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Eg family unification, mirror fermions, and new low-energy physics
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The group E, is investigated from the point of view of family unification. A Peccei-Quinn sym-

metry is used to protect the light fermions from acquiring a superlarge mass. It is found that if
this protection is to be maintained without destroying perturbative unification three families are
uniquely picked out with a family group SU(3)f, CE6XSU{3)f, CE,. A relation between the
(V —A)/( V+ 3) hierarchy and the hierarchy of Mp&/MGU& is found. It is also found that, in ad-
dition to mirror families, several exotic fermions characteristically remain light.

I. INTRODUCTION

There has been much interest in the group Es recently
in the context of superstring theories. This group con-
tains the subgroup E6XSU(3). In many versions of
superstring theory this SU(3) becomes associated with
the SU(3) holonomy group of a Calabi-Yau manifold in
such a way that, after compactification, E6 or some sub-

group of it is left unbroken. ' E6 has long been regarded
as an elegant group for grand unification, particularly in
the framework of supersymmetry (since the fermions and
bosons can be in the same 27-dimensional representa-
tion). Now, interestingly, while the SU(3) factor is con-
nected indirectly to the number of families that arise in
superstring theories, there is no direct connection be-
tween the 3 of SU(3) and the apparent fact that there are
3 families. Nor do the families that arise belong to rep-
resentations of SU(3). (Though in some orbifold
compactifications this can happen. ) In this paper we
consider the older and more modest approach which is
not based on superstrings, but seeks to explain the triplet
of families more simplistically in terms of the group
structure EsDE6XSU(3) where the SU(3) is regarded as
a family group. Es has been proposed before for family
unification, but it is a bit surprising that closer attention
has not been paid to it. There are a number of interest-
ing facets of this idea which have not been fully ex-
plored.

In several ways the models proposed here are to be
classed with attempts to unify the families with orthogo-
nal groups. There are in fact five viable (and reasonably
small) groups that allow all of the families to be unified
in a single representation: O(14), SO(16), SO(18), E7, and
E8. All of these groups predict the existence of mirror
ferrnion families. This is unfortunate from two points of
view. First, there is no technically natural or simple
way to explain why the mirror ( V+ A) fermion families
should be heavier than the ordinary V —A families.
Second, one cannot combine mirror families and low-
energy supersymmetry without destroying the asymptot-
ic freedom of the non-Abelian gauge couplings and
hence perturbative unification. Since low-energy super-
symmetry may be necessary to solve the gauge hierarchy

problem this is a very high price to pay. Nevertheless
these groups are sufficiently interesting both theoretical-
ly and experimentally that they are worth investigating
despite these serious objections. SO(18) has been most
studied because the unifying representation for the fer-
rnions is complex and hence the fermions are protected
by SO(18) itself from developing a superlarge mass. Un-
fortunately, from the point of view of elegance, this
theory has eight families (and eight mirrors). If one is to
get down to three or four light families some rather
complicated symmetry breaking has to occur. (Just the
right subgroup of the gauge group must remain unbro-
ken until low energies to protect four families. This is
nontrivial. ) SO(14) also has complex spinors but they
give only two families (and two mirrors). In order to get
enough fermions one must go to the group O(14) which
has irreducible but real spinors that are twice as big.
On the other hand, one has then four (or fewer) light
families as a prediction. SO(16) has been studied little
because its spinors are real so that one must introduce a
global Peccei-Quinn-type symmetry to protect the light
fermions. Like O(14) this group naturally predicts four
or fewer light families and, to our view, more elegantly.
The price of introducing a Peccei-Quinn symmetry is not
very high if one considers that it may be used to solve
the strong CP problem.

