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The effective-action formalism used by Hartle, Hu, Fischetti, and Anderson for treating particle
production and back reaction of free fields near the Planck time in the early Universe is extended
here to interacting fields. We consider a massive (rn) self-interacting A,P4 scalar field coupled (g) to a
Friedmann-Robertson-Walker spacetime and study the effect of interaction on particle production
and on the dynamics of the background geometry. A background-field splitting is introduced in the
one-loop effective action which is calculated by perturbative expansions up to the second order in A, ,
m', and g. Ultraviolet divergences from the fluctuation field are removed by introducing counter-
terms via dimensional regularization. From the regularized effective action equations governing the
effective geometry and the background field are derived and their solutions sought. We consider
separately the conformal versus the nonconformal (g), and the massless versus the massive (m) cases.
We also contrast the cases with or without the background field Q) and those with or without in-

teraction (A.). The dynamics of the scalar field and the scale factor and the probability of pair pro-
duction in each case are calculated. In the discussion we present a qualitative explanation of these
results, and draw the connection with related work. The classical limit of the present problem de-

picts the evolution of a Higgs field in curved space, its results being useful for the description of
inflation and reheating processes in the grand-unified-theory epoch. The present problem is also the
semiclassical limit of quantum cosmology. The results obtained here can be useful to tackling prob-
lems involving dynamical fields in curved space such as critical dynamics in the early Universe.

I. INTRODUCTION

Studies of interacting fields in curved spacetime are in-
dispensable towards understanding certain important
physical processes in the early Universe from the Planck
time (tt —10 sec) to the grand unification time

( t GU —10 sec). These processes include cosmological
particle production, phase transition, and their
effects on the dynamics of the early Universe. In the
grand-unified-theory (GUT) epoch, how an interacting
scalar Higgs field evolves can influence the stability of the
vacuum, the extent of inflation, the rate of reheating, etc.,
and determine the dynamics and outcome of phase transi-
tions. In the Planck epoch, quantum processes such as
particle production from the vacuum and from interac-
tions ' due to strong gravitationa1 fields can influence
the state and the fate of the Universe, such as possible
singularity avoidance, horizon removal, matter
creation, ' etc. The methods for analyzing interacting
quantum fields in curved space for these prob1ems range
from analytic (approximate) and numerical solutions of
the wave equation ' to the use of effective potentials. '

However, as we have emphasized before, " the effective-
potentia1 method used in many studies of inflationary
cosmologies is inconsistent with a dynamica1 background
where the metric and the fields can vary with time and/or
space. To improve on this situation, quasilocal approxi-

mations to the wave equation' or the effective Lagrang-
ian' (via adiabatic or derivative expansion) have been
devised to treat cases where the background field is slow-

ly varying. However, for nonadiabatic processes such as
particle production in dynamical spacetimes and fields,
the full effective action is needed. Particle production in
the reheating period of GUT inflation from the decay of
scalar particles is by nature an external-field problem
where quantum gravitational effects are usually ignor-
able. However, particle production at the Planck time in-
volves both vacuum excitation by the (classical) back-
ground spacetime, the dynamical fields, and their interac-
tions. In such cases one has to use quantum-field-
theoretical methods in curved spacetime.

Cosmological production of interacting particles has
been considered by many authors using interaction-
picture canonical methods. ' This is a natural extension
of the canonical method via Bogolubov transformations
in free-field cases originally studied by Parker and oth-
ers. Back-reaction studies of particle production using
these methods necessitate self-consistent solutions of the
Einstein equation for the background metric and the
wave equation for the matter fields. These have been
carried out only for free fields. A more powerful method
for considering the back reaction of cosmological particle
production is by way of the efFective-action formalism.
In a series of papers, Hartle, Hu, Fischetti, and Ander-
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son have considered the cosmological implications of
quantum effects of free scalar fields in different classical
background spacetimes. In these approaches the one-
loop effective action is usually derived in orders of some
small parameters, e.g. , the mass of the field m, the cou-
pling constant g of the field to spacetime, or the anisotro-

py of spacetime P, etc. In this paper we apply the same
method to the study of particle production and back re-
action for a self-interaction (A.P ) scalar field in a
Robertson-Walker spacetime. We deduce the form of the
one-loop effective action by a perturbative expansion up
to second order in A, , m, and g. The ultraviolet diver-
gences in the Feynman diagrams are identified and shown
to be identical to those deduced from general considera-
tions (such as via the background-field method). ' They
are removed by introducing counterterms in dimensional
regularization. The finite part has a form similar to that
of the free-field case, except that the mass m is replaced
by an effective mass m, tt m g——R /6—+A,P /2, where R
is the scalar curvature and P is the background field.
From this the equations governing the effective geometry
and the scalar field are derived and their solutions are an-
alyzed. Note that in contradistinction to the quasilocal
effective action of Hu and O' Connor, ' which is valid for
all orders in I, but only low orders in the derivatives of
the background field, the present expansion in low orders
of the coupling constants is not restricted to slowly vary-
ing background fields. As such, it can describe nonadia-
batic processes such as particle production. The same
problem (A,P theory in Robertson-Walker spacetime) has
been discussed recently by Calzetta and Hu' using a new
"closed-time-path" (or in-in) functional formalism, by
which the vacuum expectation value of the stress-energy
tensor was calculated. Here, as our interest is mainly in
particle production we stay for simplicity with the con-
ventional "in-out" formalism, and discuss the back reac-
tion of particle production in detail. To get the real and
casual effective action and effective geometries, our re-
sults can be generalized by the procedure outlined in Ref.
15.

This paper is organized as follows. In Sec. II we derive
the one-loop effective action with perturbative expansion
to second orders of m, g, and A, . The ultraviolet diver-
gences are removed by dimensional regularization. In
Sec. III we derive the equations for the effective geometry
and the field and study their analytic solutions in the
asymptotic time regions. We discuss the two general
cases of massive conformally coupled fields and then the
massless, nonconformally coupled fields, without the
trace anomaly" and then discuss the effect due to trace
anomaly. In Sec. IV we try to explain the main results in
each case by qualitative considerations and draw some
general conclusions.

