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Generalized Wigner functions in curved spaces: A new approach
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It is well known that, given a quantum field in Minkowski space, one can define Wigner functions

ftr(x, ,p„.. . , xN, pN) which (a) are convenient to analyze since, unlike the field itself, they are c
number quantities and (b) can be interpreted in a limited sense as "quantum distribution functions. "
Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner
functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equa-
tions which make sense "quasilocally" for "short-wavelength modes. " This paper suggests a com-

pletely orthogonal approach for defining curved-space Wigner functions which generalizes instead
an object such as the Fourier-transformed fa (k,p), which is effectively a two-point function viewed

in terms of the "natural" creation and annihilation operators a (p —2k) and a(p+ 2k). The ap-

proach suggested here lacks the precise phase-space interpretation implicit in the approach of
Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any "natural"
mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as
for a source-free linear field in a static spacetime.

I. MOTIVATION

N Nfw(xi ~pl ~xN~PN )~fc(xi ~pl ~ ~ xN~PN ) (1.2)

It is important to stress that such an f1' cannot be in-

terpreted strictly as a "quantum distribution function" as
it need not be positive semidefinite; but, in most other
ways, these ftt s do behave like distribution functions.

The statistical description of a classical or quantum
field, viewed as an infinite collection of oscillators, takes
as its starting point an object p, the evolution of which is
governed by a Liouville equation

Bp/Bt = Lp . —

Classically, p is a distribution function for the oscillators,
and the Liouville operator L is realized as a Poisson
brackets defined with respect to the (possibly time-
dependent) Hamiltonian H (t), i.e., Lp—= I H, pI . In quan-
tum field theory, p is instead a density matrix and L is
realized as a commutator, so that Lp = [H,p].

Viewed in this abstract sense, the classical and quan-
tum theories exhibit a formal similarity, but, neverthe-
less, these theories are very di8'erent at an interpretative
level. The classical p is to be understood as a real proba-
bility density defined in an appropriate phase space,
whereas the quantum p must be considered instead an
operator defined in an abstract Hilbert space. The
motivation underlying the introduction of Wigner func-
tions is the definition of c-number objects fa, depending
on the spacetime point x =(x', t) and a momentumlike
quantity p, or possibly N-tuples thereof, which, in at
least a limited sense, correspond to the reduced N-
particle distribution functions fc of classical statistical
mechanics for a collection of point masses:

Thus, at least in certain limits, fz, and fc satisfy evolu-
tion equations which are formally identical, and they can
be used identically to define average quantities such as
the average energy or momentum densities.

This general program was first introduced by Wigner'
in the framework of second-quantized particle mechanics,
and has since been developed by several authors ' for
quantum field theory in flat space. Given recent interest
in quantum field theory in more general spacetimes, it
would also seem natural to introduce a notion of Wigner
functions in curved spaces. A naive, straightforward gen-
eralization is, however, impossible. The standard flat-
space construction of Wigner functions exploits Fourier-
transform techniques, but, as is well known, such trans-
forms are not defined globally in a spacetime lacking
space and time translational symmetries.

One possible curved-space generalization, first con-
sidered by Winter and developed further by Calzetta,
Habib, and Hu, exploits the idea (implicit in the "local-
momentum-space" analysis of Bunch and Parker ) that,
in the neighborhood of any given point, where the space-
time can be treated as nearly flat, a Fourier transform
does make sense at least approximately. What these au-
thors do is first present an abstract definition of fr'r in
terms of a certain "exponential function" exp(P) and
then, by interpreting that function via a Riemann-
normal-coordinate expansion, generate a perturbative but
covariant "quasilocal" expression for f~. There is a
deep and fundamental connection between this program
and standard point-separation techniques; and thus, not
surprisingly, this approach is quite useful when consider-
ing "short-wavelength" modes. Thus, e.g., both Winter
and Calzetta, Habib, and Hu, have shown that, in a
well-defined limit (basically to lowest order in the
normal-coordinate expansion) the quantum one-particle
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fa, for a free scalar field satisfies the same collisionless
Boltzmann (i.e., Vlasov) equation as does the one-particle
distribution function fc for a collection of noninteracting
particles. Similarly, they have noted (see also Ref. 7)
that, to the same nontrivial order, the average quantum
stress energy T„ takes the same form as a functional of
fi'i, as did the classical T„„asa functional of the classical
fc. The first corrections to these formulas, appropriate
for "longer wavelengths, "were also computed and found
to be proportional to fi . These results demonstrate, in
particular, the sense in which it is reasonable to model
the evolution of noninteracting quantum "inos" in the
early Universe by a classical distribution function.