The group Es is most like SO(16) [indeed it has a max-
imal SO(16) subgroup]. The representations are real, re-
quiring the introduction of a Peccei-Quinn-type symme-
try. The fundamental representation (which is the same
as the adjoint) is large enough to give evenpve families
and, since Es has a maximal SO(16) subgroup, one can
get four families in a group-theoretically simple way.
However, as we shall show„ if one is not to destroy the
natural protection which the Peccei-Quinn symmetry
affords the light ferrnions, the case of three light families
is uniquely picked out. These three are in a triplet of
the SU(3) family group arising from the branching
Es OE6X SU(3). SU(3) has long been regarded as an ob-
vious and desirable choice for a family group. Unfor-
tunately this ordinarily leads to anomalies. The price we
have paid by accepting mirror fermions has freed us
from this difficulty and allowed us to realize a gauged
SU(3) family group.
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There are five features of E8 as an ordinary grand
unified group that we regard as attractive. (1) It is in
some sense a unique choice as being the largest of the
exceptional series. (2) It predicts three families, unifies
in a single irreducible representation all the light fer-
mions, gives an SU(3) family group, and unifies this
group. (3) It gives characteristic extra structure (beyond
the mirror families) at low energy, as we shall see. (4)
The simplest breaking pattern gives a gauge coupling at
the unification scale of order unity, which seems to us to
increase the technical naturalness of the model. (5)
There is a relation between the Peccei-Quinn breaking
scale and the ( V —A ) to ( V+ A ) mass hierarchy:
(Mp&/MotJ~)-(M~ „/Mv+ „). We feel that these
features make the group E8 the most interesting of the
family unification groups.

II. PROTECTING THE LIGHT FERMIONS

The 248 of E8 is real so that E8 by itself will not forbid
a mass term for the fermions, which we take to be in this
representation. Therefore we impose a global U(1)
(quasi)symmetry under which the 248 of fermions has a

charge of +1. We could also impose some discrete sym-
metry for the same purpose, but the U(1) has the advan-
tage of serving as a Peccei-Quinn symmetry. Now, it
would be bad to have all the fermions in the 248 remain
light as the perturbative unification would be destroyed.
The question is whether it is possible that enough of the
248 become superheavy to retain perturbative unification
while at the same time a remnant of ESXU(1)p& is left
to protect the light fermions. The answer is that there is
a unique way of doing this, and that therefore certain
features of low-energy physics are predictable.

To analyze this question and give us a notation in
which to discuss these models let us decompose the rep-
resentations of Es under an SU(5) XU(1)XSU(3) sub-

group as follows:

E, &E,X SU(3)„, & SO(10)XU(1), X SU(3)„

&SU(5) X U(1)„xU(1), x SU(3)f,

A representation which is an r of SU(5), an s of SU(3)f,
and with charge p and q of U(1)„and U(1)„respectively,
we will denote (r~ ~,s). Then

248~[(24 ', 1)+(10 ', 1)„+(10', 1)—„+(1', 1) ]

+[(10' ', l)s+(5' ', l)b+(1' ', l)p]+[(10 ",1)g+(5",1)~+(I ",1)p]

+[(1 ', l)s]+[(I ', 8)]+[(10",3)c+(5 ",3),+(I",3)r]+[(5 ' ', 3)d+(5', 3),]+[(I ', 3),]

+[(10 ' ', 3)c+(5 ' ', 3)~+(1 ' ', 3)-]+[(5 ', 3)d+(5 ', 3),-]+[(1', 3),-]

The representations in the square brackets come from ir-
reducible representations of SO(10). Note that the SU(3)
singlets make up a 78 of E6, the triplets a 27, and the an-
titriplets a 27. We denote, for convenience, certain rep-
resentations by letters which appear as subscripts above.
We emphasize that we are not breaking the group Es
down to SU(5) XU(1)XU(1)XSU(3) but only classify-
ing particles under this subgroup.