3

ds = d—t +a (t) g dx;

=a (rt) d—rP+ g dx (2.1)

S„q——fd x( —p„). (2.3)

Here p, =p, a is a dimensionless number which measures
the number of radiation quanta and determines the "size"
of the Universe" (maximal radius in closed universes).
The action for the scalar field (written in n dimensions) is
given by

S/[P, g]=f d "x ( —g )
'~

—,'$(x)CI„P(x)

——,
' [m + (1—g }g„R]$ (x)

——AP (x)
4f

(2.4}

Here C3„ is the Laplace-Beltrami operator in curved
space, g„=(n 2)/4—(n —1)=—,

' for n =4 and the con-
stant /=0 and 1 correspond to conformal and minimal
coupling, respectively. The scalar field P(x} satisfies the
equation of motion

or

Slk g„.]=o
5$(x)

[—0„+m +(1—g)(„R]P(x)+—P(x}=0 . (2.5}

The vacuum persistence amplitude (0
~
0+) is given

by the generating functional Z obtained by functionally
integrating the actions over the scalar field P in a back-
ground metric g:
(0

~
0+) =Z[J,g]

=N f 5/exp i S[g,g]+ f d "x&—g(x)

XJ(x)p(x)

where a (t) is the scale factor and the conformal time il is
related to the cosmic time t by rl =f dt/a (t). The classi-
cal (Einstein) action S 0 of the background geometry (g )

is given by

S o[g]=lp fd x( —g)' R,
where l~=(16nG)'~ =1.2X10 cm is the Planck
length, and R =6a "/a (a prime denotes did li) is the sca-
lar curvature. We assume that the Universe is filled with
classical radiation with energy density p„described by the
action

II. EFFECTIVE ACTION

iiv[ j,g] (2.6)

Consider a massive (m), self-interacting A,P scalar field
coupled arbitrarily (g) to a spatially flat Robertson-
Walker (RW) universe with line element

where we assume that the field P{x}is coupled linearly to
an external source J(x). To incorporate the quantum
contributions, expand S around a saddle point P(x ) {up to
5 S/5$5$ terms for the one-loop approximation),
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S[g,g]= S[P(x),g)+ f d "x& g—P(x)+ fd "x ' +&—g J(x) [P(x)—P(x)]
5$(x)

+ ,' f—d"x d "x'[P(x) P—(x)] ' [P(x')—(j}(x')]+ ' ' '

5$(x)5$(x')
(2.7}

The saddle-point field P(x) satisfies

-S[4 g)+& gJ—=o (2.8)

which becomes the classical field in the source-free limit.
The classical action for the scalar field Sfo is given by
(2.4) with ((} replaced by P, the classical field. After per-
forming the Gaussian functional integration over the
fluctuation fields P=P —P we obtain

W[J,P,g]= i in—Z [J,g,g]
=S[g,g]+fd "xV' gJ—(x)P(x)

l——ln detG,
2

where the one-loop Green's function 6 is

(2.9)

G(„,) 5'S [4,g] (2.10)
i5$(x)5$(x')

The effective field ((} is defined as the vacuum expectation
value of $:

=Z [J,f,g]fDyer exp i S[gr,g]+ fd "x& gJP—

5r[4,g 1 0,„d 5r[b,g]
5g p 5$

(2.14)

They are the Einstein equation and the Klein-Gordon
(KG) equation modified by quantum fluctuations of the
scalar field. In our previous work we have called g and p
the classical geometry and fields. Here we find it more
appropriate to call them effective but save the description
classical for the real geometry g and fields P satisfying the
Einstein equation derived from (2.2) and the KG et[na-
tion in (2.5). Since the difference of I'"[P]and I'"[P] is
in higher-loop terms, we may sometimes use P and P
interchangeably as functional variables.

From (2.9), in the vanishing-source limit, the one-loop
effective action I is given by

I' '[P,g]= ——TrlnG(x, x') . (2.15)

(1.3} a source term T ~ to which the gravitons h tt are
coupled, i.e., of the form jd "x h t3T ~, and integrating

over the graviton field configurations to get the generat-
ing functional. In the semiclassical approximation used
here, only quantum fluctuations of the scalar field but not
the gravitational field are included. The effective action
which incorporates such contributions yields an effective
geometry g and an effective field P (which is in general
complex} satisfying the equations of motion

J II'[J 4 g)

It is given by

(2.11)
The Green's function in the one-loop approximation
G(x,x')=5 S/i5$(x)5$(x') satisfies the equation (in n
dimensions}

&—g (x)[Q„+m +(1—g)g„R + —,'AP ]G (x,x')
where P is the average of all one-loop fluctuation fields

lndetG .

(0+ ~
0 ) =exp(iI [g,P]) . (2.13)

From its definition, I yields only the one-particle irre-
ducible (IPI}Green's function.

In the above we have only considered quantum contri-
butions of the scalar field in a given geometry g. Quan-
tum (graviton) contributions to the gravitational field can
be incorporated in a similar manner. [See Sec. I of paper
I (Ref. 4).] One does this by introducing in the action

Now perform a functional Legendre transformation and
substitute ((} with P which are indistinguishable up to one
loop:

r[y, g]= W[J,y, g] fd "xv' —g JP(x) . (2.12)

This defines the effective action I [P] which is equal to W
at vanishing source. Equivalently

= —5"(x —x') . (2.16)

For free, massless, conformally coupled fields
(k=m =/=0) in a RW spacetime, the Green's function
Go is conformally related to the usual Rat-space Feynman
Green's function, i.e.,

Go(x,x') =[a (ri)]' "~ Gz(x, x')[a (ri')]'

where

—1
ik.(x —x')

G„(x,x') = fd "k
(2m }" k2 ie—

(2.17)

(2.18)

For small m, g, and A. , one can solve (2.16) perturbative-
ly. Defining

V(g,g)=m —g„R (x)+—,'AP (x)—:m (x)+—,'A((}

(2.19)

as the perturbation potential, G satisfies an integral equa-
tion
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6 (x,x') = Go(x, x')+ f d "y Go(x,y) V(y)G (y, x'),

