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Colliding electromagnetic shock waves in general relativity
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%e derive a new, exact solution for the Einstein-Maxwell equations that describes the collision

(interaction) of two arbitrarily polarized electromagnetic shock waves. In the limit that the polar-
ization angle vanishes, our solution reduces to the Bell-Szekeres solution.

I. INTRODUCTION

Plane waves in general relativity, whether pure gravita-
tional, scalar, electromagnetic (em), neutrino, or any
combination of these are known to exhibit nonlinear
features, attributed to the gravitational interaction of
their general-relativistic energy-momenta. The problem
of collision, in particular, between such waves has been
considerably important in moving toward a better under-
standing of the gravitational interaction at a classical
(e.g. , nonquantum) level. A number of exact solutions
available on this subject have been considered; the main
guidelines shed further light on the deeper understanding
of a number of unresolved questions. The physical re-
sults to be drawn from many publications on the topic of
colliding waves in general relativity do not extend beyond
a handful of significant ones. We have learned, for in-
stance, that pure plane gravitational waves scatter each
other to yield a space-time singularity, ' whereas for cy-
lindrical gravitational waves ' the emergence of a singu-
larity is not imperative. By the same token, two linearly
polarized plane em waves, in contrast with their gravita-
tional counterparts, interact in such a way that the result-
ing space-time happens to be nonsingular.

In this paper we present the solution of an open prob-
lem related to colliding em waves (cemw's). This problem
was formulated first by Bell and Szekeres (BS) who gave
an exact solution to satisfy the appropriate boundary
conditions. In the solution given by BS the plane em
waves were both linearly polarized. The principal task in
this paper is to remove this restriction and solve the
Einstein-Maxwell (EM) equations, which are more suit-
able for the more general boundary conditions than those
imposed by BS. The second polarization of the em waves
in collision serves to bring a nontrivial cross term in the
metric. This extension of the BS solution is similar to the
Nutku-Halil extension of the Khan-Penrose solution.
We have already considered various generalizations of
the BS solution form different viewpoints. These include
the interaction of superposed em shocks and the interac-
tion between shocks with nonconstant profiles.

In Secs. II and III we reformulate the problem of
cemw's and present the new solution. In Sec. IV we
study some of its physical properties and in Sec. V we
provide a conclusion.

II. COLLIDING em %AVES

Following BS we assume a space-time metric that is C"
and piecewise C' as the requirements of the shock em

where all the metric functions depend on the null coordi-
nates u and v alone. The nontrivial Maxwell Equations
are

P2, ———,'( V„coshW+i W„)P 0+—,'(U„+iV„sinhW)gz,

(2)

Po „————,
'

( V„cosh W i W„)P—z+ —,
'

( U„—i V„sinh W)$0,

(3)

whereas

,'F„„(l"n'+—m"m ")=0

throughout the space-time regions. The Einstein-
Maxwell field equations can be quoted directly from BS:

U„„=U„U„, (4)

2U„„—V„+2U„M„=W„+V„cosh W+4k
i Pz ~, (5)

2U„„—V„+2U„M,= W, + V, cosh W+4k
~ $0 i

2M„, +U„U, —W„W;= V„V„cosh W,

2W„„—W„U„—W, U„=2V„V„sinh W cosh W

2ik (0200 0200)

2 V„,—V„U, —V„U„=—2( V„W„+V, W„)tanh W

1+2k (4240+4240) hWcosh W

(8)

(9)

where, as in the BS, solution, the constant k has the value
k =G/8c4. [I would like to thank Dr. J. B. Griffiths for
drawing my attention to a misprint in Eq. (13) of the arti-
cle by BS.]

The problem of cemw can now be summarized as fol-
lows. Given the initial data Pz(u) on U=O, and Po(u) on
u =0, determine all the functions $0, $2, U, V, M, and W
in the interaction region (u)0, U)0). Our main objec-
tive is to solve the foregoing Eqs. (2)—(9) for the case

conditions. From the + z and —z directions
Po(u)=F&„l"m" and Pz(u)=F~„m "n", respectively, are
moving toward each other until they make a head on col-
lision at the origin u =v=0. The space-time line element
describing the cemw's for all the regions is given by

ds =2e™dudu —e (e coshWdx

+e cosh W dy —2 sinh W dx dy),
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(g+ rtr) —1)V'$=2Vf (gVg+ r)V rl),

g(+re) 1}V—'rt=2V r) (/VS+ r)V rl),

(10)

where g and r) represent the gravitational and em com-
plex potentials, respectively. The gradient and Laplacian
operators depend in general on the geometry of the base
manifold, i.e., whether it is stationary axially symmetri-
cal, cylindrical, or planar. Usually, once a pure gravita-
tional solution (g) is known, there are well-established
methods, initiated first by Ernst' to obtain a correspond-
ing EM solution with (g, q). However, in this paper since
we are interested in pure em solutions, this accustomed
trend does not help our objective, simply because we
make the choice /=0, and the metric functions with em
field strengths must be constructed from g alone. Under
this assumption Eqs. (10) and (11) reduce to the single
equation