Suppose that the (24 ', 1) acquires a superlarge mass
with itself. That is, there is a mass term of the form
(24 ', 1)X(24o', 1). The relevant Higgs boson has PQ
charge ( —2) and gauge quantum numbers (r ', 1) where

r C24, =1+24+75+200. It does not appear that there
would remain in this case any symmetry to protect any
of the fermions against acquiring a superlarge mass. In
the first place, U(1)p& is broken, leaving U(1)„
XU(1), XSU(3)&, . But as the fermions are real under
this unbroken group no protection is afforded by it. Nor
do we see any other symmetry argument, such as that
we shall use below for the case of the ES~E7-breaking
pattern, which can guarantee the lightness of any of the
fermions. We must reject this possibility therefore.
Then let us consider making some of the 10+10 fer-
mions heavy. Using the notation described above, we
can rule out superheavy masses of the form A A, BB,
and CC on the same grounds as we did a superheavy
mass for the (24, 1). There remain then only three cases

to consider, namely, superheavy masses of the form AB,
AC, or BC. (Clearly BA, CA, and CB are the same. ) If
AB and BA superlarge masses exist, the relevant Higgs
fields will have a PQ charge of —2 and gauge quantum
numbers (r ', 1) and (r ', 1), where r C 1+24+75.
Then the following mass terms are allowed to form by
the unbroken subgroup of EsXU(1)~&. AB, BA, ce, ce,
and the singlet masses aP, aP, 5P, 5P, yF, and ye This.
leaves light the C—:( 10",3 ), C —= ( 10 ' ', 3 ),
d =(5 ', 3), and d—:(5,3), which make up three
families and three mirror families, together with the
(24 ', 1), (1 ', 8), b —:(5 '

, 1), b —= (5 ', 1), and one
singlet. All together 133 fermions remain light. The
vacuum expectation value (VEV) of the Higgs fields in
the (1 ', 1) and (1 ', 1) will break E~ to E7. The ad-
joint of E7 is 133 dimensional. One can understand the
low-energy fermion spectrum simply in terms of a
decomposition of the representations of E7 under the
subgroups: E7DSU(6)XSU(3)DSU(5) XU(1)XSU(3).
Under this

133 (15,3)+(15,3)+(35,1)+(1,8)

~(10,3)+(5,3)+(10,3)

+(5,3)+ (24, 1)+(5,1)+(5,1)+(1,1)+(1,8) .
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(We should remark here that there are models based on
this group breaking in the literature. ) Now, it is easily
shown in the other two cases we mentioned, where there
is a superheavy mass of the form AC or BC, that Es is
also broken to an E7 subgroup and 133 fermions remain
light. Group theoretically these are all equivalent under
a group automorphism (though they appear different
here since our notation is based upon a particular
decomposition of Es). Suppose that no 10+10 pairs be-
corne superheavy. Then we will have at least 154 light
states [of SU(5): a 24, five 10+10 pairs, and at least
three (for three families) 5+5 pairs), with a group index
of at least 46. This is like having 23 flavors of light
quark which would completely destroy the perturbative
unification of the theory. Hence the only viable possibil-
ity is the breaking we have discussed which leaves the
133 (adjoint of E7) of fermions light. The index of these
light fermions is 36 which is equivalent to having 18
light families, to be compared to the critical number for
the asymptotic freedom of SU(3) color of 16—,'. So above
the scale (presumably roughly in the 100 GeV —TeV
range) where the extra light fermions are, the non-
Abelian gauge couplings start growing again, but very
slowly. They will become of order unity only at or near
the unification scale. We regard this as a happy ac-
cident, since it is in line with the "naturalness" criterion
that the fundamental gauge couplings be of order unity.

Notice that while there are enough fermions in the
248 to give even five families plus their mirrors, the
above considerations uniquely pick out three. Further-
more these families are in representations of an SU(3)
CE~. Thus we conclude that the phenomenologically
interesting decomposition of E8 is not into SU(5)
XSU(5), or SO(10) XSU(4), but into E6XSU(3)r, .