(2.20)

G =Go +GO VG =Go +Go VGO +Go VGO VGO +
=Go(1 —VGO) (2.21)

or, in operator form, Substituting this into the one-loop effective action yields

oo

I [p,g]= ——trlnGO ——g —fd"x) fd"x„V(x))GO(x), xz) . V(x„)GO(x„,x))+O(fi~) .
n=1 n

If we adopt the Feynman rules for the propagator and the vertex functions as depicted in Fig. 1, i.e.,

(a) iGO(x, y),

(2.22)

(b) ——&—g (x)m (x)5"(x —y),
2

(2.23)

(c) — &—g(x)5"(x, —xz)5"(xz —x3)5"(x3 x4),
4I

then up to one loop we need to sum over all diagrams in Figs. 2 and 3 for contributions to the first and second order of
k, respectively. We observe by power counting that

Gp(x, —x3)GF(xz —x3) Gp(x —x, )-fd"k k (2.24)

which contains ultraviolet divergences only for m =1 and 2 (in one-loop graphs) at n =4. We see that the lowest-order
bubble diagram [Fig. 2(c)] does not contribute because it is proportional to Gp(0)- Jd "k (k —is) ', which gives zero
regularized value in dimensional regularization. This leaves only Fig. 2(d) to O(A, ) and 3(b)-3(d) to O(A, ), which need
be regularized. They all contain products of propagators in the form GF(x —x'}Gp(x' —x}which in the momentum-
space representation is given by

d "q 1 1
(2m )"5"(p, +p3 )

2n. "
q —ic q+p —ic

which can be evaluated by rotating both p and q by m/2 in the complex plane and rotating p back —m/2 after in-

tegration. [See paper II (Ref. 4}.] This gives
0 0

Gp(x —x')Gp(x' —x)=
3

5"(x —x') —
3 [2+/(1)+In4m —in. ]5"(x—x')

16m (n —4) 16m

+ p &tp(x —x')lnp2+O(n 4)
) d

16m (2m)"

The first term is the singular part. From this we can easily identify the singular part of Fig. 2(d) to be

(2.26)

i& g(x) — — (m ——,)(R)5 (x, —xz),
32m (n —4)

(2.27)

which requires a term in the counter Lagrangian

2
=L

~
————'(5m 'R5()$, whe—re—5m = and 5(=

32~2 32~2

while the singular part from each of the three diagrams 3(b) —3(d} is

(2.28)

i Ap"" 4)3/ g(x)— —
32m. (n —4)

5 (x, —xz)5"(x3 —x3)5"(x3—x4), (2.29)

which requires a combined counterterm (hence a factor of 3)

Lz L)„————(5A, }P, whe——re 5A, =cr cr 1 4 = 3~
4t 32%2

Let us now use these results to compute the one-loop effective action up to second order (A, , m, and g ):

(2.30}

I [q), a]=S[q),a]——f d "x d "x'a (x)[m (x)+—,'Ap 'P (x)]G&(x —x'}Gp(x' —x}a (x'}[m (x'}+—,'A)u 'P (x')],
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where

e=n —4.
We see that the term a m (x)GF(x —x')G(x' —x) in (2.31) contains a divergence

(m ——,'gR }
64&(n —4)

(2.32)

which requires a counter Lagrangian L 3 ——L A „,——5A+5&R + —,'5e&R, where

5A=m /64m, 5~=—,and 5e, =
32m. 6 '

36 &( 32m.

This comes from the free-field two-point vacuum bubble diagram and the counterterms correspond to the renormaliza-
tion of the cosmological constant A, Newton's constant ~, and the coefficient of the quadratic curvature e, . (See, e.g.,
Ref. 13.} By adding the three counteraction terms from (2.28)-(2.30) S; = fd x L; and replacing the bare coupling
constants and geometric parameters with the renormalized ones, we get, upon taking the limit n ~4, the effective ac-
tion for the scalar field up to one-loop order

I „„[(p,a]=I [qr, a]+Si +S~ +S3 =SIo[q&,a]+I'„'„'[p,a],
where

I'„'„'=f d x a (r))(m ——,'gR+ —,'A, P ) lnpa+ —fd x f d x'a (rl)a (r)')(m ,'gR + —,
'—A—P )

XK(x x')(m — ,'gR +——,'—&$ ), (2.33)

and

K(x,x')= 1 61
lnp 2e iP (x—x')

64H (2n )
(2.34)

i Go(x,y)

fYl
(b) x = y

(c) x X4

-(i/2)4'-g(x) m (x) 8"(x-y)

-(i/4! ) X I-g(x) 8 (x, xx) 8 {xx x3)8 (xl xg

[We have redefined the renormalization constant iM to ab-
sorb the coefficient 2 + P(1)+ln4m. ]

This regularized effective action is the starting point
for our analysis of the equation of motion, particle pro-
duction and back reaction. Before ending this section, we
would like to make two remarks.

(1) The divergences we identified (and counteractions
introduced) from the Feynman diagrams are exactly the
same as those obtained from more general considerations
for arbitrary curved spacetimes, such as those from the
work of Toms, Bunch and Parker, ' Hu and

I

O' Connor, ' and others. As shown in paper II (Ref. 4),
one can deduce the Gauss-Bonnet and quadratic curva-
ture terms from the higher-order Feynman diagrams.
This leads to the trace anomaly. Since the form and the
origin of the trace anomaly are well known, we shall for-
feit its derivation but simply add the term (cf. paper I) to
(2.33) in our consideration

'2

(2.35)

Here, V =L is the coordinate volume,
a=P= I/(28806) for the scalar field.

(2) One can almost guess the form of the effective La-
grangian from the results of the free-field case (paper V)
plus some experience with the background-field effective-
action formalism. Note that what enters in place of the
vR factor there (v= —g'„) is the effective massI dr

——m ——,'gR +(A, /2)P . [The —,'A(() term, of course,
comes from the one-loop approximation (1.6) of the
(A. /4! )P potential in the saddle-point expansion. ] Except

X2

FIG. 1. A diagrammatic representation of Feynman rules in
configuration space. (a) A line denotes the propagator of a
massless free field. (b) A black dot denotes a two-point vertex
m (x)=m a (q) —gR/6, where )=0 denotes conformal cou-

pling and R is the scalar 4-curvature. (c) denotes the four-point
vertex of P self-interaction with coupling constant A, .

