we are going to get: symmetries in the presence of
constrained Lagrangians have been analyzed by Mukun-
da® and, in the geometrical context, by Marmo, Mukun-
da, and Samuel.’

As an example of a quasi-invariant Lagrangian we con-
sider a charged particle in a constant magnetic field:
Q=R? and the symmetry group is E(2). TQ has coordi-
nates (x,y ;%,y ) and the Lagrangian function is

Lx,y;x,p)=1m(x 2492 +eB(xy—xp) . (13)

This Lagrangian is strictly invariant under rotations

9 ) 9 9
XT=x——y—4i——y—
y ) ax oy Y ox

but under translations
J XxT d

r__ 2 —
X"_ax’ YT Jy

the Lagrangian changes by total time derivatives

LXXTL: —eB)'), LXyT_L= +eBJ'c .

Let us try then our enlargement from R? to R2XR. We
enlarge the configuration space and extend the Lagrang-
ian: then (x,y;x,y) is replaced by (x,y;x,y;s,$), L
is replaced by .L =.L —3$, and for our vector fields we have

XjT._,)? jT:X].T , (14a)
> d d
T_,g7-9 ., 9 .p; 9 14
X —X; i eBy 3 eBy % (14b)
XyT-—>X'yT——§——+eBx-a~+eBx-—a— . (14¢)

Ty Os 3

Note that [X,,X ]1=2eB3/ds#0. Obviously on
(x,y;%,y) they act as before; and moreover

L,+L=0.

It is an interesting question whether we could have
achieved this exact invariance of the Lagrangian without
enlarging the configuration space. We shall show later
that this is related to whether there are nontrivial central
extensions of G.

For the Lagrangian at hand it is a simple matter to
show that there is no function F=F(x,y) whose time
derivative could be added to £ to make it into a strictly
invariant Lagrangian. Indeed LXXF= —eBy and

L XyF =eBx would require that L XyL XxF = —eB be equal
toLy LXszeB.

III. HAMILTONIAN REFORMULATION

The problem of quasi-invariance can be reformulated
in terms of Hamiltonian variables, i.e., on T*Q rather
than on TQ. We consider directly our previous example.
On TR? we start with

L=1m(x*+y?2)+eB(xy —xp)

and find the Legendre transformation from TR? to T*R?
to provide us with
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px=§£=mx +eBy ,

Py (15a)
%
a.L
P =——=my—eBx , (15b)
y a}-} y

and the Hamiltonian function
H=p i +p,j—L= —21;[@,‘ —eBy)+(p, +eBx )] .

(15¢)

To find out about invariance of this Hamiltonian we con-
sider now the canonical lift of X, and X,. We recall"?
that lifts of vector fields on Q are defined to be vector
fields on T*Q which act on the ¢’s in the same way as
they act on Q, while the action on p is derived by impos-
ing that

LX‘90=0 .

We have called X * the lift to T*Q of X and 6, the canon-
ical one-form p;dq’. In our case

B . D

*— _——
X*_ax’ Yy T3y’
and
Xf:xi—y—a— d G

T %y TVax TPy, TP,

It is clear that the Hamiltonian of our example has ro-
tational invariance but not obvious translational invari-
ance.

If we consider a different lift of vector fields from Q to
T*Q, for instance, those that we would get by “transport-
ing” XT from TQ to T*Q by using the Legendre map,®
we would get vector fields X, and X , which, in our
specific example, are

It is a simple matter to verify that
L)—‘,XH=0, L,-(yH=0 ,
but now

Ly 6y=—eBdy, Ly 6y=+eBdx .
x y

On T*Q we are presented with a situation which is
different from the one on TQ [this is the manifestation of
the well-known fact that, in terms of (q,4), the Lagrang-
ian possesses both dynamical and kinematical informa-
tion; in terms of (g,p) the dynamical information is car-
ried by the symplectic structure or its ‘““potential” p jdqj ]
When dealing with dynamical symmetries on the
configuration space, we may either lift vector fields from
Q to T*Q by requiring them to preserve the one-form
p jdqj (but then they need not preserve the Hamiltonian)
or by requiring them to preserve the Hamiltonian (but
then they need not preserve the one-form p;dgq 9.