Let us see in detail how the 133 light fermions are
protected in the breaking. If Higgs fields with PQ
charge ( —2) and gauge quantum numbers (1 ', 1) and
(1 ', 1) acquire VEV's, they will break U(1)„
XU(1), XU(1)p& down to a gauge group U(1)', whose
charge, Q', is given by Q'= —,'(3Q, +5Q, ). Now consid-
er the gauge group U(1)" orthogonal to U(1)' which is
generated by Q"=—,'(Q„—Q, ). [It is orthogonal because

z4s(Q„) /z4s(Q, ) =—,'.] The charge Q" of all 133 light
fermions is zero, the charges of all the SU(5)-nonsinglet
superheavy fermions is odd, and the charges of the
Higgs fields that get expectation values are +2 [for the
Q=(1 ', 1) and the 0'—= (1 '+, 1)]. Clearly the only
way to get a superheavy mass term that connects a light
fermion to a light fermion is to have a product of VEV's
which has vanishin~ Q". Such a combination would be
(II) (0) "(II'P(Q') ~ where m n —p+—q=0. This has
PQ charge 2(m n+p —q) =—4(m n). This is—a multi-
ple of 4, while in order to couple to a fermion bilinear it
must be —2. (If there were another Higgs fields with

Qp& ———2, that coupled to the fermions, and had a com-
ponent with Q"=0 which received a superlarge VEV,
then such mass terms would become possible at higher
orders. But there is no need to introduce such a Higgs
boson. ) Next, it is even easier to see that no light fer-
mion to heavy fermion mass terms involving only A and

0' are possible since these Higgs fields have even Q" and
such a fermion bilinear [for SU(5)-nonsinglet fields] has
odd Q". So it is clear that symmetry protects the light
fermions from getting a superlarge mass to any order.
This is so even though there remains no unbroken con-
tinuous symmetry below the grand-unified-theory (GUT)
scale under which the fermions are in a complex repre-
sentation. This raises the question again of whether the
(24 ', 1) can get a superlarge mass with itself without
destroying the symmetry protection of the other fer-
mions. We do not see any way for this to happen.

III. THE STAGES OF SYMMETRY BREAKING

So far we have focused only on the fermion masses.
We can use a 3875 of the Higgs fields to give the super-
large masses to the 115 unwanted fermions leaving the
133 remaining fermions light. This Higgs field must
have, as noted, Qp&

———2. Alone this Higgs field would
break E8 only to E7, whereas we would like to have E&

broken to a smaller subgroup than that at superlarge en-
ergies. This can be achieved easily by Higgs fields that
have Qp&

——0 and which, therefore, do not couple direct-
ly to fermions. In particular, an adjoint Higgs field
(248) would be the simplest choice. This can break the
group all the way down to [SU(3), XSU(2)L XU(1)~]
XU(1)'XSU(3)q,~ at the GUT scale, where the bracket-
ed group is that of the standard model. These are the
only superlarge breakings required. As we shall see
later, however, one can obtain interesting and desirable
patterns of light fermion masses if there is slightly more
structure at high energies. At low energies we need two
levels of breaking. First, the "extra" light fermions
(24, 1), (5, 1), (5, 1), and (1,8) inust be given large enough
masses [which need not break SU(2) XU(1)]. Second,
SU(2) XU(1) breaking must occur and the three light
families and their mirrors must get mass. How large are
the (24, 1), (5,1), (5, 1), and (1,8) masses'? One cannot, of
course, say precisely. We have already argued, however,
that if these fermions get superheavy masses there is no
symmetry protection against large mass terms connect-
ing ordinary fermions to their mirror partners, which
could arise at higher order. Indeed if these "extra fer-
mions" get mass from a Higgs boson in a "small" repre-
sentation of Es (there are few such) at the tree level, then
also at the tree level the ordinary and mirror fermions
get large SU(2) XU(1)-singlet masses, which is obviously
unacceptable. One can show, however, that there is no
group-theoretical objection, fundamentally, to having
substantial (e.g., 100 GeV —1 TeV) masses for the (24, 1),
(5, 1), (5, 1), and (1,8) and very small singlet masses be-
tween the ordinary and mirror fermions. This is because
there are components in the 27000 which couple at the
tree level to give the former but not
the latter. [We are thinking of components
1(1(2430(27000) ) ), 1(210(2430(27000) ) ) and
24(210(2430(27000))) where we are denoting them by
their SU(5) (SO(10) (E6(Es) ) ) quantum numbers. ]
Doubtless there are more elegant ways to achieve this
than introducing such a huge representation (even if it is
the third smallest irrep of E8). We envisage these masses
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arising in some way in higher order from products of
smaller representations. This is an important issue
which nevertheless we will not pursue further here. A
similar and more difficult problem is the hierarchy be-
tween ordinary ( V —A ) families and mirror ( V+ A )

