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The effects of thermal fluctuations on the evolution of a weakly coupled scalar field in the
preinflationary phase of a model of new inflation are studied. Limits on the coupling constants are
derived below which the effects of thermal fluctuations are negligible. The stochastic approach to
inflation is extended to cover a situation in which spatial gradient terms and acceleration terms in
the equation of motion of the scalar field dominate.

I. INTRODUCTION

The inflationary universe scenario has become an at-
tractive scenario which can explain the observed flatness,
homogeneity, and isotropy of the observed part of the
Universe. ' The first successful model that has been
studied in detail was the so-called new inflationary
universe, which is based on a particle physics containing
a scalar field (() in a double-well effective potential V((b)
that has global minima at P=ktr (see Fig. 1). It was as-
sumed that after a phase transition at a critical tempera-
ture T, -o the scalar field (b(x) is localized at the origin
/=0 at all points of space. The field P then starts to roll
towards (b=ho, the motion being initiated by quantum
fluctuations. However, in order that the energy density
of the fluctuations produced during inflation does not
exceed the observational bounds, (b has to be very weakly
coupled. Hence it is very unlikely that (()(x) will be
confined to (() -0 at high temperatures. '

Given a scalar field that is very weakly coupled to itself
and to other fields, one expects large spatial fluctuations
at early times. The equation of state of the scalar field
will be dominated by spatial-gradient and kinetic terms
and thus will not give rise to inflation. This has led to a

development of a new mechanism by which new
inflation can be realized. We assume that the scalar field
is not the only matter contribution to the energy-
momentum tensor T„". We assume that there is a
thermal radiation bath, which contributes to the energy-
momentum tensor; thus we have

T„"=T„"(P)+T„(rad) .

The first term on the right-hand side is the contribution
from the scalar field, the second is that from the radiation
bath. It should be stressed, however, that, with our as-
sumptions, homogeneity, isotropy, and flatness are prere-
quisites, not consequences. At the initial time, which we

take to be the Planck time tp~ T„ is dominated by T„"
(rad) and hence the Universe is expanding like
a radiation-dominated Friedmann-Robertson-Walker
(FRW) space-time. The metric for this particular
Universe is

ds'= dt ' a'(t)(dx—'+dy'+ dz'),

where a (t) is the scale factor and it varies as a (t)-t'
for a radiation-dominated Universe.

We can now consider the evolution of a scalar field
configuration P(x) with large initial fluctuations under
the assumption that (t is coupled to the thermal bath. In
this case it has been demonstrated both analytically and
numerically that, provided (() is weakly self-coupled, (b(x)
will uniformly relax to its initial spatial average (P),
which in general will be zero by symmetry. Thus new
inflation can be dynamically realized in the sense that, at
the critical temperature T, that occurs when the poten-
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FIG. l. A double-well potential V(P).
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tial energy density V(0) equals the energy density p(rad)
of the radiation bath, P(x) is confined to a region close to
/=0, thus reproducing the usual initial conditions for
new inflation.

The main purpose of this paper is to study the effects of
coupling P to the radiation bath on the evolution of P(x).
We find limits on the coupling constants below which the
evolution of P(x) outlined above remains unaffected and
new inflation can be dynamically realized. This paper
summarizes an approach which is mainly analytical; in a
companion paper one of us (H.A.F.) will discuss a nu-
merical analysis of the problem.

The coupling to the radiation bath acts as a random-
force term in the equations of motion for P(x, t). There
are two quite different ways to include random forces.
The first is to follow a Monte Carlo simulation of the evo-
lution of P averaging over the realizations of the random
force. The analysis in the second part of this paper is in
the spirit of this method. An alternative approach is to
derive and analyze the equation of motion for the proba-
bility distribution P(P,X, t ). P(PO, XO, t ) is the probability
amplitude at time t for finding P in the configuration $0
and Xo, where X=/. We shall refer to the second ap-
proach as the stochastic method.

The usefulness of P(P,X, t) was first pointed out by
Vilenkin in the context of new inflation. The stochastic
approach was independently developed by many au-
thors. ' ' In most cases, ' ' ' ' quantum fluctua-
tions in the scalar field P itself were considered as the
source of the random force. In these papers (except for
Ref. 18} attention was restricted to a local patch of the
Universe which was taken to be homogeneous and in
which P was only slowly moving so that the {() term in the
equation of motion

$+3HQ a(t)V P=——V'(P) F„—
could be neglected. Here H is the Hubble expansion rate,
V'(P)=BV(P}/BP, and Ftt represents the random force.
This approach is called the slow-rolling approximation.
One purpose of this paper is to develop the stochastic ap-
proach to new inflation in a scenario in which the above

approximations cannot be made and the full second-order
differential equation must be considered. This problem
has been addressed by Mazenko' who considered an N-
dimensional vector model and studied the dynamics in
the large-N limit.