This last situation is reminiscent of “anomalies” in
quantum field theory where the action functional loses an
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invariance since the measure ceases to be invariant.’

Again we can try to cure the pathology by adding first
an additional variable to Q, i.e., we go from Q to Q XR
and from T*(Q) to T*(Q)X(R), and replacing the group
G (or its Lie algebra G) with G (or G).

Here we do not want to change the Hamiltonian as we
did for the Lagrangian on TQ; thus we have to consider
the lift of vector fields from Q to T*Q so that we can
preserve the Hamiltonian function and try to add *“‘some-
thing” to the one-form so that the new one is actually in-
variant. Going back to our example we see that the vec-
tor fields

- 9 ) d
X, = o —eB %, —eB(y +cx)as ,
- d 9 d
X,= 3 +eB %, +eB(x+c,) 3

preserve
6=p,dx +p,dy —ds

and the Hamiltonian H.
This invariance has been achieved on T*Q X R, and 2]
gives rise to an exact contact structure"? rather than to a

symplectic structure. Had we used L =lm(x 2452
+eB(xy —xy)—s we would have found

9Z=§—L—dq =p,dx +p,dy —ds

3¢
if
Lo oL ol
ax Y eyl T s

had been used. Thus 8 gives rise to a contact structure
rather than a symplectic structure because of the way the
Lagrangian constraint due to § appears in this Hamiltoni-
an treatment.

If we want to have a Poisson brackets, we have to add
two variables instead of only one; i.e., we enlarge our
original space to T*Q X T*R rather than to T*Q XR.
Let us try to do so and see what happens with our invari-
ance requirements.

On T*R?*X T*R we have to use the one-form

6=p,dx +p,dy +p,ds .

We can considez now the Eanonical lift of X, and X s i.e.,
we impose L, «0=0, L +6=0. We find
x y

d a d
X¥=——eBy—+eBp,— ,
x T gx TG TP p,
d d d
*x __ _“ —_— -
Xy= a +eBx 3s —eBp, . R

but as far as the Hamiltonian is concerned we get

B
LX:Hze?(l—kpS )(p, +eBx)+0

eB
LyeH="""(1+p,)p, —eBy)#0 .
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We see that “on shell” p, = — 1 we recover the result that
both the Hamiltonian and the one-form are invariant.

On this same carrier space, i.e., T*R*X T*R, we can
consider a different lift of X, and X, one which preserves
H. If we do so, we find

d 0 ) = 0 0 0

7 -9 g0 _
Xx ox ¢ yas

and obviously
L}-(XH=L7yH:O ,
but

Ly 0=—eB(1+p,)dy, Ly 0=-+eB(1+p,)dx .

This lift is not canonical on T*R?X T*R, but it coin-
cides with the previous one and gives invariance of 6 on
shell, where p, = —1.

Before going to the following section, where we deal
with actions which admit no nontrivial extensions, we
discuss here the physically interesting case of Galilei in-
variance.® We take the simple free particle of mass M.

We consider, on Q=R* and TR* with coordinates
(t,q9;;¢,4;), the Lagrangian

L=3Mg4;q; . (16)
The action of G, with G the Galilei group, is given by the
ten vector fields on TR *:

a d
X, == Xj_aqj : (17a)
0 d 9 )
Xp=q;= —q75 +4 = —dx=, > (17b)
jk qj aqk qk aqj q] aq.k qk aqj
K,:ti+i R (17c¢)
dg;  3q;

having set  =1.
Commutation relations are well known. In particular,

[X;, K, ]=0. (18)
.We recognize that
LKJ_.,C=qu (19)

is a total time derivative of a function on Q. We can also
infer easily that the system of partial differential equa-
tions

Ly F=f; LyF=0, Ly F=0,

where f; is defined up to an additive constant, has no
solution.
We proceed then to extend the Lagrangian to

L=L—5=1Mg;q;—S$ (20

and consider the extension of the boost generators
0 d d 0

K =t—4—4+Mg,— +Mg,— ,
=t + + q’as+ q’as'

(21)
99;  3g;
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while the other vector fields are unchanged. Under these
augmented vector fields the extended Lagrangian . is
strictly invariant.