(b)

A 9 'Am*
X

(c)

FIG. 2. One-loop expansion of a two-point dressed Green's
function up to second order in A, and m (g).
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(c)

Under these assumptions, the total action can be writ-
ten as

S[a,X]=Vfdi}X,
where

(e) (g)

FIG. 3. One-loop expansion of a dressed four-point vertex up
to second order in A. and m {7).

for the additional counterterm for A, which needs to be
deduced from the vertex diagrams, the other procedure is
similar to the free field case. The derivation of the nonlo-
cal parameter I(.'(x —x'} in the finite contribution is ex-
actly identical.

s =s...+s„+sf,+r„„+r,„,(1) (1) (3.1)

where the five terms are given by (2.3), (2.2), (2.4), (2.30),
and (2.31), respectively. Written explicitly in terms of the
Robertson-Walker geometry and using the conformally
related field quantities X=a((t, they become

S„d——Vf dry( —p„}, (3.2)

S o= —61 iVf di) a' (3.3)
T

tt

S„=fd4 x, ~~"a„X( )xag( )x——,'g
' X'

——map ——Ag222 & 4
2 4t

(3.4)

I'„'„'= f d x(m, sa )(x} i in@a+
327r2

—f d x d x'(rn, tta )(x)K(x —x')

X (m', sa')(x'), (3.5)

where

rn, aa =m a —ga" /a+AX~/2, (3.6)

and I T'A is given in (2.35).
We shall consider only homogeneous fields ((}(t} [or

X(il)] and take the local truncation for IC(x —x'), i.e.,
K(x —x'}=5(x—x'). The nonlocal effect for free fields
has been studied in paper IV (Ref. 4) and found to be
qualitatively similar to the local results. Since to the
lowest order the effect of interacting fields amounts to
changing to the effective mass while preserving the gen-
eral form (3.5), we expect the local truncation here to
produce a close approximation. The full result would
have to come from numerical computations.

III. BACK REACTION AND PARTICLE PRODUCTION

In this section we consider solutions to the equations of
motion (1.12) for the efFective geometry and fields using
the total effective action (up to one loop}

——A,X + (m ~V —ga "/5+AX~/2)
4! 32ir'

lnpB'+ lK
(3.7)

The rescaled (tilted} parameters are measured in ratio to
the Planck length lp..

12 Ip lp
a, m= —m, p= p.

Ip &12 12
(3.8)

In what follows we consider back reaction in terms of
solutions to the equations for the effective geometry and
particle production from the effective action in separate
cases. These cases are distinguished in accordance to
whether or not the perturbative parameters m (mass), g
(field coupling), X (background field), and A, (self-
interaction) are zero. From the form of the Lagrangian
(3.7) we see that the effect of interaction (A, ) always mani-
fests through the background field (X). Hence the case of
zero background field leads to results equivalent to free
fields (X=0=A,=O) but the converse is not true, because
the background field is also coupled to m, g, etc. For the
treatment of massive fields the present perturbative
method fails at late times because the relevant parameter
ma becomes large at large a. One knows however that
the classical behavior of the Universe containing massive
fields at late times is given by that of a matter-dominated
solution (see, e.g., Starobinsky and Anderson in Refs. 4
and 5), which we will assume for these cases. Taking into
account the qualitative differences, we will first discuss
massless conformal fields in case A. Being technically the
simplest, this case singles out the effects of nonzero back-
ground fields X and interaction A, . We then treat the inas-
sive conformal case B, followed by the massless, noncon-
formal case C. The effect of adding the trace anomaly is
treated in Sec. III D. In this section we seek solutions to
the dynamical equations in a straightforward manner, but
the overall behavior can be understood in qualitative
terms by dimensional analysis and analogy with simpler
mechanical systems. This we discuss in the next section.

A. Massless, conformal fields (m =/=0)
The case of zero massless background field (X=O) has

been extensively studied before. For the Robertson-
Walker universe which is conformally flat, Parker's
theorem rules that no particle of conformally invariant
field is produced. For nonzero conformal background
fields, the mass term provides a coupling between the
geometric scale factor a and the background scalar field X
[see Eq. (3.22}]. In the massless case a and X will each
evolve independently as a,X-g. For self-interacting,
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nonzero background field (A,,X&0} the results are non-
trivial. Note that the generalization of Parker's theorem
(i.e., no particle production of conformally invariant
fields in conformally flat spacetimes) holds for the A,P
theory only when the total (unsplit} field [we call P, which
satisfies (2.5)] is considered. The theorem does not apply
for nonzero background fields order by order, under a
background-field decomposition. From the action

S [if,X]=f dvi —
—,'5 ' —p„+—,

'X' ——&X
4t

8n 1

Ar g gp
ln

1/2

(3.15)

(3) Another class of solution is incomplete in conformal
time. As g~qp, Imt~oo and Rea~0:

i 4m. 1

'9 —'Qp
ln

X'+ —,AX — A, X lnP tI+
32

=0.

This has a first integration given by

+ ' —'~'X'1„n+-'"
32

we get the dynamic equations

1 1
a "+ —X'X4n -'=0

32H 4

(3 9)

(3.10)

This case suggests a closed universe with lifetime -gp.
Out of these possibilities, the first case is a physically

acceptable solution. Note that a (lnvl)
' dependence al-

ways enters for massless fields. The magnitude of the
correction term is proportional to C', which contains the
scale (A. p„) ' . Here in contradistinction to the mas-
sive zero-field case, it is the coupling constant A, which
enters in determining the scale where deviation from the
Friedmann-Robertson-Walker (FRW) behavior appears.

The particle production probability is given by
P =2 ImI, from which we obtain the rate of particle pro-
duction as

1 1 24 .m—A, X lnPit+i =E—.
32tr' 4

(3.11)

(256m. ) 'A, 8 vl at early time,

(2566)A, H
&

at late time .
(3.16)

At early times g~O the only asymptotic solution for
8 —+0 is

The period of dominant production occurs at the same
scale which causes departure from the classical FRW be-
havior.

