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Dynamical composite models of electroweak bosons
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It is demonstrated explicitly in a 1/N expansion of cutoff field theory that tightly bound vector
particles made of ferrnion pairs behave exactly like gauge bosons as the binding becomes infinitely

strong. Two examples of composite models for electroweak gauge bosons are constructed by
breaking global electroweak SU(2) symmetry explicitly. The low-energy effective Lagrangian of
these models is identical to that of the standard theory based on spontaneously broken gauge sym-

metry with the physical Higgs-boson mass let to infinity. A small deviation from gauge symmetry
due to compositeness is computed for three-point vertices to illustrate how the compositeness
effect manifests itself.

I. INTRODUCTION

When we attempt to build a composite model for
gauge particles with or without spontaneous symmetry
breaking, a gauge symmetry is implemented by a dynam-
ical requirement. It has been known for a long time, in-
dependently of compositeness, that gauge couplings are
obtained by requiring nonsingular high-energy behavior
for tree diagrams of scattering. ' A connection between
gauge coupling and vector-meson dominance was no-
ticed in the late 1960s. A more recent way to achieve
gauge symmetry is to saturate the current algebra of a
relevant global symmetry with light vector bosons.
Though it may appear somewhat different, truncating an
infinite sum of intermediate states in current algebra at
the lowest one-particle states is closely related to the re-
quirement of nonsingular high-energy behavior. Anoth-
er recent approach, called the "strongly coupled stan-
dard model" by Claudson et al. , has made a step fur-
ther along this line to justify good high-energy behavior
by a large-mass scale and weak coupling of the "exotic"
sector in the model. They have shown quantitatively
that compositeness corrections to electro weak gauge
symmetry can actually remain small enough to be ir-
relevant for a wide range of values of the compositeness
scale.

In parallel to these attempts, many people have specu-
lated that when masses of tightly bound vector states ap-
proach zero, their interactions become equal to ap-
propriate gauge interactions by some dynamical con-
sistency. This line of argument does not refer directly
to high-energy behavior although good high-energy be-
havior should come out eventually in successful compos-
ite models. In this paper, I would like to study the rela-
tion between tight binding of composite particles and
gauge symmetry. In order to focus on this specific as-
pect of the dynamical issue, I will choose a field-theory
model of composite 8' and Z bosons which is solvable in
a 1/Ã expansion though unrenormalizable and
unconfining. I hope that unrenormalizability and
nonconfinement of the force is not essential to the mech-
anism of interplay between tight binding and gauge sym-

metry. Our model Lagrangian consists of fermionic
preons with a global symmetry. In the limit of an
infinitely strong binding force, vector bound states be-
come massless and all of their dimension-four interac-
tions approach gauge coupling. When preons carry elec-
tric charges and a photon is introduced as an elementary
particle, the photon mixes with the neutral component
of the composite gauge bosons to turn it into the ob-
served Z boson, as usual. The resulting effective La-
grangian at low energies is identical with that of the
standard theory with an infinite Higgs-boson mass.

I will elaborate the SU(n) model in Sec. II. In Sec. III
two models are presented for composite 8'and Z bosons
with y being either composite or elementary. In Sec. IV
deviations from the gauge limit due to compositeness
will be discussed for the three-body coupling in detail
and then for general vertices. In Sec. V our findings and
proposals are summarized, and then speculative remarks
are made in connection with our proposals. Throughout
this paper I do not attempt to construct a composite
theory of light chiral fermions, namely, quarks and lep-
tons, since problems involved in light fermions are quite
different in nature from composite electroweak bosons.

II. DYNAMICAL GAUGE SYMMETRY
IN TIGHT-BINDING LIMIT

My purpose is to demonstrate in solvable models that
spin-one composite states approach gauge particles as a
globally symmetric binding force becomes strong. A lo-
cal symmetry emerges from a global symmetry in the
tight-binding limit. In these models, gauge symmetries
are generated not by the requirement of good high-
energy behavior of tree diagrams, but by the smallness of
composite-vector-boson mass relative to the preon mass.
Although cancellation of singular diagrams characteris-
tic of gauge theories does arise, it is a consequence of
tight binding, not an input. Plausibility and necessity ar-
guments have been put forth by many theorists, for in-
stance, by Veltman and Mandelstam among others.
Here I present a class of models in which such a dynam-
ical mechanism is clearly visible. The basic dynamical
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features of these models have been observed and dis-
cussed intermittently in the literature over many
years. I incorporate its non-Abelian version in these
models with a slightly different interpretation and a little
more rigor in some aspects.