(riri —1)V g=2g(Vri)

where the operators are to be defined on the geometry

ds =2du dv+e d(()

(12)

(13)

suitable for the cemw. Here P is a Killing coordinate and
U is fixed by the coordinate condition. The Ernst equa-
tion (12) is given under these conditions by

W&0, since the special case, W=O, was already con-
sidered by BS.

EM equations are known to be cast into the pair of
complex Ernst equations given by'

e =cos(au +bv)cos(au —bv ), (21)

1
coshX =

cos(au bv )— (22)

which correctly solves the Euler-Darboux equation (16).
As we have already stated elsewhere, there is much
benefit in employing new, prolate- (oblate-)type coordi-
nates for the problem of cemw. For this purpose we in-
troduce new coordinates by

r=sin(au +bv),

o =sin(au —bv) (a, b =const),

such that the metric function U is expressed by

e
—U

( 1 P)1/2( 1 2)1/2

(23)

(24)

Let us note that, since we are seeking the solution in the
interaction region (u &0, v &0), we have dropped the
Heaviside unit step function in the arguments. In the
final solution we will have to make the substitutions
u ~u8(u} and v~v8(v}, where the Heaviside unit step
function 8(x) satisfies (this is not to be confused with the
polarization angle 8)

r

in which a and b are constants, as defined in BS.
As a matter of fact, e corresponds to the coordinate

p in the cylindrical and axially symmetrical fields. The
only field equation that determines U is (4) and the choice
(21) provides the proper choice for our purpose. For the
BS solution we have to make the choice for X,

2'�„„—U„ri, —U„rt„=4grt„r)„(rirj 1)—
We parametrize g now in accordance with

(14) 1, x)0,
8( )= '() () (25)

g= Ye', (15)
Furthermore, in the new coordinates the wave equation
(16) is given by

where Y and 5 are both real functions of a single function
X, which satisfies the Euler-Darboux equation

2X„,—UuXu U, Xu =0

[(1—w }X,],—[(1—o )X~] =0,
and the BS solution takes the form

(26)

After substituting (15) into (14) and imposing (16) we ob-
tain the system of equations

1 dv
ds

2ab l —cr 2

d5 (Y —1)
dX Y2

(17) —(1—r )dx —(1 cr )dy—(27)

2
d Y 2Y dY z(Y +1)(Y —1)
dX2+1Y2 dX ' Y3

= —b

Y =2 cosh 2X —cos8
cosh2X+cos8 ' (19}

tan5 = —( tan8 )coth2X, (20)

where we have used the reparametrization, 2bo ——tan8.
Essentially, this is the solution that we shall adopt in
solving the cemw problem with second polarization. For
0=0 we have Y=tanhX and 5=0, which yields the BS
solution provided the metric function e is chosen as

in which bo is a constant of integration. A particular
solution of this pair of equations is given by"

III. THE NK% SOLUTION

The next, and crucial, stage is to consider the case 8&0
in the Ernst solution (19) and (20), and to determine the
remaining metric functions while U is kept unchanged.
Another invariant expression is the form of the solution
of the Euler-Darboux equation that we shall consider:
namely, (22). The next step, in principle, is to transform
all field equations into (r, o ) coordinates and integrate
them; however, this route is far from being practical and
therefore we shall follow a different method. We recall
the cylindrically symmetrical geometry that describes
cross-polarized cylindrical waves,

ds =e ' &'(dt dp ) e&(dz+—tvdy) —pe—
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w, =2pe ~1m(gg ),
=2pe ~1m(gg, ) .

(29)

where all metric functions depend on p and t alone. This
metric can locally be identified as the metric we have

adopted for cemw. The integrability equation for w in

this line element is given by (i.e., special form of those
given by Chandrasekhar in Ref. 3)

rather tedious, but in the z, o coordinates it becomes rela-
tively simpler. We summarize our solution:

( 1 rz }1/2( 1 ~2)1/2

cos —+ca sin-z 28
2 2

cos8

p=e, w =tanhWe

we ~=e sinhS' .