8 -Ay+a'g + . , X-Bg+B'g lng+ (3.12)

C' DCg+ + s ~ ~ + ~ ~ ~

v)~(lnvi)4
'

vi lnvi

where

(3.13)

8mC=+2p„, C'=—,D =8m/A, .
3A, C

Here 0~00 while X~O at g~ao.
(2}A second class of solutions is

F' Ha-F+ (3.14)

where A, B are constants satisfying A —8 =2p„and

a= 'a
2560& &

'

At late times g~ 00, several characteristic solutions are
allowed.

(1) One class of solutions is

B. Massive, conformal flelds (m+0, /=0)

As remarked before, since quantum efFects calculated
by the perturbative method can become unreliable for
ma & 1, one should use it only to derive the early-time be-
havior. However, since quantum effects associated with
massive particle production in an expanding universe is
usually most pronounced at a time T from the Planck
time tr to the Compton time tc-rn ' (see, e.g., Parker
and Fulling in Ref. 3) much earlier than the time t„when
the Universe assumes the classical radiation-dominated
FRW solution a —vl. For the interim period (T & t & t„}
we can assume that the massive particles produced give
rise to a matter energy density p, which together with
the radiation density p„determine the late-time behavior
of the Universe and the background field X. We shall first
discuss the early-time behavior and then the late-time be-
havior for each subcase.

where F is arbitrary and

F'=— 1 2H 8m.

128m. F A(in@ A +i n l2)'

In this case, 0'~F and X~O as g~ao. This solution
however does not satisfy the first integral unless p, =0. It
is an "empty" (matter-free) RW solution with scalar field
as source.

1. Early time (quantum) b-ehavior

a. Zero background field (X=O). This yields the same
result as a free field (A, =O). The back-reaction problem
for this subcase has also been considered earlier by An-
derson (his paper III in Ref. 4) using a difFerent method
(canonical quantization and adiabatic regularization}.

The effective Lagrangian is [setting X=/=0 in (3.7}]
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X=——,'a ' —p, +(rn if ) lnpif+
32M 2

The equation of motion for the effective geometry is

a "+ if lnpif+ +—=0 .rn 3 &n 1

8 2

(3.17)

(3.18)

—4a"—m2a2X2+m a3 lnpa+ l~+ —=0
8~2

g"+m a X=O .

This system has a first integral

] y t 2+ —+ ]yr 2+ ] —2- 2y2

(3.24)

This has a first integral given by

—4——,u — 0' lnpB'+ +p, =E .m 4 1ST

327r' 2
(3.19}

—4
n4 lnpn+

'

32 p„

in ——+fdrl+2p„.

Setting E =0 as initial condition [cf. paper I (Ref. 4}],we
get a general solution

m if lnpB'+ =E
32m.2

(3.25)

We find an asymptotic solution at early times q ~0
u- Art+ A'q'1nrl+, X-Bri+B'rt (3.26)

where A B=—2p„, A'= —(1/160m }m A,
B'= ——,', m A B. At late times, a class of solution
behaves differently from the matter- or radiation-
dominated classical solution (discussed in case 2 below):

(3.20) if -+"& 2/m —,X-+i —(in')
1 . 1 1

2~ ~
(3.27)

The asymptotic solution for early time g~0 is given by

m 4p'„
n=&2p, g 1—

40

input 2p, rt ——,
' + +

(rl —+0} (3.21)

This solution does not satisfy the first integral unless

p, =0. Thus it is a vacuum RW solution sustained by a
scalar field. It begins with 8=+=0 but evolves away
from the solution obtained by the precise balance of a
positive kinetic energy in X' and a negative kinetic ener-

gy in a' .
c. Nonzero, interacting background geld (X&O,A&0).

The dynamical equations are

assuming the initial condition 0 =0 when g=0. Notice
the rl correction to the FRW solution occurs at a time
scale (mp„'r ) '. This is expected, as the only scale in the
system is the mass of the field enveloped by the dimen-
sionless number p, which determines the "size" of the
Universe, or how large a Universe a given amount of ra-
diation quanta can sustain. At this scale, particle pro-
duction and its back reaction is expected to be dominant.
The probability for the production of a particle pair is
given by

if" rn ifX—~+ rn if(rn i7 +—'AX~) inpif+
8m'

, (m 'if '+-,'A.X')'—=0,
327r2

X"+m if X+—X (rn if + 'AX~)1

6 16~

X AX in@ if+ =0 .
2

They have a first integral given by

(3.28)

(3.29)

P =2ImI = Im dye lnjg, B+
8n o 2

(3.22) 1r2 +p + ] yt2 + ] ~ 2y 2y2 + gy4
2 ~ 2 2 4I

Using the solution (3.21) for lf, we find the rate of particle
production to be

—4
P= V(2p„) rt for early time . (3.23)

From our asymptotic analysis on massive fields based
on the use of simple analytic functions, we cannot find
any singular solution (if~0 at g~0) which is asymptoti-
cally Friedmann at late times. We do not, however, rule
out the possibility that asymptotically Friedmannian
solutions with bounce (if'~ao at rt —+0) may exist from
numerical investigations.

b. Nonzero, free background geld (X&O,A, =O) This.
case is different from that treated by Hartle in paper V
in that the background scalar field is nonvanishing. It
yields a coupled set of equations

(m if +—,'A,X ) inPif+ =E . (3.30)

5-Ag, X-B7(I, where A —B =2p

(2) A second class of solutions is

A 2C g& —in',
16~

(3.31)

(3.32)
X-C+

2
A, B g lng, where 4A, C +p, =0 .

(3) A third class of solutions is

We find three classes of asymptotic solutions for early
time q~O.

(1) One class of solutions is
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AD g
+i

16&3m
(3.33)

and

(3.34)
X-+Dg, where —,'D +p, =O .