To consider the same system on T*R* and obtain the
corresponding Hamiltonian formalism we have to lift the
action of G to the phase space. We have to decide wheth-
er we want to preserve the one-form

6=p;dq;—E dt (22)

or the Hamiltonian

H E . (23)

1
PP

Except for boosts, other generators offer no problem. As
for the generators of boosts, we have

d J
K=t—+p,— 24
I =g +Pi3E (24)
and
L_,0=0, L _#+#O0. (25)
K K} 7+
Alternatively we choose
= d i d d
K =t—+p/—+M— 26
j aq,+p EY ap) (26)
and get
Ly 6=Mdq;, Lg #=0. 27
J J

We can now enlarge the phase space by adding s, p,, and
extend the one-form to

6=6—-Mds ; (28)

i.e., we are considering a given value of the momentum
conjugate to s.
Now, again, the extended vector fields
= () d
K;,=t—

ML v AL
9q; TP tigs T dp;

(29)

preserve both 8 and H. Central extensions in connection
with the Galilei group have been considered also by Al-
daya and de Azcarraga.'”

IV. TRIVIAL CENTRAL EXTENSIONS
AND STRICTLY INVARIANT LAGRANGIANS

Consider the singular Lagrangian on TR ? with coordi-
nates (x,y;X,p):

L=Lx—p)P+Lx —y)P—elxy—xp) . (30)

This Lagrangian is quasi-invariant under the transla-
tion 8/3x +9/dy =T. There is one constraint:

Px+p,=elx —y). (31)

The dynamical evolution preserves the constraint, so
no secondary constraints obtain. Hence it is a first-class
constraint.®

Because it is quasi-invariant, we can consider the usual
extension to TR2X TR,
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L=L—5 (32)
with extended vector field
~ O d d . d
_9 , 9 _y)— — —y)— . 33
T O + 3 e(x —y) 3 e(x y)aj (33)

In this case, having only one vector field, we expect to
be able to redefine a Lagrangian L' directly on TR?
which is strictly invariant. How do we recover this La-
grangian .L’ from the extended one .L?

It is clear that what we are looking for is an embedding
of R? into R3, which is invariant under the action gen-
erated by T. At this point we consider the restriction of
L to the tangent bundle of this submanifold and this re-
stricted Lagrangian is the one which is strictly invariant
under our initial group. Let us illustrate the procedure in
this example.

An embedding of R? into R ® which is a section of the
projection R>—R? will be defined as the level set of
s+F(x,y): R3—R, with F(x,y) any function of (x,y).
An invariant embedding has to satisfy, in addition,

LT[s +F(x,y)]=0. (34)
In our case, we find
ox  dy

We find a general solution for F to be
= Z(x —p)x +y)+E(x —y)

where £ is an arbitrary function of the argument.

The restriction of £ to any one of these embeddings

obtains by replacing § with — F so that

£’=L+§%(x2—y2)+%§(x —-y). (36)
This Lagrangian is strictly invariant under T =9/0x
+9/9y.

Now we can state our problem in general terms. As-
sume that on 7Q X TR we have constructed a Lagrangian
.,Z=_,£—s' which is strictly invariant under G generated
be,,Yz, - ,.Y# with

= d . 0
X, =XI—fi——f.—, 37
k k =Sk 3s S a5 37

where f, is determined up to an additive constant and f
is defined by

LL=Ff, . (38)

k

Now we ask how to find, if it is possible, a strictly invari-
ant Lagrangian ,é " under the action of G starting from .L
invariant under G.

Our procedure suggests that we look for a section
Q0—-0XR:

(q)—(q,s =—F(q)),
which is invariant under G:

Ly (s +F)=0. (39)
k
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The explicit computation gives

fi+Lx F=0, (40)

where f; is determined from (38) up to an additive con-
stant. By using mixed derivatives, the existence of a solu-
tion F requires the possibility to solve for

lekcl=ajk . (41)

Thus we are back to the integrability conditions discussed
in Ref. 3.