Despite these successes, however, there are difficulties
with that basic approach. Most obvious is the fact that,
typically, one cannot generate a useful and exact evolu-

tion equation for fii, in even the simplest nontrivial cases,
such as for a static but curved spacetime or a Friedmann
cosmology (de Sitter space and the Einstein universe ap-
pear the only notable exceptions ' ). This means, as a
practical matter, that exact computations are impossible;
and indeed, even approximate computations at anything
beyond the lowest order of the normal-coordinate expan-
sion rapidly become unmanagable. Less obvious,
perhaps, but even more significant is the fact that this
general sort of analysis may break down on large scales
where global features such as topology become impor-
tant. Thus, Winter's entire approach entails a fundamen-
tal restriction on where the two-point function
(4(x")4(x')) can have nonvanishing support. And
indeed, Calzetta, Habib, and Hu have noted explicitly
that their analysis can make sense only in the absence of
caustics.

These difficulties reflect the fact that plane waves are
not "natural" in an arbitrary curved space, and, conse-
quently, it is reasonable to look for a more abstract —and
fundamental —approach which circumvents altogether
the notion of a Fourier transform. Such is the object of
this paper.

The basic idea is simple. In flat space, it is customary
to think of the Fourier-transform prescription for gen-
erating the f~ s as simply a convenient trick which yields
a useful object of interest. This was, e.g., the underlying
philosophy of Wigner's pioneering work. And, in fact,
one is inclined often times to proceed one step further by
replacing the Wigner function fs,(x,p} by its Fourier
transform fi'i, (k,p), which, for a real field, in terms of
creation and annihilation operators a and a, take the
form

fw(k, p) =Trpa~ k&2a~+I, &2,

this being effectively a double Fourier transform of the
two-point function (4(x+ —,

' }Nx( —x—,'x') ). [Indeed, in
the context of a 3+ 1 splitting, where one Fourier trans-
forms x' but not t, it is actually convenient to view
f~(k,p), rather than f~(x,p), as the fundamental ob-
ject. ]

The key observation now is that an object such as
Trpa; ajmakes perfect sense for an arbitrary mode
decomposition, be they plane waves, as is natural in flat

space, or be they something quite different, as would be
natural in some other spacetime. In flat space, plane
waves assume (at least superficially) a special importance
in that they are the eigenfunctions of the ordinary Lapla-
cian (or d'Alembertian) entering into the field equation
(which implies that, for a free field, each mode evolves in-
dependently), and one might argue that it is ultimately
for this reason that a plane-wave or Fourier decomposi-
tion proves useful. In curved spaces, the ordinary Lapla-
cian is replaced by a more general differential operator 6,
and it seems natural (see, e.g., Ref. 10) to use the spectral
decomposition of that 6 to define the a ~'s and a' s. This is
especially true when, as in a static spacetime, a; a; can be
interpreted as an abstract number operator.

Such is the program to be developed here. Specifically,
given a mode decomposition induced by the generalized
Laplacian 5, one is instructed to define "generalized
Wigner functions"

e—=Trpa a ~a a.P I) ip j1 jq
(1.4)

for arbitrary normal-ordered operators constructed from
the a ~'s and a' s.