(30}

The results are

The corresponding integrability equations for cemw can
be obtained by making the identifications

g=Fe', e ~=1—Y

sinh 8' =
' 1/2

~2

1 —2
rsin8

z8 z z8 '
cos —+0 sin—

2 2

a8(u)
2

cos8

cos —+0 sin-z8 z

2 2

' 1/2

cia

e tanh 8' =~ tan8,
(34)

w„=(tan8)e X„, w„= —(tan8)e X, , (31)

in which X is given by (22). These equations are integrat-
ed to yield w =tan8 sin(au +bv), and the metric func-
tions V and 8'are given by

b8(v }

&k
cos8

cos —+0. sin-z z8
2 2

' 1/2
eiP

e tanhW =tan8sin(au +bv),
cos(au —bv)

sinh 8' =
cos(au + bv )

sin(au +bv }sin8

cos —+sin (au —bv)sin-z8 z z8
2 2

(32)

sin(a —P}= tanh W, tan a+P 8
4 2

=o tan —, (35)

and the coordinates ~, cr are to be chosen with the step
functions, i.e.,

where the phase functions are determined by the expres-
sions

e
—M

1 —Yo

1 —Y

cos —+ca sin—28 z. 28
2 2

cos8
(33)

where Fp corresponds to the 8=0 (BS) case, while I'cor-
responds to the 8&0 case. Direct substitution of (33}into
field equations proves that the metric function M ob-
tained as above provides the correct value.

Finally, Pp and Pz are calculated from the Maxwell and
EM equations. In the null coordinates the calculation is

What remains now is to determine M from quadratures
and Pp and Pz from the Maxwell equations. In obtaining
M we have been guided by an interesting principle, as
follows. In cylindrical gravitational waves (28), the
metric function y is known to represent the energy con-
tent of the waves, which has the same value for both
linearly and cross polarized waves. From the local
equivalence of the metrics (1) and (28), the metric func-
tion M of cemw is related to y and g of cylindrical waves

by M =2(P—y). For the BS equivalent solution we have

Mp ——2(1(p—yp}=0, which means that gp=yp. For the
double polarized case M =2(P—y), and since y =yp=lj'p
we obtain M =2(P—Pp). As a result we find

r =sin[au 8(u)+bv8(v)],

cr =sin[au8(u) —bv8(v)] .

IV. PROPERTIES OF THE SOLUTION

Pz(u) = a8(u)
&k

cos8

cos —+sin au sin—28 - z . 28
2 2

1/2
ia(u)

(36)

where

It is readily observed that for 8=a =P=O our solution
reduces to the BS solution. In order to eliminate the ap-
parent difficulty for the particular value 8=m/2, as it
occurs in the metric function M, we can reparametrize
the second polarization in accordance with tan8~sinh8,
which takes care for all values of 8. In order to see the
form that the second polarization couples to the field
strengths we would like to give the exact initial data for
the cemw. In the +z direction the incoming em field
strength is given by

a(u) = —,'arcsin
z z8+sin au sin—

2

sinau sin8

cos —+sin au sin—28 z . 28
2 2

8
1/z +2arctan sinau tan—
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The incoming em data from the —z direction is given
similarly by

which transforms the flat metric into

ds =2du d v —cosha ( dx +dy ) +2 sinha dx dy . (40)

b8(v)
0 v'k

where

cosy

cos —+sin bv sin—2~
2 2

1 /2
&ip(U)

(37)

P(v)=a(u ~v, 8~ —8, a ~b )

so that the initial waves are out of phase by 2t9.
For (u & 0, v & 0) the space-time line element reduces to

ds
2dQ dv —dx

1 —tan—28
2

(38)

(39)
a a

y ~x sinh —+y cosh — (a =const),
2 2

which is the flat metric in a scaled coordinate system.
The unusual factor of 1/[1 —tan (8/2)] does not pose
any difficulty since it can be absorbed by a redefinition of
the coordinates x and y. (This factor can best be handled
by adding a constant term of [1—tani(8/2)] into e™,
which does not change any feature of the problem at
hand. )

Another property of the solution is that in the incom-
ing regions the phase factors cannot be assigned with ar-
bitrary values simultaneously. Starting from the flat
metric we apply the coordinate transformation (this is
equivalent to a duality rotation on the em fields)

a . a
x ~x cosh —+y sinh —,

2 2
'

e
—M/250 e M/251

P pP p p

m„= e e i sinh —cosh 5„
—U/2 V/2 ~ ~ ~ 2

(41)

8' . 8'
+e sinh i cos—h . 5

2 2

Following Szekeres' we delete a common scale factor in
the %eyl components and define the scale-invariant com-
ponents. By virtue of the (u, v) symmetry the g4 and go
components differ only by the replacements au +bv
and 8~ —8; therefore it suffices to calculate fz and f4
alone. The results are

Such an incoming state, however (i.e., with constant
phases in the em fields), does not exist in our general solu-
tion.