families. This is a problem shared by the orthogonal
group models, SO(18), SO(16), and O(14). In Sec. IV we
will discuss some tentative but attractive ideas for deal-
ing with this problem.
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IV. THE ( V —A ) /( V+ A ) HIERARCHY,
THE PECCEI-QUINN SCALE,

AND THE FAMILY HIERARCHY

In all groups that give mirror fermions, SO(18),
SO(16), O(14), E7, and E8, there is a tendency for the
(V —A) and (V+ A) families to have the same masses
since these fermions can be mapped into each other by a
group automorphism. In all of these groups this de-
generacy can be lifted. But in none of them can a large
hierarchy between the ( V —A ) and ( V+ A ) masses be
achieved in a technically natural way. ' It always arises
as the result of some other hierarchy of mass scales
which is itself not technically natural. We will proceed
now to show that in a simple treatment of this problem
in Es, the ratios Mv „/M~+„are suppressed by the
ratio Mp&/MGUz, where Mp& is the scale at which the
Peccei-Quinn symmetry breaks (5 10' GeV) and MoU&
is scale at which the largest fermion masses arise. We
use a version of Dimopoulos's idea' for explaining mass
hierarchies among light fermions at the tree level from
hierarchies among superheavy scales.

The superheavy fermion masses, as we have noted
above, can come from components of a 3875 that trans-
form as (1',1) and (1 ', 1). Let us also suppose that
the components of the 3875 that transform as (1 ' ', 3)
and (1 ', 3) acquire large VEV's. [However we do not
allow those components that transform as (1 ', 1) or
(1 ', 3) or their conjugates to develop large VEV's. This
is consistent with stability requirements. ] Moreover, let
us assume that the VEV's of these SU(3)« triplet-Higgs
fields are all parallel in SU(3); that is, that they break
SU(3) down only to SU(2)f, . This will give an interest-
ing pattern of masses for the three families. It is also
noteworthy that it gives the Ramond family group"
SU(2) with the three families in a 2+ l.

Now let us introduce a hierarchy among these large
VEV's. Suppose ( ( 1 ', 1) ) is of order M oUr, while

((1 ', 1)), ((1 ', 3)), and ((1 ' ', 3)) are of order

Mpg ((MGUr. [Remember that the 3875 of the Higgs
field, having Qp&

———2, is comp/ex so that, in general,
((1 ', 1))&((1 ', 1))*. See the Appendix where it
is shown that such a hierarchy is easy, if not technically,
natural to implement. ] At MGU~, U(1)' X U(1)"
XU(1)p& breaks down to U(1)'XU(1)p&, where U(1)p&
is a global (quasi)symmetry generated by (Q" Qpg).
At this stage exactly half of the SU(5)-nonsinglet su-

perheavy fermions get their masses, namely, A, B, c, and
e, but not A, B, c, and e. At Mp&, when (1+ ', 1) ac-
quires a VEV, the Peccei-Quinn symmetry U(1)p&
breaks completely (except for possible discrete rem-
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FIG. 1. Tree-level diagrams showing mass terms for (a)
charge —, mirror quarks and (b) ordinary quarks. The letters