A special case occurs when rn =—,'A, , or A, =m lp/4,
where one can find an exact solution to (3.28) and (3.29):

X=ki ( 2m /A, )
' a

0(r'i) is a periodic function of 71 but the oscillation is
anharmonic. The Universe expands and recontracts (in
conformal time}. By using the first integral one sees that
there is no particle production.

In carrying out a perturbation expansion in orders of I,
or m one gets, for early times,

iX=Ari+ m — rn 2A(m A + —,'A.B ) lnPAri+ +
160~'

1
(m 2A 2+ ~ QB2)2 r}5

640m A

[m AB2(B 2A )——2m A, AB ]ri + (3.35)

X=Bri+ (m A B+ 'AB )+ (m A + 'AB ) inPBri+ + 1

20 ' 320m

1 X'B'
m 4A2B(A2 2AB2)+2m 2g A2B3+

1440 3 12
(3.36)

where A —8 =2p„.
For this solution the probability to produce a particle

pair for early time is given by

P=2ImI = f dri(m A + —,'A,B ) ri

(m 2A2+ &QB2}2
y5

160m

where again A —8 =2p, .
We now discuss the late-time behavior.

(3.37)

2. Late-time (classical) behavior

If there were no massive particle production, the prob-
lem ~ould be that of a classical massive scalar field in a
radiation-filled universe. To examine the classical effect
of nonlinear fields, it is perhaps instructive to begin our
discussion with this simple case. The classical equations
of motion for Z and X are [from (3.28)]

now consider the effect of particle production in affecting
the late-time behavior.

The baryon density from the production of massive
particles is

p =2mP = (rn A 2+—'AB )2Tsm,
80m

(3.39)

S[a,X]=V f dpi ——a' —P„—p a+ —,
'X'

P

——map ——Agz22 1 4
2 4l

(3.40)

where P is given in (3.37) and T is the time when
significant amounts of particles are produced. After this
time quantum field effects are assumed to be insignificant.
To determine the late-time behavior, we assume that the
total particles produced at early time give rise to a back-
ground baryon density which can be treated as an addi-
tional classical matter source. This system is described
by the action

a"=m ay y"= —m a y ——y
6

(3.38) yielding the equations of motion

They depict two coupled oscillators with amplitudes a
and X. The field X(ri) being subjected to a restoring
anharrnonic force can be approximated by a circular
function with decreasing envelope and periodicity, like a
damped harmonic wave. The geometry is subjected to a
time-dependent force with a negative string constant.
This results in the growth of the scale factor a (ri} faster
than the FRW solution (a -i}). Thus nonlinear fields can
introduce deviations from the Friedmann behavior al-
ready on the classical level. Note that quantum correc-
tion due to particle production enters at early time as
higher-power terms in ri [il in the solution (3.36)]. We

a "=P +m aX, X"=—m a X——,AX, (3.41)

with a erst integral

——,'a ' +-'X' +p 0'+p„+-,'m a 7 +—A,X =Q .

(3.42}

Here a =(&12/lp)a and p =(lr/&12)p . The resulted
parameters p, =p„a and m A, are as before assumed to
be small.

a. Zero background geld (X=O). Here X=O has the
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same effect as a massless (m =0) noninteracting (A, =O)
field. The late-time behavior is the combination of
matter- and radiation-dominated solutions:

2B2 1 4—2n

(4—2n)(3 —2n)

tt~ 2pm'9 +'(/2pr'9 . (3.43) 1 3—2n

"(3—2n)(2 —2n)
The demarcation of the two classical eras depends on the
parameter for n & 1 and n& —3, n&2 . (3.49a)

2+2p„
pm

Typically when

(3.44) (ii) if&
———,'m B [—,'p rt(in' —1}—+2p„inrun]

for n =—', . (3.49b)

r i 5

(=11520@&6 (3.45)

( i ) g » g, it ~—,
'
p ri matter-dominated solution,

(ii) rt«g (but ri& tp), 0'~+2p„r}

radiation-dominated solution,

(iii ) ri -g matter and radiation coexist .

Using (3.39) for p ( A =4p„) we get

(iii) if&
———'m B ——'p inrt++2p

2n

for n =2. (3.49c)

Up to second order as we have considered here, n is a free
parameter. It may however be dependent on parameters
in the third- and higher-order solutions. Finally we have
the most general case.

c. Nonzero, interacting background geld (X&O,A,+0):

and

=p +ill Bg, g = —Pl (3.46)

——'if ' +—'7' +p u+p +—'m n X =0

If we assume m tt X «P it or p„, then at large 7}, to
leading order

and

n= ,'p g'++2p„g- (3.47)

X=BE "sin( —,'m p rt + ,'m'1/2p„t)r, —

where tz ——m ' is the Compton time and tz is the Planck
time (since [p„'~ ]-[rt] and [T]-[ri],g has the dimen-
sion of g}. One can assume an upper bound for T to be
tc (Compton time). In general if one can calculate the to-
tal amount of particle production in the whole history of
the Universe, then one does not need an explicit expan-
sion for T, as T is implicitly related to t& and tz. To
transcribe our notation to that of Hartle's paper V in Ref.
4 note that our p =p&, and g=(4v 3/p '~

)g
b. Free background field (A, =O):

n"=p +m tIX', X"=—ttt a'X ——,'AX'. (3.50)

C. Massless, nonconformal fields

By comparing this with case A one can discern the
difference in the types of field coupling with spacetime
curvature. Note that nonconformal coupling introduces
higher-derivative terms (in if } coming from the curvature.
Thus the dynamic equations for N are more complicated.
The action is given by

X2 i

y l y i2+ y pi+ pi 2

We see that since (1/3t}AX is a higher-order correc-
tion compared to m a 7, the solutions obtained for case
b remain valid in this case. If the condition
m it X «p 0 or p„ is not satisfied, there may not be
analytic forms of asymptotic solutions at large g. From
the equations of motions we know qualitatively that
X~O and 8~~ much faster than 8'-g at large g. The
nonlinear coupling between the two oscillators with am-
plitudes a and X (with negative and positive "spring con-
stant") could show chaotic behavior. We do not intend
to pursue this case further here.