In case Eq. (41) cannot be solved we find that no invari-
ant embedding is possible and then we are obliged to
work with a central extension G of our original group G
on the extended configuration space (q;s). The informed
reader will be reminded again of Bargmann’s complete
solution® to the problem of central extensions of Lie alge-
bras and the condition under which noritrivial central ex-
tensions obtain.

As a dynamical realization of a case obtaining central
extensions we consider the Lagrangian

L=q,x 5", 42)

where 17, is the symplectic tensor.!

This Lagrangian is invariant under the symplectic
group! on the configuration space, but it is only quasi-
invariant under translations. Again we need to consider
the extension of the configuration space (x%) to (x%;s)
and the infinitesimal generators of translations get ex-
tended into
d d 9
— + VX Y (43)
axr T g T g
For these generators no invariant section from (x#) to
(x*,s) can be found.

V. PROJECTIVE GROUP REALIZATIONS

In all previous examples, extensions of Lie groups have
been reduced to extensions of Lie algebras. We give now
an example of a global projective representation of a
group arising in connection with quasi-invariance of
dynamical systems. Consider the system

L:lm(x2+'2)+x—y:ﬂ— (44)
3 YT 2

with the configuration space in the punctured plane

R?>—{0}. The Lagrangian is strictly invariant under

proper rotations, but it is only quasi-invariant under

reflections:

x——x, yoy, LoL—2g"E=XL 45)
x“+y
The last term is a total time derivative:
Yy Xy —xp
— | =2 tan=— | = —2g—"—= .
ar garctan g FEY (46)

The group operation is the exponential operator
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xi—H'c—a—

= j . 47
P=exp |mi 3x P 47)

We extend the Lagrangian £ —.£ = —5 and extend the
reflection operation by

P=exp |im x%+)&% +2g9%+2g9'§ ] (48)
with

Gzarctan%, éz%i;—'f . (49)
Looking for an invariant embedding we require

P[s+F(x,y)]=s+F(x,y) . (50)
However,

Ps=s5—-2g0, PF(x,y)=F(—x,y). (51)
Hence the invariant embedding solution is

F(x,y)=—g0+E&(x%y) . (52)
Choosing §=0 we recover the Lagrangian

L=im(x*+y?), (53)
which is, of course, reflection invariant. Now the

configuration space may be enlarged from the punctured
plane to the entire R 2.

VI. ALAGRANGIAN MOMENTUM MAP
AND THE PROBLEM OF EQUIVARIANCE

In this section we take up the same problem addressed
in Secs. I and II from a slightly different point of view,
which can help clarify the comparison with previous
work on related subjects, which made extensive use of the
concept of momentum map.l'z’“' 12

Generally speaking, if we have an action of a Lie group
G and Q, with the infinitesimal generators closing on the
Lie algebra G of G as in Eq. (1), the corresponding
tangent lifts need not preserve the Cartan one-form, nor
the Lagrangian two-form associated with a given La-
grangian L(q,q); i.e., in general,

kafe_cyﬁo, LXkTCL)_L:/‘—‘O . (54)

We recall that, on the contrary, the canonical lift
X*EX(T*Q) of a vector field X €X(Q) is defined in
such a way that

L,+6,=0, (55)

6y=p;dq j being the canonical one-form. In this way, the
action of G on Q is lifted to a Hamiltonian action on
T*Q, and this is the way">!3 the momentum map usually
arises in physical examples.'!!?

A possible way out of the situation outlined above is to
try and redefine the lifting procedure in a suitable way.
By mimicking to some extent the procedure leading to
the momentum map, let us define functions P, € F TQ)
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via

P, =i , k=1,..., . (56)

k leTGL 13

Assuming now the Lagrangian L to be regular, and hence
the Lagrangian two-form w,=—d60, to be nondegen-
erate, the equations

ika£=de, k=1,...,ﬂ (57)

uniquely define the set of vector fields X, €X(TQ). We
now prove, as a preliminary result, that the map

Xk —’X'k (58)

is both a lift and a Lie algebra isomorphism, i.e., that X,
is 7 related?® to X, (m, TQ — Q being the canonical projec-
tion), and that

(X, X ]1=c[X, Vij. (59)
Indeed

z'x,iw_c=d(ixi10£)=LXi10L +in1a)L

and as
L X',TOL =0 LX_T.L
we obtain
i()?,-—X,-T)w‘L=9LX_T‘£ . (60)

i

As the right-hand side (RHS) is a semibasic one-form
(i.e., one which vanishes on vertical vectors), the vector
field on the LHS must be vertical, and hence 7 related to
the null vector field on Q. X being related to X;, the
same will hold true for X;.