The key point is that an object such as f~ in flat space
can be interpreted at two different levels. At one level, it
is simply a Fourier transform of the two-point function,
which, because it is a c number, is comparatively easy to
manipulate. At a deeper level, there is the additional fact
that it can also be viewed (within limits) as a phase-space
number density for "quantum particles. " The latter of
these interpretations relies crucially on special properties
of Minkowski space and, in a general curved-space set-
ting, can be recovered only in a "quasilocal" approxima-
tion. The former interpretation is much more general
and, through the implementation of the abstract e's, can
be implemented here without difficulty in a curved-space
setting.

The objective of this paper is to exploit the former
more general (albeit more modest) c-number picture
without special emphasis on the possibility of a phase-
space interpretation. It seems, however, reasonable to ex-
pect that contact can be established with the work of
Winter and Calzetta, Habib, and Hu by noting that, in
the neighborhood of any given spacetime point, the
modes of the field may be treated as nearly plane waves.

Section II illustrates the basic approach for the special
case of a minimally coupled, real scalar field 4 in a static
spacetime, demonstrating that the e's are comparatively
easy to manipulate, so that they may be used to calculate
quantities of physical interest. Section III then concludes
by contrasting the underlying philosophy here with that
implicit in Winter and Calzetta, Habib, and Hu.

II. BASIC SETUP

Consider a real, minimally coupled, massive (m) scalar
field 4 in a background spacetime (M,g„„), in the pres-
ence of a classical source o (x), characterized by an action

S = ,' fd x(——g)' [V„@—V"4+m 4 +cr(x)4 ] .

(2.1)
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Suppose then that the spacetime is static (Killing vector
8/Bt) and of topology X XR, admitting a foliation into a
family of everywhere spacelike hypersurfaces, so that the
line element may be taken of the form

H = g —,'(p; +to;q; )

+ g g 2(co;coj )' a;~(t)q;q/ =Ho+ H (2.12)

ds = N—(x')dt +g,b(x')dx'dx (a, b, c=1,2, 3),
(2.2}

(2.3)

where

N[( —g—)
' 8 ( —g)' g'8 —m ] (2.4)

is a "natural" generalization of the flat-space Laplacian.
The objective is to formulate a quantum theory by impos-
ing the canonical equal-time commutation relations

and

[Wx, t), 11(x',t)]=ifi'"(x —x ) . (2.5)

It is convenient to view 5 as an operator defined on a
real Hilbert space with inner product

where g„„is independent of coordinate time t. Standard
manipulations then lead to a Hamiltonian

H= 'J—d x( g)'~—N [[(—g} ' N II]

44—4+N tr(x', t)4 I,
and

a; =(2a);) '~ (to;q;+ip, ),
(2.13}

and to construct a vacuum state
~

0) and the associated
Fock-space representation by demanding that, for all i
a;

~

0)—:0. This construction is well defined since, given
the Killing vector 8/Bt, a global positive-negative fre-
quency decomposition-is possible. This means, in partic-
ular, that N,:—a, a, can be interpreted as a bona j7de
"number operator, " and that, more generally, any opera-
tor A involving a;~ and a can be interpreted in terms of
the creation and destruction of "quanta, " so that the ex-
pectation value of A has definite physical significance. In
a more general, nonstatic spacetime, mode decornposi-
tions and the like can still be defined, " but the particle
interpretation becomes highly suspect. In any event, in
terms of the a 's and a' s,

Ho= g to;(a;~a;+ —,')

for which the only nontrivial commutation relation is

[qktPk'] t ~k, k"
At this stage, it is natural to define creation and annihi-

lation operators

a,t=(2'); )
'~ (to;q; ip;—)

(g, ri) =—f d x( g)'~ N g(—x')rt(x ),

with respect to which —b is symmetric and positive:

(g, —Ag) = Jd'x( g}'"(g"—a.ga, ri+m'grt) .

