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Nucleon distribution amplitudes from a relativistic quark model
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We show that the essential features of the Chernyak-Zhitnitsky distribution amplitudes for the
nucleon can be understood with the basic concepts of the constituent quark model formulated in

the light-cone Fock approach. The key ingredient of the model is the relativistic nonstatic spin

wave function together with the fact that quarks bound in light hadrons are highly relativistic
(small-valence-size hypothesis). The picture is consistent with that of an analogous study for the

qq system.

A basic part of perturbative quantum chromodynamics
(QCD) predictions are the hadronic wave functions which
describe the hadron in terms of its constituent quarks and
gluons. In the case of exclusive processes at large momen-
tum transfer via the factorization theorem, ' it is possible
to separate the short-distance dynamics governed by per-
turbative QCD from the soft nonperturbative contribu-
tions responsible for quark and gluon confinement at large
distances. All binding effects from soft, low-momentum-
transfer interactions are summarized by the valence-
quark distribution amplitudes

y(x;, g) - [d'k. ]~(x;,k.;)e(k.'; & g'), (l)

which are computed from the valence wave function of the
hadron at equal time x+ xo+x3 on the light cone and
gives the probability amplitude for the valence quarks
with light-cone fractions x; p;+/p+ (p; +p; )/
(p +p ) to combine into the hadron with relative mo-
menta k~t up to the scale Q 2.

In the past few years, quite substantial progress has
been achieved in nonperturbative methods for calculation
of hadron properties. Suggestions have been made for the
form of the distribution amplitudes of mesons and nu-
cleons on the basis of the method of )CD sum rules
and from lattice QCD calculations. The following
surprising picture of the longitudinal-momentum-space
structure of the hadrons has emerged. There is a large
asymmetry between quarks, i.e., for both the pion and nu-
cleon a large part of the momentum is carried by one
quark. The valence quarks in light hadrons are highly rel-
ativistic. All longitudinal-momentum distributions are
broad and very different from the nonrelativistic b-
function form centered at x; —,'. At the same time at-
tempts have been made to calculate distribution ampli-
tudes directly from hadron momentum-space wave func-
tions and to understand at least qualitatively the physics
behind the observed features of amplitudes calculated
from QCD sum rules and lattice techniques. With the
basic concepts of the constituent quark model formulated
in the light-cone approach we presented a relativistic mod-
el of the pion valence-quark wave function and found that
a nonstatic relativistic wave function and the small size of
the valence configuration are essential to reproduce the
basic features of the Chernyak-Zhitnitsky amplitude for
the pion.

It also remains to demonstrate that the same physical
idea will succeed in describing the nucleon distribution
amplitude, thereby unifying mesons and baryons in a sin-
gle consistent relativistic framework. The demonstration
of this fact is the main subject of this paper.

Qur program for the nucleon invokes essentially the
same basic phenomenlogical constraints from the quark
model as the approach of Ref. 6. Details are given in Ref.
7. We nevertheless briefly describe the basic concepts
again here for completeness. (i) Nucleon states are dom-
inated by the valence-quark configuration with typical
constituent quark masses, ttt =330 MeV. (ii) The
valence component is a system with substantial relativistic
motion described, for analytical simplicity, by the Gauss-
ian momentum-space wave function

3

p (x;,k~;) A exp 2 trtg —g (k~;+rrt; )/x;
a i 1

(2)
The Gaussian parameter a is determined by the value of
the average quark transverse momentum, viz. , a = (k&).
The QCD sum-rule implication that the hadron valence-
quark wave functions are broad in longitudinal momen-
tum also suggests a broad transverse-momentum distribu-
tion. Moreover, there are suggestions made by Brodsky,
Huang, and Lepage that the proton transverse size is
even smaller than that of the pion. In particular, a small
size for the proton valence wave function, Rqqq =0.2-0.3
fm, would correspond to the Gaussian parameter
a=660-1000 MeV. (iii) The three-quark valence sys-
tem in the nucleon is an interacting particle state with the
standard quark-model spin-parity and isospin assign-
ments. To determine the relativistic spin wave function
we need some approximation to deal with the problem of
the angular momentum in the light-cone dynamics. For
free spin- —,

' constituents, the one-particle instant (equal-
t) and light-cone (equal-x+) states are related by a uni-
tary transformation called the Melosh transformation.
We use the relation together with a light-cone analog of
the mock-hadron method by Isgur. ' Namely, we assume
that the S —,

'
spin wave function is constructed by the

Clebsch-Gordan prescription for a collection of free
quarks, but with the mean total invariant mass of the free
quarks equal to the nucleon mass m~, i.e., g;-~pI' p$.
Obviously it is not a completely satisfactory technique but
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it at least allows one to deal with a system of interacting
quarks by assuming a correspondence of real hadrons with

weakly bound ones. " Using the prescription, we get the
following model for the Lorentz-invariant light-cone wave
function (1):

pt(xi. k3.is~i) Q (xi~k3.i )~p(xi okapi ~~i )/ IIxi
(3)

where

A3 Z", (1,2,3)Jxlx2x3

a l a3a3+ kg (2a lk f —a3kf )
a la2a3+ k{'(2a3k) —a3k))—2a la2a3 —kg(alkt'+a2kf)

TABLE I. The nucleon light-cone spin wave function
Z~(1,2,3) (L„0 components only), ai m&x&+ m,
k- k'+ sk.

