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Constraints from the Drell-Hearn-Gerasimov sum rule in chiral models of composite fermions
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We analyze a dispersion relation for spin-flip Compton amplitude in a chiral model of composite
quarks and leptons. We discuss the asymptotic behavior of the amplitude and show under what

conditions the Drell-Hearn-Gerasimov sum rule holds. Using a small-mass expansion we derive a
consistency condition that relates the photoproduction cross sections for different helicities. We
show that this condition suggests the existence of higher-spin excited fermions, as well as relations

among a priori independent photoproduction amplitudes.

I. INTRODUCTION

There is considerable interest in chiral theories where
anomalies associated with fiavor symmetries allow certain
composite fermions to be massless. In those models the
physical masses of the lightest composite fermions come
from small symmetry-breaking terms present in the fun-
damental Lagrangian. Perhaps a successful model of
composite quarks and leptons will be based on an unbro-
ken non-Abelian gauge theory, and if so it will be
confining at low energies. In this case, experience from
hadron physics suggests that an analysis based on disper-
sion techniques and symmetries may yield important in-
formation about the theory.

In this paper we study the Drell-Hearn-Gerasimov'
(DHG) sum rule for a chiral composite model. In the
chiral limit the sum rule places a nontrivial dynamical
constraint on the model which goes beyond the results of
a standard effectiv-Lagrangian analysis. For example, it
appears to require the existence of higher-spin fermions
in the spectrum of the excited states.

For definiteness, we adopt the strongly coupled stan-
dard models'3 (SCSM) but our results should apply to any
chiral composite model in which the DHG sum rule is
satisfied. The SCSM is a composite chiral model based
on the Lagrangian of the standard model of Glashow,
Salam, and Weinberg (GSW). In the SCSM, the physical
left-handed fermions, intermediate vector bosons, and
Higgs particles are composite and weak interactions cor-
respond to residual forces among composite particles.
The model has a long-distance behavior identical to the
GSW model but predicts completely different physics
(new resonances, higher-dimension interactions) at the
Fermi scale GF ' (Ref. 3). The new effects are usually
referred to as the "exotic sector" of the theory. In the
SCSM the photon couples to preon hypercharges with
the coupling constant e —the QED coupling constant.
The effects of electromagnetism can be studied perturba-
tively and we shall work in the lowest order in a.

In the subsequent sections we derive the DHG sum
rule for SCSM (allowing for parity violation). We discuss
the possible asymptotic behavior of the Compton scatter-
ing amplitude, which is crucial to the sum rule. Then we
analyze the DHG sum rule near the chiral limit. We
derive consistency conditions and study the constraints
they place on the phenomenology of the model. At the
end we conclude and discuss our results.

II. THE DHG SUM RULE

Consider a Compton scattering process on a composite
lepton to lowest order in electromagnetism. The most
general form of the CP-invariant forward-scattering am-
plitude in the laboratory frame (lepton at rest} is
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The helicity amplitudes A&, are related by the optical
theorem to total cross sections for the reaction y+l~
anything. From (2) one gets

where co is the photon energy, X, (XI } and e; (eI ) are ini-
tial (final) Pauli spinors and polarization vectors, and n is
a unit vector in the direction of the photon momentum.
Note that g1 ——g2 ——0 in hadron physics where one im-
poses parity conservation.

We designate the photon helicity by h (where h =+I)
and the projection of the lepton spin on n by s (where
s =+—,

' ). In obvious notation,
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where mt is the lepton mass, rc is the value of (g —2)/2
for the lepton, and a is the QED fine-structure constant.
To obtain the DHG sum rule we assume that fz(co) obeys
an unsubtracted dispersion relation:

The normalization of the spin-flip amplitude fr(co)/co at
co=0 was established by Low and Gell-Mann and Gold-
berger:

tex. [In other words, asM »
I rcrr I

means that A, »mrr .
Thus the exotic resonances must be very broad and
heavy, and it is not particularly advantageous to analyze
the sum rule (5) in terms of the higher-mass states. Also
it seems that the models of composite quarks, leptons,
and intermediate vector bosons become unnatural in the
limit A, »mrs (Ref. 3), and from now on we shall stick
with the A, & m rr case.]