where n &1 in order to have m aX &&p and Bis an ar-
bitrary constant. The power-law dependence of 7-q
is such that it satisfies the convergence condition. (The

factor cancels identically on both sides of the
differential equation. ) To the next order

II
——'~X' —P„+

' g' +—}X'
4! 32M g 2

tt= 2pm'9 +(/ 2P.'9+tti (3.48)

l 7T
lnp a+ (3.51)

we obtain three sets of solutions for , at large q: This leads to the dynamical equations
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X2 X X2

a IIf 8 8 a

1 im
lnpd+

16m. 2

3 g &&2 ~ &&~ &2

IIII ~ Ill~ Ia a
2 Q 3

a a 8 a

Il~ I2

+6 a4

—P, — if "+—X"+ 0' —2'iF 'X'+
a a a

=0 (3.52a)

and

X"+g if "—+—AX
II

A.X g +—A,X lnPn+
16m

=0. (3.52b)

This system has a first integral

X2
1+g n '+ g n'X—'+ —X'+—AX'+P„

n

1 1ST
lnpif+

32
4~2

1 0'"if '

2 n2

I2 tl
1

I/2 X 1 X—2P. if 'X' ——— if ' + —,'A, X =E . (3.53)
3 4 y2 y 2 y2

It is instructive to separate the classical solution so as to
compare the effect of quantum corrections. The classical
equations for if and 7 consist of terms in the first set of
square brackets in (3.52) and (3.53). The early time q~0
classical solutions have asymptotic solutions

n-Arl+-, 'g ri ——,A.g ri, X-Brl
,

AB ri—, —3 S

~-~ 'n+
2 ~, —g o(ri » X-go(n)+2A' g

(3.55)

where —,'g o+(1/4! )Ago =—,
' A ' —p„. if has a harmonically

modulated Friedmann (a -ri) behavior, while X is an os-
cillating function. Adding the quantum corrections, we
find that the small-g behavior is the same as the classical
solutions. This is because the dominant gR/6 term al-
ready appears in the classical effective mass for noncon-
formal field. We see also that owing to the coupling with
spacetime curvature where higher-derivative terms enter,
the early-time behavior is significantly different from the
conformal case. The late-time g~ao asymptotic solu-
tion is

a —Cq — 3, X- +2D 3, (3.56)
1 D 1

lnri q(in'} ~

where C =+2p„, D = +8m. /A, . All solutions are confor-
mally complete. No solutions of other kinds are found.
Note that the late-time quantum solutions are different
(although if has the same leading-g behavior). This is be-
cause the quantum terms introduce additional forces

(3.54)

where A —8 =2p„. At late time q~00 the classical
solutions have asymptotic behavior

which act opposite to the classical force terms. Thus
they tend to smooth out the runaway behavior of a (g)
and add an exponential component to an otherwise classi-
cal oscillatory solution (for X-rl). The scale which the
quantum effects of nonconformal fields become important
is tied in with the scalar curvature R, and thus can be
significant even at late times until the scale factor as-
sumes the Friedmann behavior (a -rl or R =0). A mea-
sure for the magnitude and the duration of significant
quantum contribution is given by the particle production
rate which has the asymptotic behavior

V
( —,'A,B ) g for early time,

( —,'A, D ) for late time .
32m

'
g (in')

(3.57)

D. ESect of trace anomaly

We know from experience- with previous problems
that the effect of trace anomaly is only significant near or
before the Planck time. The effect of massive interacting
fields are important at other scales, usually lower than
the Planck energy. The equation of motion for noncon-
formal fields contains terms coupled with R, which is on
the same footing as the trace-anomaly terms. To separate
the sole effect of the trace anomaly we shall consider only
massive, conforrnal self-coupled fields. The massless con-
formal case is not much different from the corresponding
free-field case, which has been studied in detail in paper I
(Ref. 4}.

The additional term I TA' in the effective action respon-
sible for the trace anomaly is given by (2.31) explicitly for
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the Robertson-Walker universe. This introduces an addi-
tional term in the dynamic equation for the background
spacetime given by

=6a
Ill~ I II2 tl~ /2

4 +3
a ~3 —3 -4

u a a

a I II I

a u atl~ I2 ~ l4

+»P — + 7 (3.58)

at g —+0. (3.59)

The high-power-g dependence shows that the trace
anomaly is negligible at scales greater than the Planck
scale, but is dominant at scales smaller than the Planck
scale. Indeed this dominance over the other scales (mass
and self-coupling parameters) at the Planck time renders
the problem almost identical to that of the free-field cases
studied previously. For a conformally coupled, massive

field with trace anomaly, we find that the leading be-
havior of if and X at early time is given by

+3/2+ g 2+3+3/2
p g 19

+(terms with A, and m dependence),
(3.60)

g-B g+B g + lng

+ ( terms with A, and m dependence ) .

At late time (t &tt, ), the asymptotic solutions are the
same as the corresponding cases without the trace anom-
aly.

IV. DISCUSSION

We have presented the major analytic results on the
back reaction of interacting quantum fields in the last sec-
tion. We will now try to give a qualitative explanation of
these results and put them in perspective with related
works. Our discussion contains a dimensional study of
the relative importance of the field parameters, the effect
of interactions and quantum corrections.

Although the main aim of this work is to distinguish
the quantum effects of interacting fields, the generality of
this problem also enabled us to cover some of the simpler
free-field cases, specifically the massive, conformal fields
(cf. paper III of Anderson in Ref. 4) and the massless,
nonconformal fields (cf. paper V of Hartle in Ref. 4). By
the nature of the problem and the approach we have tak-
en, this work is most closely related to that of paper V in
Ref. 4, where the perturbative effective action method
was applied to massless, nonconformally coupled free
fields.

where, for scalar fields,

a=P=(2880&)

By inspection, it is easy to see that if the background
geometry has a FRW behavior a(rl)- A rl, then

T„=12p(Art) ~0 at rt~oo,

As we remarked in Sec. II our one-loop effective action
for A, (() fields [Eq. (2.33)] is identical in form to the free
field case except for the important difference in the re-
placement of the mass term m by the effective mass
m, s ——m —gR /6+A. P /2. Effect of self-interaction thus
enters both through the classical potential term
V(P) =A,P /4! and the one-loop quantum correction term
[the —,'AP term from V"(P)] in the conformally related
effective mass m, za . One may find that physics is more
easily interpretable if one examines the coupled equations
of motion. Each of the individual terms in
M,s