We must solve for tightly bound states in field theory.
Since there is no renormalizable model solvable for tight-
ly bound states, we give up renormalizability. Further-
more, we adopt models for which a 1/N expansion is al-
lowed, since otherwise computational complexity is
beyond our capabilities. In the simplest version of our
models, N families of fermion multiplets are introduced
as preons in a fundamental representation of SU( n ).
Their interaction Lagrangian is given by

(2.1)

should be noted that H(0)=0 must hold by vector-
current conservation because of global SU(n) symmetry.
Therefore, however strong the force may be, the bound
state mass can never reach zero in our models. In his
pioneering work, Bjorken found a massless photon pole
in a nonperturbative self-consistent solution triggered by
a Lorentz-noncovariant term added to a Lagrangian

L (lj)
(

) G/N)(g (/)y ) g q(i))(y (j)yP ) g y(j)) (2.2)

where i and j are family indices running from 1 to N,
and —,'A,, 's are the n )&n matrices of the adjoint represen-
tation of SU(n). When the force is attractive (G y0),
vector bosons of the adjoint representation are formed
from preon-antipreon pairs through iteration of bubble
diagrams in the leading 1/N order. It is straightforward
to compute poles and residues of multipreon scattering
amplitudes and to identify them with coupling constants
of composite bosons. We compute couplings of compos-
ite vector bosons at zero momenta rather than on their
mass shells because no infrared singularity exists in the
leading order of the present models. We will find that
these coupling constants approach the gauge coupling
constant in the leading 1/N order as 6~0(), at which
the vector-boson mass goes to zero. This statement will
be proven not only for logarithmically divergent terms
but also for all finite terms of loop integrals.

(b)

A. Yukawa coupling to preons

In the leading 1/N order, bound states are formed in
the preon-antipreon channels of J =1 and the adjoint
representation through an infinite series of bubble dia-
grams depicted in Fig. 1(a). Our computation can be
reproduced entirely by the functional method, but we
choose to use the diagrammatic language since physics is
more clearly visible in diagrams. The preon-antipreon
amplitude is given by

(c)

T,"„(q)=5,„g" T( '(q ),
T' '(q )= —(G/N)/[I+GH(q )],

(2.3)

(2.4)

where p, and v are Lorentz indices, a and tj are SU(n) in-
dices, and II(q ) is the Lorentz-scalar function of the
vector vacuum polarization H" (q)=(g""—q"q /
q )H(q ). In Eq. (2.3) and thereafter, preon amplitudes
are defined with external preon wave functions uy„—,'A, , u

removed from each end.
When M is large, the denominator of T' '(q ) is ex-

panded around q =0 and a vector-boson pole can be lo-
cated in the approximation of m «M, where m and M
are masses of bound states and preons, respectively. It

FIG. 1. Preon diagrams for (a) a gauge boson, (b) three-
body coupling, and (c) four-body coupling. The diagram (d) is
to be included in a one-boson-exchange process.
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which is switched off subsequently. In the succeeding
works, ' the existence of a pole at q =0 is simply as-
sumed either following Bjorken or else in an ad hoc
manner. We take the most straightforward interpreta-
tion of the solution with neither degenerate vacua nor
abnormal solutions. In our models, global current con-
servation thus forbids a pole at q =0 for any finite value
of G (Ref. 10).