III. DISPERSION RKI.ATIONS IN THE SCSM

In this section we briefly review the assumptions which
underlie the dispersion relation (4). The standard analyti-
city arguments (which we assume to hold) imply the va-

lidity of "fixed-t" dispersion relations:

Reft(co, t)= P2' oo d co

q
Imf q(co', t)

th N —N
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where we have used the fact that fz(co) is odd under
crossing. We postpone until Sec. III a discussion of the
crucial issue of whether fz(co) indeed obeys the unsub-
tracted dispersion relation.

Finally then, the DHG sum rule reads

aK 1 oo dcoP ho. .
2m 4a

(5)

[Note that hcr is 0(a). ]
We assume that our composite model mimics the stan-

dard model at low energies. To be precise, we assume
that the dimension &4 terms in the effective Lagrangian
for the lightest fermions and vector bosons coincide with
the GWS model. This was shown to be the case for the
SCSM under certain dynamical assumptions. Addition-
al contributions come from the "exotic" sector of the
theory, i.e., from the higher-dimension operators and
higher-mass intermediate states. Thus K may be decom-
posed into a piece identical to the standard model and a
piece that comes from the exotic sector, K=KsM+K„. If
the photoproduction amplitude is likewise decomposed
one is led to decompose bo. into a standard-model term
hcrsM, an exotic sector term hcrF (both positive), and an
interference term h~ between exotic and standard-model
amplitudes. Ao. E corresponds to the photoproduction
cross section calculated with amplitudes that contain
only the higher-dimension operators and/or the higher-
mass exotic states. 4z is the interference term between
the "exotic" and standard-model amplitudes.

With a =0, the leading contribution to KsM comes from
the 8' and Z and is numerically very small. If KsM

then
I ~i

I

&
I
~aE

I
»«~ reflects the com-

positeness of the lepton. ho. would then be dominated by
the photoproduction of excited states (very much like in
hadron physics) and it is convenient to analyze the sum
rule that way. If, on the other hand,

I
re+

I
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I
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»
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and rc„comes from the radiative
corrections due to the exchange of the virtual intermedi-
ate vector bosons, where one of the vertices comes from
the exotic sector and the other is the standard model ver-

i=0

with real A s and q dependence suppressed. For
forward scattering t =0, and unitarity implies Imf z

=(co/8rr)her. The convergence of the integral in (6) de-
pends on the behavior of b,a as co~ oo. Note that at high
c.m. energies, leptons polarized along n become right
handed and those polarized opposite to n become left
handed. As e~ oo we expect the right-handed and left-
handed cross sections in ho to cancel in pairs. For the
right-handed fundamental fermions, this follows from the
fact that to order a, only Born graphs contribute to ho.
In the case of the left-handed fermions her has to be cal-
culated to all orders in the confining dynamics. Never-
theless, as in hadron physics, we expect that the total
cross sections at high energies are dominated by
diffractive scattering. Thus the cross sections for the
scattering of +1 helicity photons on composite left-
handed leptons become equal as co~ 00. We see that

so the integral in (6) converges.
The presence of the real polynomial in (6) in general

may be required by the behavior of Ref&(co, t) as co~ ao.
If the Compton amplitude Reggeized it would mean that
Ap = A ] = ' ' = Az ——0. Unfortunately, fz(co, t) is cal-
culated to the lowest order in a and the usual arguments
based on t-channel partial-wave unitarity do not apply.
On the other hand, the sum rule (4) is equivalent to
A 0 =0, which we would like to assume.