with

XI"(1,2,3) Jt(1,3,2)+Jl(2, 3,1),

A A A

Jt(1,2, 3) ul„, (miv+pi, y")ysnl ul, u 1 .
A A A

1, 2, and 3 are collective momentum-helicity indices
(x;,k&;,A.;), i 1,2, 3. ut, and vl are the light-cone spinors
of Ref. 1. The relativistic nonstatic spin wave functions
2'H are given in Table I. '2

With the valence-quark-dominance assumption, any
proton state ( lii) with momentum pN (p+,p, p~)iv

(p +p', (m'+p&)/p+, p&)N and helicity f is de-
scribed by

l,g X1X2X3
(4)

where pst3, , and dstl, , are the creation operators of the u and
d quarks, respectively, with momentum p;+ xip+,
pL; x;p&iv+k&;. We keep color implicit. Notice that
the state (4) is written in the so-called uds basis. '3 In the
uds basis one carries out only a part of the antisymmetri-
zation that would be required by the full S3 group; the
rest is insured by the anticommutation properties of the
quark operators. In particular, the wave function (3) is
symmetric under the exchange of the first two quarks, i.e.,
yI'(1, 2, 3) -llvI (2, 1,3).

Since distribution amplitudes p(x;, Q) [Eq. (1)l are the
L, 0 projection of the wave function (3), they are deter-
mined by the wave-function components with total quark
helicity + —,', viz. ,

2T(1,2, 3) v3(1, 3,2)+vl(2, 3, 1),
v3(1,2, 3) V(1,2, 3) —A (1,2,3),
v3'(1, 2, 3) V(1,2,3)+A(1,2,3),

(Sa)

(Sb)

(Sc)

where V~ [y(1,2, 3)+p(2, 1,3)]/2 and A [p(2, 1,3)—y(1,2,3))/2. Thus, in the L, 0 sector we are left with

only one independent wave-function-helicity component:
ta(1,2,3). Note, however, that the requirement does not
specify the (x;,k&;) permutation properties of the in-
dependent amplitude v3(1,2,3). Even if the momentum
wave function p (x;,k~;) is totally symmetric to an ex-
change of the individual momenta (x;,k~;), the nonstatic
spin wave function XN provides the asymmetric contribu-
tion: A(1,2,3).

After [dk~l integration' in (1), one obtains from the
model (3)

v(x 1»2 x3) iti IIa'+xlx2a3 xlx3a2 x2x3a1

A(xl, xz, x3) j"[(xz-xi)X3ml,
P

vi(xl, x2,X3) p Qa +xlx2a3

(6a)

(6b)

where 1, 2, and 3 are collective momentum variables
(x;,k&, ), i 1,2, 3. As shown in Ref. 7, the requirements
that the nucleon is the I & color-singlet representation
of three quarks leads to the following relations:

liit(1, 2, 3;f f ) ) —2T(1,2,3),
y t(1,2, 3;f l f ) -v (1,2,3),
I//1(1, 2, 3;) f f ) P'(1, 2,3),

X]X3(Q2 m) X2X3(0 1+m)

(6c)

TABLE II. Moments of distribution amplitudes V and p V —A obtained from the relativistic wave
function for a 660 and 725 MeV. They are compared with the moments of Ref. 2.

nl

0
1

0
0
2
0
1

0
1

0.41-0.46
0.41-0.46
0.19-0.09
0.20-0.24
0.20-0.24
0.05-0.00
0.14-0.16
0.07-0.05
0.07-0.05

Ref. 2

0.38-0.42
0.38-0.42
0.18-0.24
0.18-0.25
0.18-0.25
0.08-0.12
0.07-0.12
0.04-0.08
0.04-0.08

Model

0.52-0.64
0.30-0.27
0.19-0.09
0.28-0.37
0.13-0.12
0.05-0.00
0.14-0.16
0.10-0.11
0.03-0.01

Ref. 2

0.60-0.75
0.09-0.16
0.18-0.24
0.25-0.40
0.03-0.08
0.08-0.12
0.07-0.12
0.09-0.14

—0.03-0.03
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where p exp(gm; /x;), a; x;mtv+rn, rnN -tnN/ J6a,
m m/J6a. The distribution amplitudes we derived from
the relativistic quark model contain the common factor p
which comes from the Gaussian momentum function. If
the valence state has a broad transverse-momentum distri-
bution, i.e., tr» tn (the Brodsky-Huang-Lepage small-
valence-radius hypothesis ) then p is also broad and very
close to p„(x;) g, x;, i.e., to the asymptotic form of the
nucleon distribution amplitude. On the other hand, if
m &'a the p imitates the nonrelativistic distribution am-
plitude for which x; = 3, i.e., each quark carries an equal
fraction of the nucleon momentum. But this picture is
still modified by the presence of the square brackets in (6)
which come from the nonstatic spin wave function. We
find that for a = (660-725) MeV, the spin-wave-function
factor produces in the distribution amplitudes a complex
"bump-dip" structure similar to those reported in Refs.

2-4. To illustrate this we calculate moments of normal-
ized amplitudes V and p. The results are given in Table II
in comparison with those obtained from QCD sum rules
(Ref. 2).

The main purpose of this work was to check whether
the description of basic features of both pion and nucleon
distribution amplitudes could be unified in a single-wave-
function approach. We have found that the basic physics
behind the observed properties of the amplitudes as calcu-
lated from QCD sum rules is simple and can be under-
stood essentially with the basic concepts of the relativistic
quark model.
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