Expanding 2' ' around q =0, we obtain

T' '(q ) = [ [—N II'(0) ] '/(q —m ) ] [1+0 (q /M )],

where I 3 is the scalar part of the triangular-preon-loop
diagrams. As in the case of H(q ), we compute
r3(q, ,q2, q3) by dimensional regularization with
identification lnA = (2——,'D) '+In4n y—F The result
of computation at q, «M (i =1,2, 3) is

r, (q, ,qz, q3)= 2ln(A /M )+0(q, /M )
24m

= —II'(0)+0 (q /M') . (2.12)

m =[—GII'(0)]

(2 5)

(2.6}

Here we have used Eq. (2.7) in the second line. The
equality I 3(0,0,0)= —II'(0) is understood as a Ward-
Takahashi-type identity. We can isolate the three-point
vertex of vector bosons at zero momenta as

where II'(0)=dII(q )/dq
~

& can be evaluated from
q =0

the vector bubble diagram. We would like to be particu-
larly careful about convergent terms in the 1ogarithmic-
ally divergent integral which appears in II(q ). To
define finite terms unambiguously, we make a dimension-
al regularization for the integral and identify (2 —

—,D)
+ln4m —yz with a logarithmic divergence lnA . Then
we obtain, by an explicit calculation,

ln(A /M ), (2.7)
24m

which gives m &0 for G)0. The vector-boson cou-
pling to a preon is obtained by comparing Eq. (2.5) with

II'(0) =—

T( '( )= /( — ) (2.8)

where the Yukawa coupling constant g is defined by
ggy„—,'X, gA,". Therefore, the coupling g which is to be
identified with the SU(n) gauge coupling in the m ~0
limit is given by

g =[—NII'(0)] ')0. (2.9)

B. Trilinear self-coupling

Trilinear self-couplings of vector bosons are generated
in diagrams with six external preons where three bosons
meet at the center, as shown in Fig. 1(b). In the leading
1/X order, the three series of bubbles interact among
themselves through a triangular preon loop for which we
have two distinct diagrams of different orderings. A
straightforward computation gives us

T ~', (q„qb, q, )=if,b, [g" (q2 —qi) +g" (q3 —qq)"

Even when G is large and the binding is strong, g can
be a small number. When the external preons are taken
off the mass shell in Fig. 1(a), we can read off the term
proportional to q"q' of the vector-boson propagator.
The propagator obtained by the series of preon bubbles
is that of the unitary gauge: bF"(q) =( —g""
+q"q'/m )/(q —m ).

and rewrite it by use of Eqs. (2.9) and (2.12) into

T"'=(g /q, q2q3)[1+0(q2/M~)] . (2.14)

With g removed, T' is equal to what we ought to ob-
tain for the trilinear self-coupling vertex of gauge bo-
sons. It is worth noting that the correct trilinear cou-
plings have been obtained here including the finite terms
of the triangular-loop diagrams because the finite terms
have been computed in a regularization method compati-
ble with global current conservation. A naive four-
momentum cutoff would give I 3(0,0,0)= —II'(0)+ —,

'

+0(q, /M ) instead of H'(0)+0(q; /M ).

C. Quartic self-coupling

Examine diagrams with eight external preon lines in
which vector bound states merge at the center through a
preon square loop as depicted in Fig. 1(c). Diagrams
where the four vector states merge through two triangu-
lar loops are of the same order in 1/N, but they are ac-
tually the first terms of the series for the reducible one-
boson-exchange processes [Fig. 1(d)]. There exist six
square-loop diagrams with different vertex orderings
which enter the center of the left diagram in Fig. 1(c).
Adding up the six diagrams, we obtain, for the matrix
element of Fig. 1(c},

T."b",d (q; ) = [f.b,f,d, (g"'g" —g" g"')—
+f.„fbd, (g""g" g" g"'}-
+f.d,fb„(g""g' g"'g" )]T"'—

T"'=N(G/N)'r4(q„q2 q3 q4)/g [1+GII(q')],

T' '= rNI 3(0,0,0)[—NII'(0)] /q, q2q3 j

X [1+0(q,'/M')]

= [[—NII'(0)] /q, q2q3][1+0(q, /M )] (2.13)

+g'"(qi —q3) ]T"' (2. 10)
(2.16)

T' '=N( —G /N) I 3(q f,q2, q3 )/Q [1+GH(q, )],

(2.1 1)

where I 4 is the scalar part of the preon square-loop dia-
grams. Again by the same dimensional regularization as
before, we find, including all finite terms that survive at
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I 4(q&, q&, q3, q4)= ln(A /M )+O(q; q&. /M )
24m.