The stochastic approach to inflation was applied to the
slow-rollover transition in the new inflationary
universe' ' ' and to chaotic inflation. "' ' We shall
apply this method to the preinflationary period of the
model of Ref. 6. In our case the random force is due to
classical thermal fluctuations as opposed to quantum
fluctuations; hence, our analysis is entirely classical.
Quantum-mechanical analyses of the slow-rolling phase
transition in the new inflationary model have been
presented in various papers. '

We hope that our method will also be useful for
analyzing the global structure of the chaotic inflationary
universe. ' ' Chaotic infiation is at present the only
concrete model which has a chance of explaining the

homogeneity, isotropy, and flatness of the observed part
of the Universe without too restrictive assumptions.

One way to obtain chaotic inflation is to consider a
model with a scalar field P in a potential V(P) that has
small mass term and coupling constant [ V(P) need not be
a double-well potential]. At the initial time, which we
take to be the Planck time tp& the only constraint on the
allowed values of P(x) is given by demanding that the en-

ergy density in P be smaller than the Planck density

2

V(P(x)) & mp&, (4)

Thus, with the above initial conditions, the local patch
of the Universe will have p = —p and will hence inflate.
Globally, however, the Universe will be chaotic, and our
stochastic approach to inflation may be useful in quanti-
fying the large-scale structure of the Universe.

The outline of this paper is as follows. In Sec. II we
shall discuss the stochastic approach to inflation. We
shall derive a differential equation for the probability dis-
tribution P(P, X, t ) and for a closed set of moments. We
will solve the equations for the moments numerically and
find bounds on the coupling constant between P and the
thermal bath below which the random force Fz due to
thermal fiuctuations will have a negligible effect on the
dynamical evolution of P. In Sec. III we will discuss a
direct approach: solving the Klein-Gordon equation of
motion (3) with an estimate of the effect of the random
force Fz. Section IV contains our conclusions.

We shall be working in the context of a flat FRW
universe with the metric given by (2). The Hubble expan-
sion rate is H(t) =a(t)/a(t). We shall use units in which
6=k& ——c =G =mp& ——1.

II. TIME EVOLUTION
OF THE PROBABILITY DISTRIBUTION

If a random force is allowed to infiuence the evolution
of the scalar field P, its evolution is no longer determinis-
tic. The most we can calculate is the probability distribu-
tion P(P, X, t). The goal of this section is to derive a
differential equation for the time evolution of P(Q, X, t).
We shall also derive a closed set of differential equations
for a finite subset of moments of P. By solving these
equations numerically we will demonstrate that the
thermal fluctuations are negligible in the context of
dynamical realization of new inflation, discussed in the

where m p& is the Planck mass.
We consider a sphere in space of radius twice the hor-

izon size in which both the spatial-gradient terms and the
kinetic terms are negligible compared to V(P):

—,'(VP)'« V({()), —,'P'« V(P)

(the second assumption can in fact be relaxed ).
The energy density p and the pressure p of the scalar

field P are given by
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Introduction and in Ref. 6, provided the coupling con-
stant describing the interaction between the scalar field P
and particles in the thermal bath is sufficiently small.

The starting point of the analysis is the equation of
motion for P, Eq. (3). In the usual approach, initial con-
ditions are chosen such that P(x) is homogeneous and
slowly moving in the region of space being considered.
In this case the slow rolling approximation which
neglects P may be self-consistent [whether or not it is de-
pends on V(P)] and (3) reduces to a simple Langevin
equation

where the diffusion parameter D is determined from the
random force Fz. To be more precise,

D =— (5$'(5t) &,
2 d

(9)

where 5$(5t) is the perturbation of P due to F„over a
time interval 5t and the brackets denote expectation
value with respect to the (random) measure of Fti.