Remark. In view of this result,

i.e., the P;’s can be redefined in terms of the new lifted
vectors. Also

Lfielz—ixiwL—i—d(iYiGL):—iiiwi—}—dP,.:O . (62)
To prove now Eq. (59), let us evaluate
i[x'j,ik]wL:LijiXk“’de(L,\"ij) .
On the other hand, using Eq. (62),
L,?ij =Li’j(iik91)=i[ij,,?k]el .

As it is easy to prove that the commutator [X;,X]
differs from [X jT,X I only by a vertical field, we have

i[)?j,iklelEi[XjT,X{]e-chﬁ‘(inTe‘C)
and we have thus proved
L,?ij =CjP, . (63)

Substituting this result back into Eq. (62), we obtain the
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desired proof. Actually, Eq. (63) proves something more.
It constitutes also the proof of the equivariance of the
momentum map with respect to the coadjoint representa-
tion of G on G*, the dual of the Lie algebra G. We have
thus shown that, by suitably redefining (in a way that de-
pends on the Lagrangian, though) the lifting to TQ, one
can associate an equivariant momentum map with the ac-
tion of any Lie group G on Q.

An obvious drawback of this procedure, however, is
that the (local) diffeomorphisms generated by the lifted
vector fields need not preserve the second-order character
of second-order vector fields, and in particular of the
(second-order) dynamical vector field associated with the
given Lagrangian, while the tangent lifts always do (they
generate Newtonian? diffeomorphisms). It is of obvious
interest to inquire under which conditions the two lifts
can be made to coincide, i.e., for which choice of the La-
grangian, within the equivalence class of those differing
from a given one by a total time derivative, can one as-
sure that

X, =xT vj. (64)

To make contact with the problems considered in the
previous sections, we consider the case in which the La-
grangian is quasi-invariant under the (canonically) lifted
action of G; i.e., it satisfies Eq. (3). Hence, as

Our/a=df YVfEFHQ),
Eq. (60) becomes
i"?k"‘xkr)wizdfk . (65)

Therefore, the fulfillment of Eq. (64) requires f; =0
(apart from additive constants) and we have the follow-
ing.

Theorem. Let G be a Lie group acting on a manifold Q
and let the tangent lifted action of G on TQ satisfy Eq.
(3). The lifted action of G will give rise to an equivariant
momentum map if and only if the Lagrangian is strictly
invariant under the (lifted) action of G.

The problem of getting rid of the f}’s by modifying the
Lagrangian brings us back to the discussion of the previ-
ous sections, and is seen here to be connected with the
possibility of defining an equivariant momentum map in a
Lagrangian context.

Remark. In the statement of the above theorem, we
have assumed the Lagrangian to be altered (at most) by
the addition of a total time derivative, as in Eq. (3). In a
broader context, the Lagrangian momentum map will be
equivariant whenever the RHS of Eq. (60) vanishes, and
this will happen if and only if

LypL=m"fi+c;, fi€FQ), c,ER. (66)

Requiring G to be a symmetry group for the dynamics is
easily seen to imply df; =0, and we are therefore left with
the further possibility of the Lagrangian being altered by
the addition of a constant. The latter, unfortunately,
cannot be disposed of or simply ignored, as the following
example shows.