——m —gR /6+A, P /2 carries a scale: the Compton
wavelength I -m ' of the particle, the "radius" of cur-
vature l„-R '~, which can include intrinsic (1/a ) and
extrinsic curvature (-a/a) terms, and the interaction
scale l;-(&A, P) ', which depends on the interaction
strength measured by A, and the extent of interaction
measured by the background field ((). Their effects can be-
come important at these respective scales. The interest-
ing feature is that the curvature and interaction scales
vary with space and time according to a coupled set of
equations of motion. They are determined by, and in
turn determine, the geometry (a) and the field ((()). Both
effects are significant on the classical level. The
difference between the curvature (gR /6) and the interac-
tion term (A,P /2) is that the former depends on higher
derivatives of the scale factor -a "/a (it vanishes for con-
formal fields or classical Friedmann solutions) whereas
the latter depends on the square of the field itself (acting
like a variable-mass term).

In addition to the three field paraineters I, l„and l, ,
there are two additional scales which together determine
the cosmological importance of any particular process.
One is the intrinsic scale, the Planck length lt, -O'G,
which measures when quantum gravitational effects be-
come important. Any particular quantum field effect will
become important at the specific scale but always in rela-
tion to Iz. For example, production of particles with
mass m due to strong gravitational fields will be most
dominant at the Compton scale I, with production am-
plitude scaled by powers of l /lp, etc. The other scale is
a cosmological one. For the radiation-filled RW
universe, the dimensionless number p„=p„a which is re-
lated to the number of radiation quanta, determines
roughly the maximal "size" of the Universe (for a closed
Universe, it is the maximum radius a,„). Our Universe
containing —10 radiation quanta presently has a size of
10 cm, whereas a Universe with unit quanta can expand
only to the Planck length —10 cm. Thus a cosmologi-
cally meaningful quantity which characterizes any field-
theoretical process is given by that particular microphysi-
cal scale weighted with p„(to soine power). For this
reason the characteristic scale of cosmologically induced
massive particle production is proportional to I p„and
that of interaction -I;p„.

The effect of these individual terms m, gR /6, and
/2 are better understood by studying the subcases in

Sec. III where the zero field (/=0), free field (A, =O), and
massless field (m =0) limits are assumed. Hartle treated
the free, zero-background field case. Our results on non-
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conformal coupling to scalar curvature is consistent with
his qualitative analysis of the equations for the effective
geometry. For massive conformal fields the present per-
turbative method can only yield quantum corrections at
early but not late times. Anderson treated this case via
canonical quantization and adiabatic regularization. The
non-Friedmannian late-time behavior for solutions evolv-
ing from singularity he found may be a special effect due
to the trace anomaly rather than particle production.
Asymptotically Friedmannian solutions may exist for
massive nonconformal fields with quantum-induced
bounce or runaway solutions at early times.

The usefulness of comparison of these simple subcases
with previous work on free, zero-background field not-
withstanding, the problem in its full generality (with
nonzero interacting background fields) is a lot more in-
volved. The major difference from the free, zero-
background-field cases is that the equations of motion for
geometry and fields are nonlinearly coupled. One can get
an idea of the overall picture by first looking at the
simpler classical solutions, and then examining how
quantum effects change their behavior. This was dis-
cussed in Secs. III B and III C. Classically the dynamics
of a self-interacting scalar field in an FRW universe is
similar to the system of two coupled oscillators (with am-
plitudes iI and X}, with a restoring force on X (positive
spring constant) and an accentuating force on tI (negative
spring constant) [see Eq. (30) or (53), with a saddlelike po-
tential]. This causes the field to oscillate and the scale
factor to grow without bound. Therefore an interacting
classical field tends to drive the Universe away from the
Friedmann (tI-iJ) behavior at late times. For certain
ranges of initial conditions the system may even possess
chaotic behavior. For massive fields the first departure
occurs between the Compton scale 1 and the interaction
scale l, (case B), while for nonconformal fields it should
occur between the curvature scale I, and the interaction
scale l; (case C). The effective forces corresponding to
quantum corrections [Eqs. (3.29) or (3.52}]act opposite to
the classical forces, and thus tend to "soften" the classi-
cal runaway behavior for the scale factor and to "har-
den" the classical oscillatory behavior of the scalar field.
However, for nonconformal fields quantum effects are
less pronounced compared to classical effects. This is be-
cause the gR/6 term already dominates in the classical

effective mass. One can see this by comparing results in
cases B and C. Thus the curvature effect can be
significant extending to classical periods, as long as the
Universe does not approach an exact radiation-
dominated Friedmann behavior (whereby R =0). Final-
ly, since the effect of the trace anomaly occurs at times
earlier than the Planck time [due to the (2880ir )

' fac-
tor], the result is siinilar to the free-field case, which has
been studied in detail before. (For unusually strong self-
interactions our result based on the perturbative ap-
proach would not apply anyway. ) By examining the in-
terplay of the basic field and geometric processes as
characterized by their respective physical scales one can
gain a qualitative understanding of the combined action
of classical and quantum effects of the cosmological and
field-theoretical processes in the manner we have present-
ed.

As mentioned in the Introduction, the problem studied
here bears not only on quantum gravitational processes
involving quantum fields near the Planck time, but its
classical and quantum attributes could also be relevant to
understanding the evolution of the Higgs field in the
GUT epoch useful for a better description of the inflation
and reheating processes in the curved-spacetime context.
In turn, the present problem is itself the semiclassical
limit of corresponding problems in quantum cosmology,
that involving solutions of Wheeler-DeWitt equations'
for a quantum scalar field and quantum geometry, in the
spirit of Hartle, Hawking, and Misner. ' The results ob-
tained here can also be useful for analyzing nonperturba-
tive processes involving dynamical fields in curved space
such as particle production in tunneling processes and
critical dynamics in the early Universe, problems we
hope to address in future communications.
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