We are interested in a completely different set of initial
conditions for P(x). Hence we also need a different ap-
proach to the stochastic analysis. We consider an initial
scalar-field configuration with large spatial-gradient
terms. An example is a plane-wave excitation,

P(x) = A sin(k x), (10)

where the amplitude A is determined by the requirement
that the maximal potential energy density of P does not
exceed the typical thermal energy density at the initial
time t, ,

2

V(A) ( T;

where T; is the initial temperature.
The wave number k is constrained by the requirement

that the spatial gradient energy density be smaller than
the initial thermal energy density

2

Given the above initial conditions, the slow-rolling ap-
proximation is clearly inappropriate and inconsistent.
and V P are crucial terms in the dynamical equations.
However, we are interested in weakly coupled scalar
fields which interact with the thermal radiation bath. In
this case we can expand i))(x) into Fourier modes Pi,(x),
neglect the mode-mode coupling, and treat each Pi, (x) in-
dependently. The differential equation for

y„(x)=y„sin(k. x+a„), (13)

Pi, being the amplitude and ai, the phase, is second order

from which one can derive the Fokker-Planck equation
for P(g, t)"

ap a v' a'
at

=
a4 3HP +

a 2
(DP)

in time, in contrast with the case usually considered.
We can write the equation of motion for Pi, in first-

order form. We define Xi, =Pk. (For notational siinplicity
we shall omit the subscript k.) Since neglecting the
mode-mode coupling means neglecting the nonlinear
terms in V'(P), i.e., replacing V'(P) by m P, we have the
following two coupled first-order-in-time differential
equations:

P=x, X= 3H—X [a —(t)k +m ]P (14)

(without thermal-fluctuation terms).
Now we shall outline the derivation of the probability

distribution P(p, x, t) for the kth mode. The first step is
to add thermal fluctuation terms 5$ and 5X to (14):

P(t+5t ) =P(t)+X(t )5t+5$(5t ),
X(t+5t) =X(t)(1 3H5t —) —F(k, m)$5t+5X(5t ),

(15)

1 a 2 ap
+2 ax

("&ax (18)

where on the right-hand side P stands for P(P, X, t ) and

(5$'& =fd(5$)P, (5$)5$',

(5x'& =fd(5X», (5X)5x'.
(19)

Equation (18) can be rewritten as a di(ferential equation
for P.

BP
XP +3H XP + [F(km)QP]

1 a a, ap+
2 ay a(5t) ay

1 a a, ap+
2 ax a(5t) ax

(20)

This is generalization of the Fokker-Planck equation (8).

with F(k, m)=(a 'k) +m . 5$ and 5X are random
variables with measures P, (5$) and P2(5X), respectively.
P(g, x, t+5t) can be obtained from P(i', x, t) by using
(15) and integrating over measures P, and P2.

P(p, x, t+5t)= fd(5$)d(5X)Pi(5$)P2(5X)

xP(Q, X, t) ay ax
a x

with

X5t 5$,— —

X=X+3HX5t+F(k, m)$5t 5X . —
After some algebra we obtain

P(g, x, t+5t)=P(g, x, t) 5t (XP)+—3H5t (XP)
a a

ax

+5t [F(k,m)QP]
a

~X

1 a 52 ap
+2 ap

'" &ay
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In general we are only interested in the lowest mo-
ments of P. Hence we do not proceed by solving (20) nu-

merically (which would be a difficult task}, instead we
derive a closed system of equations for the lowest mo-
ments, and solve the resulting system of coupled ordinary
differential equations numerically. We shall consider the
three quadratic moments

(P') = fdgdXP(p, x, t)P',

(yX) = fdydXP(y, X, t }yX,

(X') =f dy dX P(y, X, t )X' .

If (5$ ) and (5X ) are independent of P and X, we get
the following system of equations:

," &y') =2&yX)+ ', &5y'(5t)),

dt
—(Px) =(X ) —3H(px) F(k, m—)($ ),

dt
—(X ) = —6H(X') —F(k, m)(PX)+ (5X (5t)) .

a(5t)

(22)

dr=a '(t)dt . (23)

The conformal field f is given by

If the scalar field is conformally coupled to gravity, i.e.,
m =—,'R, where R is the Ricci scalar, then the system of
differential equations above can be further simplified by
introducing conforrnal time and field coordinates. The
conforrnal time ~ is given by

B(r)=Mcos(2kr+a), (29)

where M is the amplitude and a is a phase.
We have evaluated the moment equations (26) for a

specific choice of thermal-fluctuation terms motivated by
considering the coupling of P to N scalar fields f; which
we assumed to be homogeneous.

The interaction Lagrangian is

N

,'~4' g 0'; ~ (30)

Incorporating this in the equation of motion leads to

$+3HP a(t)V—P= ——,'RP ANPP— (31)

In Fourier space the equation is identical after replac-
ing V with —k . Using the same argument as the one
preceding (28) it follows that the random force term
scales in time as P and a V P, namely, as a (t }.