= —II'(0)+O(q, /M ), (2.17)

where Eq. (2.7) has been used in the second line. Equa-
tion (2.17) is another Ward- Takahashi-type identity.
The quartic coupling of the vector bound states is now
obtained from Eqs. (2.16) and (2.17) as

T' '= NI „(0,0,0, 0)[—NII'(0)] /P q,'

Z [1+0 (q; q~ /M ) ]

[ —NII'(0)] '/Pq; [1+0(q; q, /M )] .

(2.18)

This last line can be expressed with Eq. (2.9) as

near q; =0 (i =1,2, 3,4), which is identical with the
quartic vertex of the gauge bosons after g has been as-
signed to the preon vertices. Evaluation of loops by di-
mensional regularization is even more important for I 4,

'

if I 4(0,0, 0,0) is computed with naive four-momentum
cutoff, not only would it be different from —II'(0) by a
finite amount, but also could the sum of the six square
loops not be cast into the Lorentz and SU(n) structures
of the quartic gauge coupling.

We have thus shown in our composite model that
tightly bound bosons of fermionic preon pairs automati-
cally obey local gauge symmetries in the massless limit.
The relative strength of the self-couplings to the Yukawa
coupling to preons conforms to the gauge principle.
Once this universality of couplings has been established,
any composite state of preons obeys the correct gauge-
coupling rule required by local SU(n) symmetry. In or-
der to claim dynamical generation of perfect gauge sym-
metry, the mass of vector bosons must go to zero. When
they remain massive, their couplings defined on the mass
shell deviate from respective gauge limits by
O(m /M ). These deviations are distinct from radiative
corrections for elementary vector bosons which acquire
mass by spontaneous symmetry breaking. We will come
back to this subject in a separate section.

The dynamical generation of gauge symmetries ob-
tained here relies on the existence of global symmetries
which require current conservation and warrant small-
ness of vector bound-state masses by the constraint
11(0)=0. If currents are not conserved, the natural
magnitude of composite-vector-boson mass is of the or-
der of M unless a fine-tuning is made. We expect con-
versely that if composite vector bosons are much lighter
than preons, they imply global current conservation as-
sociated with each channel of SU(n) quantum numbers.
It is obvious that a global symmetry implanted in the
preon Lagrangian need not be SU(n). The dynamical
structure of the interaction Lagrangian, Eqs. (2.1) and

(2.2) can be modified without changing our conclusions.
We therefore suggest that an approximate gauge symme-

try is a dynamical consequence of formation of light
composite vector bound states, and vice versa.

Before concluding this section, we remark on Abelian
symmetry. If an interaction such as

(2. 19)

is added to our Lagrangian, and the coupling G' is large
and positive, a light vector bound state of SU(n) singlet
is formed. This singlet boson does not have a three-body
nor a four-body coupling with itself nor with SU(n)-
adjoint composite vector bosons which we have studied
above. The reason exists in the global-symmetry struc-
ture of trilinear and quartic couplings, Eqs. (2.10) and
(2.15); because of the Lorentz structure of the triangle
and square loops, every group index of boson is antisym-
metrized with another, making all singlet couplings van-
ish. Therefore, this SU(n)-singlet vector boson can be
identified with an Abelian gauge boson associated with
preon number conservation. In this way, extension to
semisimple group is easily made. Addition of an Abelian
gauge boson is almost trivial if one introduces new fami-
lies of singlet preons to form it.

III. SU(2) X U(1) MODELS OF ELECTROWEAK BOSONS

One can introduce scalar bound states in addition to
vector bound states by adding a new four-fermion in-
teraction of scalar type to the preceding model Lagrang-
ian. If one follows either Bjorken's argument or takes
the strong-coupling limit to make the vector bound
states exactly massless, the effective low-energy Lagrang-
ian of such a system would be identical with that of the
standard theory prior to spontaneous symmetry break-
ing. If the potential of the scalar composite fields makes
a perturbative vacuum unstable, the rest of the scenario
duplicates the standard theory with spontaneous symme-
try breaking. " In the absence of a constraint such as
current conservation, a natural scale of scalar bound-
state masses determined by a quadratically divergent
scalar vacuum-polarization part is of the order of the
compositeness scale M. There is not much new to be
said in this scenario. We will not pursue this line. In-
stead, we present two examples of composite models for
electroweak bosons with explicit soft or hard breaking of
the global electroweak symmetries. In either model, the
mass relation between W and Z is automatically
satisfied.