(2.6) and

(2.7)

H = +go; (a, +a, )(a +a ),
J

(2.5) leading to the commutation relations

[a;,a ]=0=[a;,a ]

(2.14}

Assuming the existence of a complete spectral decompo-
sition of 5, one can then write 4 as a sum of modes and (2.15)

4(x', t)= gq, (t)g;(x'), (2.8) [a, , a, ]=5;, .

where

hP; (x') =toff;—(x') (2.9)

(2.10)

And thus, in terms of the coefficients

with c02) 0. Here, of course, g; is to be interpreted as an
abstract sum (formally a Stieltjes integral} over all the
"eigenfunctions" for both the point and continuous spec-
tra of 5; but, for notational convenience, the analysis
below proceeds as if the spectrum were purely point. The
symmetry of 6 implies that one can impose the normali-
zation

Bp/Bt = —[H,p] . (2.16)

Given this basic setup, one is now in a position to
define the desired 6's. Specifically, given any operator
A (t) constructed from the basic creation and annihila-
tion operators Ia, ,aj J, one is instructed to define a "gen-
eralized Wigner function"

The object now, as illustrated in Ref. 12, is to irnple-
rnent a statistical description of the field, considering as
the fundamental object a density matrix p, for a state ei-
ther mixed or pure, defined in the Fock space appropriate
for the infinite set of modes. Formally, therefore,
p=p( [a, ,a. );t), and in a Schrodinger picture, the evolu-
tion of p will be governed by a unitary quantum Liouville
equation

(2.11) 6[A]—=Trp:A:, (2.17)

one is led to a mode Hamiltonian where:: denotes a normal ordering. These 6's are noth-
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ing other than the expectation values of the A's with
respect to the time-dependent density matrix p(t). Thus,
as special examples, one has the average number of parti-
cles (N, ).in each mode, or any other (f (N, ) ), or even
the average Hamiltonian ( H ( t ) ), with all quantities of
definite physical significance.

One important fact to observe is that, modulo techni-
cal complications reflecting the fact that the field has an
infinite number of degrees of freedom, a knowledge of the
values of all possible 8's is completely equivalent to a
knowledge of p. This is simply the quantum analogue of
the better known fact that a distribution function is
characterized uniquely by its moments. The key point,
then, is that a knowledge of the values of some limited set
of 8's corresponds to a partial knowledge of the state of
the system, and that, for special choices of 8's, one re-
covers precisely the same amount and sort of information
as is encapsulated in the flat-space Wigner functions f~.
Thus, e.g., in flat space, fa contains precisely the infor-
mation encoded in the two-point function
(4'(x+ —,

' x)4( x——,'x') ); and, quite clearly, precisely the
same information is encoded in the bilinear generalized
Wigner functions such as 6[a, aJ ]. Indeed, with a simple
relabeling, the ftI,(k,p) of (1.3) is identical to 8[a, a, ].

Another important characteristic of the 8's is that, be-

ing c numbers, they are comparatively easy to manipu-
late, so that, e.g. , one can derive simple equations for
their evolution. Suppose that A is already normal or-
dered. It then follows immediately from (2.16) that

dB[A]/dt =6[ i [ A, —H]]+B[c),A] . (2.18)

A =c (t)g a,tg aJ,
I J

(2.19)

with c an arbitrary c-number function of time, noting
that any operator A can be realized (at least perturbative-
ly) in terms of such fundamental building blocks. One
then concludes that

8[A (t)]=:exp iPt+ f dt y(~) 8[A (0)]:,
0

where

(2.20)

y=c), inc(t) and P= +co; —gcoj .
l J

(2.21)

Equation (2.20) captures the intuition that for a free
field in a static spacetime where 4 experiences no
"dynamical gravitational effects" all the 8's evolve trivi-
ally. All of the complexities associated with the evolu-
tion of the field are buried instead in the eigenfunctions
g;, which, both in principle and practice, could be very
nasty. The important point, however, is that, given a
knowledge of the eigenfunctions P;, one has reduced the
evolution of the expectation value of any operator
A [4,II] to a simple quadrature. And even if the details
of the g, 's are not known explicitly, one does know ex-
actly how the expectation value of any A [a,t, a ] will

evolve with time. This is a very useful result not intrinsic

This relation assumes an especially simple form when

H —=0. Consider, e.g., an operator

to the approach of Winter and Calzetta, Habib, and
Hu. '