Let Q=R3, and consider the Lagrangian of a point-
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particle subject to a constant gravitational field: "
s 12 (52 - 3)2 3
L=tm[(§"P+(§2)*+(§*)1?]—mgq* . (67)

An obvious symmetry for the dynamics is provided by
the Euclidean group E(2) acting on the (¢',¢2) plane, to-
gether with translations along the ¢ axis. The associated
momentum map is equivariant, even though

Ly L=—mg . (68)

In general, the fact that
L x,.T'L =¢; (69)

for X;G, implies
L[X‘-T,XjT]L =0 . (70)

Hence, it is only elements in G /[G,G] which can give
rise to additive constants (if any). A new (central) exten-
sion of the Lie algebra and of the carrier space (adding as
many new nondynamical degrees of freedom as there are
nonvanishing c;’s) will yield an extended, invariant La-
grangian. Again in the example considered above, we
will need one extra new variable. Calling it 7, we can ex-
tend the Lagrangian into

L=L+mgr (71)

and the generator of the translations along the ¢> axis
into
d d
——mg— (72)
aq3 oT
leaving the other generators changed. £ is now invariant
under the central extension of the original Lie algebra.

VII. CONCLUSIONS

In this paper we have considered some classical
dynamical systems which exhibit symmetries at the level
of the equations of motion which are not (in a strict
sense) symmetries for the Lagrangian(s) describing the
systems themselves.

In order to find an invariant Lagrangian description,
we have been forced to go to an enlargement of the car-
rier space (TQ in our case) to one to which a “nondynam-
ical” degree of freedom has been added and where a cen-
tral extension of the original symmetry group is acting.
The corresponding Hamiltonian description has also been
dealt with. To the best of our knowledge, none of these
problems appears to have been treated in the existing
literature.

In order to make a comparison with what is already
known in terms of the momentum map, we have intro-
duced a Lagrangian momentum map (which depends on
the particular Lagrangian one is dealing with) and shown
that the equivariance of such a momentum map is a
necessary and sufficient condition for the invariance of

the Lagrangian up to an additive constant.
J

3: Qk-qk+t,
(daey, ... e )=3 (—1V e -aley,...,8,...
J
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Anomalies®!* have been mentioned here and there in
the paper. We would like to point out that the way they
are understood nowadays is that anomalies arise whenev-
er there is no quantization procedure which is able to
preserve the symmetries of a given classical system. Sym-
metries which are not preserved are said to be “anoma-
lous.” (Anomalies have been cast in the language of the
momentum map by Bao and Nair.'’) At the classical lev-
el, one usually concentrates on the equations of motion,
and no particular attention is paid to the Lagrangian, nor
to the action. Justified as it can be at a purely classical
level, this viewpoint has several drawbacks when thought
of in the broader context of physics (and not of classical
physics alone), in which the classical description is be-
lieved to be an approximation of the full quantum one.
Therefore, in this paper we have concentrated on the La-
grangian (and hence on the action) as the relevant object,
and we have concerned ourselves with its variance prop-
erties because the action, or the Lagrangian, or, in the
Hamiltonian framework, the Poisson brackets play a cen-
tral role in the quantization procedure, and it may well be
that the appearance of the same mathematical structures
in this problem and in that of anomalies is more than a
mere accident. At the moment, however, we are not (nor
claim to be) able to show that the appearance of “classi-
cal anomalies” will imply the existence of genuine quan-
tum anomalies, the way they are normally understood.
The present paper should rather be seen as a possible way
to pose such a question rather than a well-defined answer
to it. We hope to return to a systematic discussion of the
relationship between anomalies in quantum field theory
and quasi-invariance in classical field theory in the near
future.
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APPENDIX: LIE GROUP ACTIONS AND COCYCLES

In this Appendix we would like to exhibit an algebraic
interpretation of our construction, i.e., one given in the
framework of cohomologies, hoping that this can help
the reader in putting into correspondence the mathemati-
cal objects and concepts employed in the description of
anomalies!*~'® and those emerging from the classical
analysis presented in this paper.

Let G be a Lie algebra, and let A by any G module
(hence, there exists a given representation of G on A). A
k-cochain is a multilinear alternating map

a: GXGX - XG—A.
k times
The set of k-cochains will be indicated by Q*, and one

usually identifies A with Q°. A coboundary operator 3 can
be defined on k-cochains as

(A1)

(A2)

ey )+ 3 (=) Halle,eley,...,8,...,8,...),

J’
i<j
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wheree, €G, j=1,..., k+1,and e;-a( ) stands for the action of ¢; on a( )EA. We next define

(i) a€Q*is a k-coboundary iff a € Imad | Qk;1=Zngk ,

(ii) a€Q*is a k-cocycle iff a EKerd | 9k=BkEQk .