A, C, etc. , refer to fermion representations (see the text). The
ordinary quark mass is of order (Mp&/MGUz)M~ since the
mass of A, B is of order MGUz. The mirror quark mass is of
order M~ since the mass of A, B is of order Mp&.
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FIG. 2. Diagrams analogous to Fig. 1 but for charge ——,
'

quarks and charged leptons. (a) and (b) contribute to mirror
and ordinary fermions, respectively.

nants). Therefore 10 5Mp& 5 10' GeV. Moreover, the
rest of the superheavy fermions then pick up their
masses, namely, A, 8, c, and e. The role of O(Mp&)
SU(3)« -triplet Higgs VEV s is to mix SU(3)« -singlet
and -triplet fermions, breaking SU(3)«, and allowing
some interesting structure to emerge at low energy. The
SU(2) XU(1)-breaking masses arise from an H, which is
a mixture of (5 ~', 3) and (53' ', 3), and an H' which is
a mixture of (5 ', 3) and (5 ', 3). Each gets a VEV
of the order of the weak scale.

Figures 1 and 2 show how the light fermion masses
arise. Note that the charge —', quark masses which arise
from Fig. 1(b) are of order (Mp&/MoU&)M~ whereas
the mirror charge + —', quark masses from Fig. 1(a) are of
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order (Mp&/Mp&)Mii =Mii. This gives the rough rela-
tion M„„/M „+„-Mpo /MoUT. The diagrams of
Fig. 2 give the same result for charge ——,

' quarks and

charged leptons. We find this very appealing. The two
most puzzling features of the model, that the fermions
do not all get superheavy mass and that there is a
( V —A ) /( V+ A ) hierarchy, are accounted for by two
puzzling features that were already needed in axion
models: the existence of a Peccei-Quinn symmetry and
the fact that it must be broken at an intermediate scale.

Notice that our account of the fermion masses has an
interesting bonus. The diagrams of Figs. 1 and 2, to-
gether with the assumption that the SU(3)f, triplet
breaks SU(3)«m~SU(2)«, imply that one of the fami-
lies [the SU(2)fam singlet one] is heavier than the others.
This is also a realization of the kind of idea explored by
Ramond. " There are also diagrams which give tree-
level masses to the d, s, e, and p, , which we have not
shown. Undoubtedly the story of the light fermion
masses has more to it than told here, but we have al-
ready gotten more specific about the fine details of mod-
els than perhaps we should. There is an apparent
difficulty, though it turns out not to be real, with the
kind of mechanism for obtaining structure in the light
fermion masses that we illustrate in Figs. 1 and 2. Since
all fermions belong to the same representation of E8
there is inevitably present in the model a component of a
Higgs boson which can give any possible mass term. In
particular, we can close the fermion lines in Figs. 1 and
2 by coupling to a Higgs boson. That Higgs boson man-
ifestly must develop a nonvanishing VEV since by clos-
ing the fermion line we construct a tadpole term for it.
How big is that VEV? If the (mass) of this Higgs com-
ponent (call it P) is 0(Mo„T ) then we have a potential
of the form 0(Mo„T )P +0(Mii Mp&M)P, where M is

MoUT or Mp&. Then (P ) -Mii, (MpQ/MQUr )(M /
MoUT). This is not large enough to disturb the
( V —A ) /( V + A ) hierarchy.

There is a final potential difficulty with the type of E8
model we have been describing, and that pertains to neu-
trino masses. In order not to conflict with astrophysical
bounds' from He abundance we must have three or at
most four light neutrinos. Among the 133 light fermions
there are eight SU(2)-doublet neutrinos and ten SU(2)-
singlet neutrinos. The eight doublet neutrinos are in the
three families (5,3), and three mirror families (5,3) and
the extra (5, 1)+(5,1) of fermions. The ten singlet neu-
trinos are in a (1,1), the (1,8), the (24, 1). Naively it
would seem that, with all these singlet neutrinos with
weak-scale masses, one would have no difficulty in mak-
ing as many neutrinos as necessary heavy enough to es-
cape the bounds from He abundance. Unfortunately
Dirac masses for these neutrinos do not arise at the tree
level from SU(2) XU(1)-breaking Higgs bosons H and
H . While it is certainly possible to "arrange" for large
dirac neutrino masses (one might introduce some Es-
singlet fermions to play the role of the singlet neutrinos)
they do not seem to emerge in a particularly simple or
elegant way. In particular, it is not obvious why the e,
p, and ~ neutrinos should be relatively light while the
neutrinos of the mirror families should be much heavier.