There exists an argument for A p =0 in QCD and it ap-
pears that we may use it in the SCSM as well. Let us gen-
eralize the Compton amplitude to electroproduction pro-
cesses, i.e., give the virtual photon a mass q . We assume
that for some q &&GF both the gauge coupling con-
stant gsU[2] and the scalar quartic self-coupling A, are nu-
merically small [it is justifiable if A, (

I q I
-GF ') «1].

Then fr(co, q ) should scale, i.e., in the limit —q, co~ 00

(where x = —2comt /q =const) A; —( —q )
' '+ ', so the

A, (q ) are not polynomials, and must have singularities
at finite q . Now singularities in q correspond to physi-
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cal intermediate states that couple to photon. It follows
that the real fixed pole terms come from diagrams which
have propagators of composite particles attached to the
external photon lines. Those diagrams are related to the
diagrams that describe scattering and/or photoproduc-
tion of composite particles. In other words, the fixed pole
terms in (6) imply the existence of the fixed poles in the
amplitudes for the scattering and photoproduction of
composite particles. If scattering and photoproduction
amplitudes have standard Regge behavior (as in hadron
physics), then this forbids the existence of any real poly-
nomials in (6) and completes our argument about the va-

lidity of the dispersion relation.

IV. THE SMALL-MASS EXPANSION

We are studying a contribution to the anomalous mag-
netic moment that is of order 1 in a and comes from the
dynamics associated with the composite nature of the lep-
ton (including weak interactions which are the long-
distance effects of this dynamics). In any chiral compos-
ite model the right-handed lepton decouples from the
composite left-handed lepton in the limit m&~0 and the
anomalous magnetic moment defined by

1 eK—
IL o„g"'1R +H. c.

2 2m

must be 0 (m& ) for small m, . Thus we defi~e
K =am& /A„where a is of order 1 in u and m&, and A, is
the dynamical mass scale of the composite system. For
example, a radiative contribution due to the exchange of
the virtual 8'bosons in the standard model gives

2 2
g8'ff Ac 10

Qp =
8m. m ~

where m~ is the mass of 8' and gruff- is the effective W-

fermion-antifermion coupling constant. Let us now sub-
stitute K into the DHG sum rule and change the variable
of integration to the c.m. energy squared. The DHG
sum rule becomes now

without the right-handed fields, i.e., to a pure composite
theory. Note that Eq. (9) states that there should be a
strict balance between the photoproduction of states with
helicity —,

' and states with helicity ——,
' (with corrections of

the order m& /A &&1). As a consequence, in the chiral
composite model the experimental limits on the "compos-
ite" anomalous magnetic moment do not seriously con-
strain the photoproduction amplitudes. The leading
terms that are —1 in m& /A, cancel off in Eq. (8), and it is
necessary to calculate the first "nontrivial" terms
0 (m& /A, ) to establish the value of a (and «). For a com-
parison, in a nonchiral composite model « =brn&/A, and
the sum rule reads

ob f~ ds+ (10)
C

for m& &&A, . In these models, even present limits on K

require very large values of A, (e.g. , for b =1,
A, & 11800 TeV), and, via Eq. (10) great suppression of
photoproduction amplitudes. In a chiral model, for
a =1, present data on (g —2) only require A, & 1.08 TeV
and, via Eq. (8), do not severely constrain photoproduc-
tion of exotic states.

Since it is natural to expect that the DHG sum rule
holds for the standard model, we have separate relation-
ships:

f ~~SM f (~~E+ I) &

where dl, cps}g——lim {)EcrsM, ho g ——lim oho. g, andm) —+ m&~

hz ——lim p ky ~ Equation (11)constrains the exotic sec-

tor contribution to the photoproduction cross section.
To analyze Eq. (11) we assume b,cru»Zr and that it is
saturated by a single spin- —', excited state. We can intro-
duce two amplitudes for the reaction p3/2~@+@ in
terms of two effective couplings:

P ~y "QL P„+H. c. (12)

and

aa m&
2 2

Ao. .
2A ~~ th 5 —mC

(8)

eK2

, y ~'y, a.V„„+H.c. ,M 3/2
(13)

Recall that in the SCSM the masses of the lightest fer-
mions come from the chiral-syrnrnetry-violating terms
whose numerical coefficients are of the order P=m/A,
&& 1. It follows that the physical observables are expand-
able in powers of P; in particular relationship (8) must
hold to each order of the expansion. This gives a set of
consistency conditions which the chiral composite model
must obey. Since ho. starts at —1, in the lowest order we
get

(9)

where ho. = lim Oho.
1

Again the contribution of the right-handed leptons
cancels off and the sum rule (9) applies to the SCSM

where Q is a Rarita-Schwinger field creating )u3/2 QL is a
Weyl field creating pL, and M3/2 is the mass of p3/2 We
can calculate the cross sections in (11) using (12) and (13)
in the limit when the width of p3/2 is much smaller than
its mass. Then the DHG sum rule tells us that

2 4 2K)= 3K2 .

On the other hand, it is obvious that a single spin- —, ex-
cited state cannot saturate Eq. (11). It follows from the
fact that a spin- —, particle cannot be produced with helici-

ty —'„and ho.z &0 over the whole kinematic region. We
are forced to conclude that there must exist resonances of
spin )—, which are the orbital excitations of the lightest
particles and whose masses and/or couplings are of the
same order as masses and/or couplings of the radial
spin- —,

' excitations. Note that without the sum rule (11)
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eK(/2
Xa""t/iL P„„+H. c. (14)

Here X is a Dirac field creating p*, /2 and M &/2 is the mass
of p~&2. A constraint due to (14) in the narrow-width ap-
proximation is

M
2 4 2 2 3/2

K) = 3K2+ 8K)/2 2M &/2

(15)

If one assumes that KE, KM2 K, y2 then Eq. (15) requires
that the mass M, /2 must be a couple of times bigger than
the mass M3/2.

Note that a proper interpretation of the results such as
(15) can be obtained only in terms of models which de-
scribe the dynamics of bound states. Remember that an
important test of the SU(6)O(3) model of hadrons was
to check its predictions for various photoproduction
rates. Similarly for the SCSM there should exist an
effective description of the composite particles whose
symmetries and dynamics guarantee relations such as
(15).

(in other words, in a composite model that is not chiral) it
would be possible to assume that only spin- —,

' resonances
contribute to the DHG sum rule. [After all b,oE &0 of
the order 1 means K~ & 0 of the order 0 (ml /A, ) and this
is not prohibited in a nonchiral composite model. ]

Let us study now what happens if the sum rule (11) is
saturated by one spin- —,

' and one spin- —,
' state. There is

only one helicity amplitude for the transition p &/2~p+ y
and again w™write it in terms of an effective coupling:

V. CONCLUSIONS

In this paper we have analyzed the DHG sum rule for
the spin-Hip Compton amplitude in the chiral composite
model. We have shown that one can obtain an unsub-
tracted dispersion relation provided the model has
diffractive high-energy behavior, scales in some high-q
region and the scattering and photoproduction ampli-
tudes for the pairs of composite particles Reggeize
without fixed poles. We have analyzed the exotic sector
contribution to the DHG sum rule in terms of the excited
states. Our discussion applies for the nearby composite-
ness, i.e., when A, is not orders of magnitude bigger than
m~. As we show, in this case the DHG sum rule re-
quires the existence of the higher-spin excited states. Of
course exotic contributions to the anomalous magnetic
moment must be comparable to or exceed the weak-
interaction contribution if nearby compositeness is
correct. These facts suggest that nearby compositeness
will soon be tested experimentally. For example, in the
high-energy collider experiments, one will be able to
search for the higher-spin, higher-mass excited states.
On the other hand, high-accuracy magnetic moment
measurements will look for the weak-interaction contri-
bution to a and will check if those are consistent with the
standard model.
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