A. Model with infinitely strong coupling

The first model, hereafter referred to as model A,
starts with a composite theory of massless SU(2) XU(1)
gauge bosons by taking the infinitely strong limit of
binding, 6~ ~. Taking the G ~ ao limit is a little un-
comfortable not only mathematically but also physically.
By this reason we prefer the second model to be present-
ed later. Nevertheless, we describe it since it contains
many interesting features.

The model A consists of 2N, singlet preons + and N2
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doublets of preons l( which form SU(2)-singlet and
-triplet of composite vector bosons, respectively. The
model Lagrangian is given by

Combining Eqs. (3.5), (3.6), and (3.10), we find

p—:m~/(mz cos 8~)=1,2 2 (3.11)
2NI N2

L = g 4 "(iB M—)4"'+ g P'"'(i8 M—)P'"'
k=1

N2

(q (k)2'(k) + qy (k)q(k) )+L
k=1

(3.1)

2N1

1J

N2

( 'G„—/N-, )y (q'"'y -" y'"')(q'"'y&-,".1('"')
kn

(3.2)

where the off-diagonal mass terms have been introduced
between singlets and down components of doublets as
SU(2)XU(1) symmetry breaking. When bM =0, four
massless vector bosons of SU(2)XU(1) arise in the limit
of G& and Gz~oo. According to the analysis of the
preceding section, they are the composite SU(2) XU(1)
gauge bosons with the U(1) and SU(2) couplings given by

g', =[—N, H', (o)]-',
g', =[—N, H', (o)]-' .

(3.3)

(3.4)

The weak hypercharges of g and 4 are fixed to 0 and
——„respectively, in this Lagrangian. It is possible to
give a nonvanishing weak hypercharge to doublet preons
if a singlet interaction among doublet preons such as Eq.
(2.19) is added to the Lagrangian.

The explicit symmetry breaking hM gives mass to 8'
and mixes the third component of the triplet gauge bo-
sons with the U(1) gauge boson to turn them into Z and

y [Fig. 2(a)]. To the order of (hM), the W and Z
masses are found to be

as we desire.
The effect of hM on vector-boson coupling can be

studied by computing bubble diagrams in an infinite
series [Fig. 2(b)]. We find no new vertex that survives at
M~ ~. The leading corrections are terms of the order
of (b,M) /M for both gauge and nongauge couplings.
Therefore, the effective low-energy Lagrangian is identi-
cal up to O((bM/M) ) with that of the minimal stan-
dard theory with an infinite Higgs-boson mass, which
means that, as energy grows, W and Z start interacting
strongly' at the center-of-mass energy -m~/&a= 1

TeV in this composite model. One might think of intro-
ducing complex scalar doublets by forming them as com-
posite states with an additional four-fermion interaction

& 2 ('p '"'g'"')(p '"' 4'"'). However, there is little
reason to call for scalar bosons in our model since the
motivation for Higgs doublets is solely to give the right
masses and mixing for W, Z, and y. As was pointed out
above, scalar composite mass can be kept small ( «M)
only by fine-tuning of a scalar binding force. If light
complex scalar doublets are formed as bound states,
three of them would mix with and be absorbed by the
longitudinal-polarization states of W and Z as usual,
without affecting the p=1 relation but leaving behind
three scalar mass terms as nonpropagating modes.

m ~ = [Hs (0) /H'~(0) ](AM) (3.5)

m = [Hs (0)/H' (0)][1+(N /N, )](bM), (3.6)

(3.7)

(3.8)

where H~(q~) and Hs(q ) are the Lorentz-scalar func-

tions of the vector and scalar preon bubbles, respective-
ly. By dimensional regularization with lnA = (2

,'D) '+ln4a —y—z, H'~(0) and Hs(0) are given as

IIV(0)= — in{A /M ),
24m.