As it is easy to prove, starting from (A2), that the
coboundary operator satisfies

0:0=0 (AS)
one concludes that
Z*CB*. (A6)

The kth cohomology group attached to the coboundary
d is then defined as
H*=B*/Z* . (A7)
This is all more or the less standard material.!’-2° Let
us now specialize to the case, considered in the paper, of
the action of a Lie group G on a manifold Q, or of its lift-
ed action on TQ. In both cases we have a Lie-algebra iso-
morphism between G (the Lie algebra of G) and the Lie
algebra of the infinitesimal generators of either action. In
the sequel, the G module A will be identified either with
X%(Q)! (the exact one-forms on Q) or with the subset of
F(TQ) made up of functions which are linear in the ¢’s,
i.e., functions which can be written in the form

fa(q>q)=<r | T™a)

with a€X*(Q) and ' any second-order vector field.
The corresponding action of G on A will be taken as the
Lie derivative with respect to the infinitesimal generators
of the G action. We also assume that the (lifted) action of
G leaves the Lagrangian two-form o unchanged:

(A8B)

G3e;—XTEX(TQ) such that L, w, =0 (A9)

[this is of course true if Eq. (3) holds]. Equation (A9) im-
plies that L 76, is a closed one-form. Under the simpli-

fying assumption that closed one-forms are also exact, we
then have

Ly b =df,, f, €HQ).
As L Xi,e =6(L XiT.L), comparison with Eq. (3) (note that

(A10)

the same simplifying assumptions have been implicitly
made throughout this paper) shows that f, coincides

with the function which has been called f; there.
Altogether, we have defined a one-cochain

p: G—X5(Q) by u: e;—df, =L 10, (A11)

and we now prove that u is actually a cocycle. Indeed
(a,u)(ei,ej )=LXdefej_LXdefei_df[e."ej]
=LX,TLXJ70'L ""LXJ.TOL —L (x7xM s
0. (A12)

If

(A3)
(A4)

We recall that the one-cocycle condition is usually
called the Wess-Zumino consistency condition.'

Alternatively, we can define a one-cocycle with values
in the functions linear in the §’s via

d
dt

That p’ is indeed a cocycle follows immediately from

Wi oLyl ="-f, . (A13)

(Ou')Ne;,e;)=L,rp'(e;)—L, rp'(e;)—p'([e;,e;])
i J

=LyrLy L —LyrLyrl —L L=0.

x7x]
(A14)

Note that, in both cases, changing the Lagrangian by the
addition of a total time derivative changes the one-
cocycle by the addition of a coboundary. A class of
equivalent (in the sense employed in the main text) La-
grangians singles out therefore a cohomology class rather
than a single cocycle.

It is possible to associate with either one of the one-
cocycles defined above a two-cocycle with values in R
(viewed as a trivial G module). Indeed, Eq. (A12) can be
rewritten as

d(LXifej—LXjfe’,_f[el.,ej])ZO (A12")
and Eq. (A14) as

d ’

2t Ex e —LxSfe,~Se,e)) =0 (A14")

(Recall that here “d /dt” stands for the Lie derivative
with respect to any second-order vector field. The
derivation of Eq. (A14’) implies an interchange of some of
the X’s with d /dt. This is legitimate, insofar as the
commutator [X.7,d /dt] is a vertical field, and then gives
zero when acting on the fe,_’s, which are functions of the

¢’s alone.) In both cases we find

LX‘.fej_LXjfei—f[e,.,ej]:CijER . (A15)
The map
¢c: GXG—R byec: (e,-,ej)—+C,~j (A16)

is a two-cochain. As g acts trivially on R by assumption,
Eq. (A2) yields, in this case,

dcle; eje0)=—[c([ese;] e )+c.p.]. (A17)
Substitution of (A 15) into (A17) yields
dc=0. (A18)

Therefore, c is a two-cocycle, as stated above.
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