The evolution of 8 becomes more complicated if
H +0. Suppose, e.g., that A =a, a, and that H +0. It
then follows that

d 6[a; aJ ]ldt =i (co; —co. )6[a taJ ]

+i g (crJ&6[a; al ] crI—;B[alaJ])
I

+t y (cr JIB[a; al ] col;—6[aJar )),
1

(2.22)

the last two terms of which, involving 0 I, manifest the
obvious fact that the classical source 0. can couple to-
gether the modes i&j Ind. eed, a completely analogous
result holds for the ordinary one-particle Wigner function

fa in Minkowski space. '

III. DISCUSSION

The generalized Wigner functions 8 defined here are
"natural" objects to consider whenever there exists a pre-
ferred set of modes I P, I in terms of which to expand the
field 4. This is especially true in a static spacetime,
where the physics lives naturally in the Fock space asso-
ciated with the a ~'s and a' s. It is, moreover, clear that, at
least in such a setting, the 8's become comparatively easy
to manipulate, so that, e.g., for the special case of
source-free linear field, the time evolution of 8 can be
evaluated exactly. The one apparent problem with the
approach is that it admits no obvious, a priori phase-
space interpretation. Thus, e.g., in flat space, there exists
a canonical rule mapping each 8[a;taj] into a Fourier-
transformed f~(k,p), and hence an f~(x,p); but, in
curved space, this need not be so. For a generic space-
time, 6[a, aj ] is defined in terms of the abstract modes

I g I, and there is no guaranteed connection between the
notion of "particle" intrinsic to such a mode decomposi-
tion and the notion of a "quasilocal particle" implicit in
the f~(x,p) considered by Winter or Calzetta, Habib,
and Hu.

This discrepancy reflects the basic difference between
the approach adopted here and that pursued by these
other authors. This paper treats as fundamental the
abstract modes [P I and does not attempt to force the
analysis into a "nearly flat space" form by defining a
"phase-space" function fs,(x,p). By so doing, it main-
tains a maximum flexibility mathematically in how to
view the field in terms of modes, but at the expense of
sacrificing any obvious phase-space interpretation. In
this sense, the analysis here proceeds in the spirit of the
original pioneering work regarding particle creation near
a black hole' or the particle content observed by an ac-
celerated observer in Minkowski space. ' Alternatively,
these other authors are concerned fundamentally in con-
structing an f~(x,p) which does admit a phase-space in-
terpretation, and which satisfies a "nearly classical"
Vlasov equation; and, in so doing, they are willing to (1)
ignore potential global obstructions and (2) neglect en-
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tirely the possibility of some "natural" mode decomposi-
tion. It is for this reason that their approach, albeit
elegant conceptually, is quite cumbersome computation-
ally.

A key aspect of the phase-space interpretation of
f~(x,p) is the fact that it permits the definition of local
densities via cotangent space integrals. It is, therefore,
useful to conclude by observing (a) how such quantities
would be computed using the approach developed here,

I

(:H:)=fd x( g}—' N (~«), (3.1)

where

and (b) how, for the special case of flat space, one recov-
ers the standard sort of results.

Consider, e.g., the locally defined average energy densi-
ty for the field considered in Sec. II in the limit that
H—:0. Here the normal-ordered Hamiltonian

(r«) =—,
' g g g;QJ(co;coj )

'
I(ru;+toj) B[a;aj+aj a;]+(co;—eoj

) B[a;aj +a;aj]I, (3.2)

which is in general quite a complicated object. In flat space, it is convenient to expand in complex plane waves
ccexp( —ik.x), so that p;p is replaced by p;ll =QJ;; and the ordinary ftIt, (k,p} then obtains by introducing new sum

and difference variables, p = —,'(i+j) and k =i —j. If one supposes further that the field is dominated by long-

wavelength modes, it follows that to(p —,'k) =co(p), and, with that identification, one concludes that'

(r«) =fd p co(p) f d k exp( ik x—)Trpa~ „&2a~+k&2 f d—p to(p)fa (x,p), (3.3)

which is the expected result.
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