Hs(0)= — [ln(A /M ) ——,'] .
16~

The photon remains massless because of a residual U(l)
symmetry. The mixing angle between Z and y is deter-
mined from the Z-y mass matrix. The result is

OO

gM

gIAM

tang+, ——(Nz/N~ )' (3.9) {b)

tanL9~ =g1 /g2 (3.10)

By use of Eqs. (3.3) and (3.4), tan8~ of Eq. (3.9) can be
rewritten as

FIG. 2. (a) Preon diagrams to generate mass and mixing of
the U(l) and SU(2) bosons through insertion of preon mass
difference. The first diagram causes the 8' y mixing, while the
second and third diagrams generate diagonal mass terms. (b)
Preon diagrams for symmetry breaking in couplings.
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B. Model without infinite coupling

An alternative approach to that of G~ oo is to keep
SU(2}-triplet vector bosons, W —and W, finite in mass
and mix W with an elementary photon y. Mixing
occurs between W and y through preon pairs. The W
turns into the physical Z boson with the mass satisfying
p=1. This step is by now one of the standard pro-
cedures in model building of composite weak bosons. '

The Lagrangian of this model, referred to as model B
hereafter, is the SU(2) version of Eqs. (2.1) and (2.2) with
the photon field 3"added:

FIG. 3. Freon diagram for mixing between the elementary
photon and a neutral component of the SU(2) bosons.

currents and the electromagnetic current of preons. It
follows immediately that if one defines

(3.12}
sin8~ =e/g~, (3.22)

(3.13)

and the W mass is given by Eq. (2.6):

m~ = [ —6 II'(0)] (3.15)

where II'(0) is the first derivative of the vector preon
bubble defined in Eq. (2.7). The photon field A„mixes
with the W„ field through preon pairs, as shown in Fig.
3, to form two mass eigenstates, the physical Z and the
photon. Comparing the preon diagram in Fig. 3 with
the composite boson diagram in Fig. 3, we find the W y
transition strength as

,'(e/—g2—)F„„(y)F""(W ) (3.16)

where Y is the weak hypercharge of the preon doublets.
The SU(2) gauge coupling is given by Eq. (2.9):

(3.14)

Eqs. (3.17)—(3.21) turn into the familiar relations written
with 0~ in the standard theory.

No fine-tuning or stretching of numbers is needed in
this model. We do not have to argue for how the mixing
between W and y can be made large. ' ' With g2
given by Eq. (3.14), g2 can be easily as small as one
wishes, so that the experimental value =0.23 for
sin 8~=(e/g2) can be realized without difficulty. In
model B, again, Higgs particles are not called for. Light
scalar bound states are simply unnatural unless some
dynamical mechanism such as supersymmetry controls
scalar masses.

We have presented here two models of composite elec-
troweak bosons. We do not attempt to extend our mod-
els to light, chiral composite fermions, namely, quarks
and leptons, since there are so many obstacles in build-
ing a realistic model for them. ' In the following section
we will study how compositeness reveals itself in the
self-coupling of the electroweak bosons in the two mod-
els presented here.

between their field strengths. Consequently, the two
mass eigenstates turn out to be IV. NONGAUGE COUPLINGS AND DEVIATIONS

FROM GAUGE LIMIT

(3.17)

Z: [W„—(e/g2)A„]/[1 —(e/g2) ]' (3.18)

with eigenvalues equal to

m =0, (3.19)

mz =m w/[1 —(e/g, )'] . (3.20)

JQ = Ig, /[1 —(e/g, )']' ][/", —(e/g, ) J", ], (3.21)

where J~3 and J", are the third component of SU(2)

The neutral weak current to which the physical Z cou-
ples is in the form

In the preceding models, the dynamics is identical
with that of the standard theory with an infinite Higgs-
boson mass, when the preon mass is let to infinity. Since
all couplings of composite weak bosons automatically
approach the gauge limit at M~oo, their deviations
from the gauge limit are suppressed by inverse powers of
M. We can actually compute these compositeness
corrections in our models. Let us present here in detail
the result in the case of the electromagnetic vertex of
W —+. Since we are particularly interested in the
momentum-dependent part of the corrections whose
effect grows with energy, all three external momenta are
kept off mass shell. Let us first drop all SU(2}-
symmetry-breaking terms but the W y mixing. It is
found in our models that the off-shell three-point func-
tion of W+ W y is described by the effective low-energy
Lagrangian

L,.„,=ief (W„„W~—W„W", )A "+ice W„W„A""+ieAW„W",A "~+, icy"'(d W„B"W„O'Az —O'W„B W, B"Az)

+icy' '[(W„B&W )(g" —8"8')A +cyclic permutations], (4.1)
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Ic I + [c2 /ln ( A ' /M '
) ](q & +q 2 +q 3 }/M '

A»=0+[c3/1n(A /M )](1/M ),
p"'=0+[c~ /ln( A /M )](1/M ),
py '=0+[c, /ln(A /M )](1/M ) .