Also we would like to remark that since we have intro-
duced 8 as a measure of second polarization, the limit of
single polarization (i.e., W=O) should require also that
8=0. Otherwise, from the general solution (34) the par-
ticular choices a=P= W=O, 8&0, naturally raises ambi-
guity and should be discarded.

In order to calculate the scalar curvature components,
we make use of the Newman-Penrose formalism in which
our choice of null tetrads are given by

fz ——2ab 8( u )8( v) sin—8
2

1+(1 rr )sin——z8
2

2

cos —+ca sin—2~ 2

2 2

8 . 8 1 . 8
(1 cr )sin——+ icr cos———sin—

2 2 2 2
(42)

a 1+(1—a )sin—
22

( cosh W)( Re/4) —5( u )
1 'r

a , 8 , , 8&1—o cos —+cr sin—
2 2

r(1 —a )sin 8
2

+1 icos —+sr s—in—2 2

2 2

sin —(1—o )+6o sin ——1
4 4 2- 2|

2 2+&+ '2

cos —+o. sin—2~ 2 2t9
2 2

I —o.2

1

sin 8

cos —+~ sin—2~ 2 2
2 2

2

3~o. sin 0

cos —+o. sin—2 2 2~
2 2

' 1/2
1 —o.

1
1+(1—cr )sin—

2
(43)
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( oshW)(Img4)=— 5(u) sin8

2. 2~&1 r—cos —+o sin—
2 2

1/2
1 —cr

1 —r

ro 1+(1—o }sin—. 28
2

cos —+o. sin—2~ 2

2 2

8(u)ro sin8 1+(1—o )sin—
2

cos —+o sin — cosh 8'2~ 2 2~ 2

2 2

' 1/2
1 —o

o 1+(1—o )sin—
2

(1—o ) cos —+o sin—2 2~ 2 2|
2 2

2

8(u)rsin 8

cosh W(1 —r ) cos —+o sin2—
2 2

2
1/2

1 —0.

1—

2r r cr +——
2+1—r +1—o 1+(1—o )sin—

2

2() 2 28cos —+0 sin2—
2 2

rcr (1 r)—
cos —+cr sin—2

2 2

'2

1+(1 cr )sin'——
2

8(u)rsin 8(1 cr } —1 —o
3

cos —+ca sin—
2 2

+ sin88(u)

cos —+a sin—2 28
2 2

1/2
r(2 —r ) 1 —o.

cosh W(1 r) 1 r— —

2o 1+(1—o )sin—
2

+1 rcos —+o—sin—2 2~ 2 2~
2 2

1+(1—o )sin—2 2~
2

+1 r~ 1 —o cos——+o sin—2~~ 2 2~ 2. 2~
2 2

2vcT sin2- 2
2

' 1/2
1 —o.

cos —+o. Sin—
2 2
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4m sin —1+(1—o )sin—2 2~ 2 2~
2 2

2

cos —+cr sin—pO p. pO

2 2

1 /2
1 —o.

1 —w
2 (1 r—)

z. zro 1+(1—o )sin—
2

+I r(l——o )

3a 1+(1—a )sin—
2

cos —+o sin-e() z z()
2 2

. p0ro 1+(1—o )sin—
2

&I —r &1 cJ cos ——+o sin—
2 2

'2 (44)

V. CONCLUSIONS

By studying the scalar curvatures 1(tz and $4(go) we ob-
serve that the only possible singularities occur at v =1
and cr = 1, which correspond to the values au+bu =n /2.
These points arise also in the collision of linearly polar-
ized waves; however, as it was shown in BS, these are not
genuine singularities since they can be removed by an ap-
propriate coordinate transformation. Across the incom-
ing-interaction regions, the curvatures P4 and $0 suffer
from 5-function discontinuities. Furthermore, in the
presence of second polarization the em waves cease to in-
teract minimally, i.e., there are other terms beside the
terms containing 5 functions. It was observed that for
the linearly polarized em waves the incoming fields retain
the same form in the interaction region. We observe now
that for a more general solution with cross polarization,
this feature does not hold true any more. Rather, the

cross polarization manifests itself in a highly nonlinear
form that reminds us of the inherent nonlinearity occur-
ring in the pure gravitational waves.

We would also like to add that it is possible to derive
more general solutions for colliding waves when gravita-
tional waves are coupled with em waves. Although this
can be done in principle, it is our belief that collision of
pure gravitational or pure em waves are more important
then the collisions of mixtures of such waves. The latter
cases may be interesting in cases that the resultant solu-
tion admits both gravitational and em limits independent-
ly.

Finally we remark that our method of adding cross po-
larization described in Sec. II applies in particular to the
problem of pure gravitational waves. By choosing our
function X as the metric function V of Szekeres, ' it en-
ables us to obtain an infinite family of colliding gravita-
tional waves with cross polarization.
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