Comparing (31) and (15) it follows that 5/=0 and
5X-ANPg . Hence S=0. Since the ratio of the random
force to the other forces is time independent, a S will be
time independent. Its amplitude at the initial time tp
(temperature To) can be obtained from (27):

the key to the dynamical realization of new inflation dis-
cussed in Ref. 6. This result also emerges from (26).
With vanishing S and S we get

d B
d~2

and thus

f=a(t)P . S=A. N y 1/I br (32)

A =a P, B=a (Px+HQ ),
C =a (HP+X)',

becomes very simple:

(25)

By writing out df /dr in terms of the original variables,
we find that the system of equations for the conformal
moments

where A~ is the typical interaction time. In terms of the
number density n of one particle species and the interac-
tion cross section crt-i, l h„, (l h„, is the physical wave-
length of the P mode),

L~-n o—1 —1 (33)

From (32) and (33) it follows that S-a as we showed
above must be the case. The initial amplitude is

dA =2B+a S,
d~ S(t )o-A, ( Ak) To, (34)

=C—k A+a HS,d7. (26)

s= &5y'(5t)), s= (5x'(5t)) .
8 5t) B(5t)

Based on Eqs. (26) we can study the effects of thermal
fluctuations on the evolution of the scalar field. We
know that the conformal field f will oscillate in confor-
mal time with a fixed amplitude and frequency. Hence
Pi,(x) will be uniformly damped in time as a '(t). If the
initial spatial average of P vanishes as can be argued by
symmetry, then Pi,(x) will uniformly relax to 0. This is

= —2k B+a (H S+S),
d~

with the thermal fluctuation source terms S and S given
by

where A is the amplitude for P at To.
We solved the system of moment equations (26) numer-

ically, given the above choice of S and S, i.e., S(t)=0 and
' —5

S(t)=A( Ak) To
a(to)

We integrated starting at the Planck time tp& up to
T = T, when inflation is expected to start. T, is given by

2

V(0)= NT, .
30

(35)

We considered a range of values for A, . Figure 2
presents results for A, =10 ' and cr =5X10 '. As can be
seen in the plot, the thermal fluctuations have a negligible
effect on the evolution of the moments. In Fig. 3 we
show a three-dimensional plot where we vary k through
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FIG. 2. Moments A, S,C, vs v the conformal time, for
A,

&
——10 ', A, =10 '. The parameters are as given at the end of

Sec. III.

Since the g fields are assumed to be in thermal equilibri-
um, we get

(42)

Thus the constraint on the coupling of p to oth« field»s
not any stronger than the constraint on the self-coupling
of P for the dynamical relaxation mechanism to work.
Both constraints are weaker than the ones which follow

(a)

its critical value to show the effect large A, has on the evo-
lution of the moments. The critical value of A, is about
SX10 '. As can be seen, for values of A, below A,,
thermal fluctuations are negligible. In Sec. III we shall
give analytical arguments for the critical value of A, .

III. DIRECT SOLUTION
OF THE EQUATIONS OF MOTION

An alternate way to describe the influence of thermal
fluctuation terms on the equation of motion of P is by
performing direct estimates of the effect, based on the
equation of motion. Such approaches will be described in
detail in this section. %'e want to determine the critical
value A,, of the coupling constant A, , below which the
effects of thermal fluctuations can be neglected. As in the
previous section we shall take the interaction Lagrangian
Xl to be given by

Xi ,'AN/ p——— (36)

Again we assume that P is weakly self-coupled so that
V(P)=BV(P)/BP is negligible in the equations of
motion. The conditions for this approximation to be val-
id were discussed at length in Refs. 6 and 7. For

V(P) =&p(P —o') (37)

the condition that V'(P) does not prevent dynamical re-
laxation of P is

and

FH -3H Q (39)

(38)

The result for a Coleman-Weinberg potential is similar.
It is quite easy to obtain a lower bound for k, . If the

strength of the thermal force Fz is smaller than the Hub-
ble damping force FH for all temperatures above the criti-
cal temperature T;, then thermal fluctuations will not
prevent dynamical relaxation. Since

FIG. 3. A three-dimensional surface plot of the evolution of
the moments A, B,C as a function of the conformal time ~ as we
vary A, through its critical value A, Below A,, we see no effect of
the thermal fluctuation, whereas above we see clearly the contri-
bution of the fluctuations. The parameters are as given at the
end of Sec. III.