(4.2)

The first terms, 1 or 0, represent the gauge symmetric
limits. The numerical coefficients c

~

—c5 obey SU(2)
symmetry up to the first-order W y mixing and are
common in the two models presented in the preceding
section:

1 9
C1 C2 s, C3 2p

C4= s~ c&= s
1 1

(4.3)

The momentum-dependent correction terms grow with
energy to enhance the compositeness effect in high-
energy processes. The sign of c] and c2 is consistent
with form-factor damping in the spacelike direction.
When SU(2) breaking beyond the first-order W y mixing
is included, the coefficients f py

' generally —acquire ad-
ditional corrections. These corrections are dependent on
the models, reflecting a difference in dimension of the
operators which break symmetry. Denoting the further
corrections by hf —b,p'y ', we can express them to
O(1/M ) as

m /M
5fy =[cI/ln(A /M )]X '

m /M
y [c2 /ln(A /M )]X

0,
b,k.»=[c3/ln(A /M )JX '( 4

(4.4)

0,
Spy" ——[c4 /ln( A /M )]X

0,
hp'y' [c5/ln(A /M——)]X '(

(

where the upper and lower entries following the curly
brackets correspond to models A and B, respectively,
and c

&
-c5 are numerical constants —1 just like c

&

—c5 in

Eq. (4.3), different from models A to B. Putting Eqs.
(4.3} and (4.4) together, we find, for instance, that the
g —2 of W cannot be larger than 0 (m~/M ) in magni-
tude. Once SU(2) breaking is included beyond the
lowest-order 8' y mixing, effective interactions of forms
different from Eq. (4.1) can be induced with coefficients
similar to those in Eq. (4.4).

where f„, ay, A, », py'I, and p' ' are parameters, W„,
=8„8',—0 8'„and so forth, and cyclic permutation
among 8'„,W„and A& is meant in the square brackets
in the last term. After some amount of calculation to
the first order in q; /M (i =1,2, 3) and m~/M, we find

that the compositeness corrections are given by

f =I+[c&/1n(A /M )](qf+qz+q3)/M

For the three-body vertex of Z, we can define corre-
sponding couplings, fz p—z by replacing & and &„
by Z„and Z„„,respectively, and e by g2 cosO~. The re-
sult of the calculation shows that the gauge-symmetric
terms and the SU(2)-symmetric terms of fz p'z' —are
identical with those of f —py ', respectively. The
symmetry-breaking terms bfz hp'z—' are different from

hf » hp'y —' of the photon coupling.
Characteristics observed in the three-point functions

above emerge in all other multibosoa vertices. In the
case of four-point functions, couplings of dimension four
receive SU(2)-symmetric corrections of 0 (p /M ),
where p represents a properly symmetrized Lorentz-
scalar variable made of four external momenta squared,

q; (i = 1 —4), and the Mandelstam variables, s, t, and u.
They are momentum dependences of Lorentz-scalar
functions. In addition, corrections of O(m /M ) ap-
pear generally as explicit SU(2) breaking beyond W y
mixing. Couplings of interaction operators with dimen-
sion D (~4) are of the order of (1/M ) with
SU(2)-symmetric coefficients up to W y mixing.
Symmetry-breaking effects are further down by another
factor of (hM/M) in model A, while in model B, pho-
ton loops generate SU(2)-breaking corrections of the or-
der of (ct/4')(1/M )

y to SU(2)-symmetric terms.
When a deviation from a gauge symmetry is embed-

ded in a loop diagram, its effect would be very singular
by lack of gauge symmetric cancellation among gauge-
related diagrams. Such a compositeness effect is expect-
ed to be largest in the coefficients of the operators hav-

ing the lowest dimension: namely, self-energies of 8'
and Z. The contribution of the nonstandard gyromag-
netic ratio of W, 4~r—:~r —1, was previously studied in

the p parameter' and the anomalous magnetic moment
of a muon. ' ' Our composite models predict that h~