Clearly there is much more work to be done on the mass
spectrum of the light fermions. The set of such fermions
is rich and there is a lot of structure to their masses.
The main focus of this paper has been on three
"grosser" features of the light fermion spectrum: which

set of fermions can remain light in a technically natural
way, the family structure, and the ( V —A ) /( V+ A )

hierarchy.
Finally we should point out one more interesting area

of potential low-energy phenomenology. We saw above
that the breaking that gave 115 of the 248 fermions su-

perlarge mass also broke the rank of the group by one
from Es to E7. The extra three units of rank comprise
two for SU(3)«group and one for the U(1)' group. In
the particular scheme we discussed in this section we
broke SU(3)f, down to SU(2)«m at large energies. This
leaves not SU(3)f, )&U(1)' but SU(2)f, &(U(1)', where
U(l)' is a mixture of U(1)' and the "hypercharge" U(1)
of SU(3)„. In any event there is no reason to break the
extra U(1) gauge group [U(1)' or U(1)'] at very high
scales. It is quite reasonable that it could remain at low
enough energies to give interesting extra Zo phenome-
nology. Notice that the family-independent part of this
U(1), namely, U(1)', is uniquely picked out by the con-
siderations of Sec. II.
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APPENDIX

In order to break the PQ symmetry at a much lower
scale than the GUT scale it is necessary to have
( Q ) » ( Q' ), where Q' and Q have opposite gauge
quantum numbers, but are not just complex conjugates
of each other since they are in a complex 248. To show
that this kind of hierarchy is not difficult to achieve
(though it is not technically natural) let us examine a
simple analogue. Consider an SO(3) model with a com-
plex 3 of the Higgs field: 0+ =0&+iQz=—a,
Q =Qi i Q2=b, Q3=—(1/&2)c There are t.wo SO(3)-
invariant quadratic combinations QJ3, QJ QJ andg, Q Q; the first being a real quantity and the
second complex: g Q'Q, = —,'(~a

~
+ [b

~
+ ~c

~
)

and g. Q Q =ah+-,'c . The potential will depend only
on these combinations and will thus determine three real
quantities. Altogether a, b, and c which are complex
have six real quantities. So three quantities are undeter-
mined. This is just three-parameter degeneracy due to
the SO(3) symmetry of the minimuin. Really all the
minima are equivalent. Consider

2

V=A. g Q;Q, —" +A.' g Q, Q, '.
1 J

This is clearly minimized when
~

a
~

+
~

b
~

+
~

c
~

=(p2/g) and ab+ —,'c =0. One solution is
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(A, /p )' (a, b, c) =(1,0,0) which gives (Q+ )&0 and
(Q ) =0. Obviously a slight perturbation on this poten-
tial can make (Q ) nonzero but still small compared to
(Q+ ). This can also be written
(l(/p )' (Q, , Q2, Q3)=( —,', —i/2, 0). One can see the
equivalence of the other minima easily. Just to illus-
trate, consider (A/p)'/ , (a, b, c) =(—,', —,', i /&2) which

also minimizes the potential. This gives
(A, /)tt )' (Q&, Q2, Q3) =(—,',0, —i /2), which is the same
as the previous case under a rotation in group space.
Thus, perhaps surprisingly, there is no tendency for 0+
and 0 to have the same magnitude even in a very sim-
ple case. One expects the same to hold for Es.
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