2
r

is suppressed by inverse powers of M . Nonetheless,
other deviations, in particular, the fourth and fifth terms
of the dimension-six interactions in Eq. (4.1} give rise to
corrections of O((gz/16m )(m„/ma, ) ) through their
momentum dependence. Therefore, the compositeness
correction to (g —2)„ is comparable with the standard
theory correction itself. ' In our models with 1/N ex-
pansion, however, loop diagrams of physical 8' and Z
are in the next leading order down by 1/N relative to
the leading 1/N order. Consequently, computation does
not close with 8' and Z loops alone, but has to include
all other diagrams in the same 1/N order, if we want to
obtain quantitative answers. Because of computational
complexity, it is very difficult to obtain precise results in
a nonleading order of 1/N expansion. A detailed
analysis of radiative corrections in our models is de-
ferred to a separate paper.

V. SUMMARY AND SPECULATIONS

We have shown explicitly in the solvable cutoff field-
theory models that non-Abelian gauge symmetry is an
inevitable consequence of the formation of light compos-
ite vector bosons in the strong limit of binding forces
which obey global symmetry. No reference has been
made to the high-energy behavior of amplitudes for
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physical bound states. The origin of non-Abelian sym-

metry in our models can be compared with the field-

current identity by Kroll, Lee, and Zumino. They
showed that if massive vector fields are proportional to
conserved currents and if their three-body couplings are
proportional to f,b, (t)„A,„—t)„A,„))&Af A,", their four-

body self-couplings obey the rule of non-Abelian gauge
theory. In our models, before an explicit symmetry
breaking is switched in, a triplet of composite vector
particles is formed from the conserved current-current
interactions of four-fermion form which obey global
SU(2) symmetry. In this sense, our composite vector
fields, if they are defined, are closely related to the con-
served global current. One might say that the observa-
tion by Kroll, Lee, and Zumino has been tacitly incor-
porated in our binding forces. The essence of the field-

current identity was put in under the name of the
superconductor-type model or the mean-field approxima-
tion in the non-Abelian extension of Bjorken's work. '

One dynamical issue is whether the formation of light
composite vector bosons by arbitrary binding forces im-

plies the existence of conserved currents. We have ar-
gued to advocate this viewpoint in Sec. II, but no gen-
eral proof has been offered because we have no tractable
method in field theory to handle tightly bound states.
The two-body approximation in the Bethe-Salpeter equa-
tion is known to have problems for strong forces. '

Computing to higher order in 1/N in our models is a
formidable task. Extending our models to more realistic
ones, for instance, with confining binding forces is not
easy unless exact solvability is given up. Despite this
limitation, we would like to assert this line of logic here
again: The very existence of light composite vector par-
ticles requires conserved currents having the quantum
numbers of vector particles, or equivalently a global
symmetry generated by those charges. Without a global

symmetry, a natural scale of vector-boson masses would
be of the order of preon masses. When a global symme-
try exists, it is guaranteed by the dynamical mechanism
shown in Sec. II that all the couplings of vector bound
states obey the rule of non-Abelian gauge field theory.

In order to build electroweak models, we have turned
on explicit symmetry breaking through preon mass split-
ting or electromagnetic interaction mediated by an ele-
mentary photon. The mass splitting between 8'and Z is
realized by an explicit symmetry breaking. No Higgs
scalar particles are called for to generate and split 8'
and Z masses. Symmetry breaking by the preon mass
splitting AM does not manifest itself at low energies by a
dimensional reason, except in the W-Z mass parameters.
Symmetry breaking by electromagnetic interaction can
affect low-energy phenomena through QED loop correc-
tions, which could be different from those in the stan-
dard theory. This difference can be sizable when the
preon mass scale M is only several times larger than
m ~. By contrast, symmetry breaking by the preon mass
splitting resembles more closely the standard theory in
this respect. In either case, radiative corrections to
physical parameters attributable to compositeness turn
out to be smaller than one might have feared.
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