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Recently we used Dirac s constraint mechanics and supersymmetries to derive two coupled com-

patible 16-component Dirac equations that govern two relativistic spinning particles interacting
through world scalar and vector potentials. They reduce exactly to four decoupled four-component
local Schrodinger-like equations with energy-dependent quasipotentials 4 . Their nonperturbative
covariant structure [leading to perturbative and 0 ( 1 /c2) expansions that agree with field-theoretic

approaches] suit these equations ideally for phenomenological applications in which the potentials
have some links with relativistic field theories. (These equations are exactly solvable for singlet po-
sitronium producing a spectrum correct through order a .) Here we use our equations to extend the
validity of various one- or two-parameter models for the heavy-quark static potential to the relativ-
istic light-quark regime. These models include the leading-log model (for all length scales) of Adler
and Piran and Richardson's potential modified by flavor-dependent vacuum corrections. They
significantly improve the good results that we obtained using Richardson's potential alone. Both
nonperturbative and perturbative properties of the constraint approach are responsible for the
spin-dependent consequences of the potential that result in a good overall fit to the meson masses.
The nonperturbative structure dictated by the compatibility of our two Dirac equations enforces an

approximate chiral symmetry that may account for the goodness of our pion fit. Perturbatively, for
weak potentials, the upper-upper components of our equations reduce to the appropriate Todorov
equation and then for low velocities to the Breit Hamiltonian. Thus, our approach reproduces the
semirelativistic spin-dependent consequences of a quantum field theory. We strengthen this connec-
tion by deriving the Todorov inhomogeneous quasipotential equation for 4 from the Bethe-
Salpeter equation using an operator generalization of Sazdjian s quantum-mechanical transform of
the Bethe-Salpeter equation. Consequently our covariant compatible coupled Dirac equations pro-
vide a nonperturbative framework for extrapolating O(1/c2) field-theoretic results into the highly
relativistic regime of bound light quarks.

I. INTRODUCTION

In this paper we apply two-body Dirac equations, ' to
systems of spinning quarks in mesons. First we review
the equations (derived in a previous paper) beginning
with the two compatible 16-component Dirac equations.
We introduce covariant scalar and vector interactions
(timelike and spacelike) and detail the spin dependence
forced by the compatibility of our equations on these
different covariant structures. We set out relations (im-

plied by compatibility) of the various covariant interac-
tions to an underlying set of three independent invariant
interaction functions. As we showed in an earlier paper,
these relations are generated by nonperturbative compati-
bility arguments in concert with the requirement that our
equations display the correct nonrelativistic and 0 ( 1/c )

or semirelativistic limits. We end that section by restat-
ing our equations as four decoupled four-component
Schrodinger-type forms suitable for applications.

In Sec. II we present the potential models that we test-
ed using our equations. They include the log-log model
for all length scales derived by Adler and Piran using
effective-action methods as well as cruder phenomenolog-

ical models such as Richardson's potential (here given
both with and without Aavor-dependent vacuum correc-
tions ). We find that, in our equations, the more physi-
cally detailed models lead to significant improvement of
the good spectral results provided by the simpler relativ-
istic Richardson model that we treated in Ref. 1. We
finish this section by plotting the effective relativistic po-
tentials seen by quarks in selected mesons so that the
reader may compare them with each other and especially
with the (quite difFerent) corresponding nonrelativistic
potentials.

In the remaining sections of the paper we present both
nohperturbative and perturbative arguments to support
the validity of our equations and to explore structures
that contribute to the goodness of the resulting fits to the
meson spectrum (beyond the particular choice of an input
heavy-quark potential).

An important feature of our equations is that they ap-
pear to be able to realize the effects of chiral symmetry.
In Sec. IV we present the results of a numerical test that
indicates that in the chiral-symmetry limit (zero-mass
quarks) our equations reveal zero-mass pions (Goldstone
bosons). Building on recent work of Sazdjian, we show
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how our equations achieve this effect (at least for scalar
interactions ).

In Sec. V we show how our equations are related to the
semirelativistic (weak-potential, slow-motion) Fermi-
Breit approximation to the Bethe-Salpeter equation and
to the Breit equation itself. These equations possess the
correct semirelativistic limits as a consequence of the
structure of classical and quantum relativistic constraint
mechanics detailed in a previous paper. We then check
that for equal-mass singlet positroniumlike systems the
quasipotential reduces to a form that allows an exact
solution. These connections to perturbative field theory
argue for the validity of the relativistic quantum wave
equations derived from the constraint approach and
make them attractive for phenomenological application
even though their connection to field theory is not as yet
completely understood.

Why do we concentrate so heavily on verifying that
our equations have the correct structure for electro-
dynamic calculations when we intend to apply them to
quark-model calculations? What we learn from such
studies is that the relativistic kinematical, dynamical, and
spin structures of our equations allow us to start with a
static form of a potential valid in the nonrelativistic limit,
and with no additional assumptions derive standard rela-
tivistic corrections to the total energy operator. This
makes it plausible that our equations might accurately
refiect the (hyper)fine structure of QCD with an appropri-
ate heavy-quark static potential as input.

In the final section of this paper we derive the Todorov
inhomogeneous quasipotential corresponding to the con-
straint potential 4 of our equations, thereby linking our
approach to quantum field theory via the Bethe-Salpeter
equation.

II. COVARIANT CONSTRAINT EQUATIONS
FOR TWO SPIN-2 PARTICLES

g&(('=ysi(yi'(pi A i)+mi+Si)/=0

~2k y52(3 2 (P2 ~2)+m2+ 2)0

(la)

(lb)

The particular spin dependences in the potentials are the
consequences of supersymmetries of the corresponding
(pseudo)classical system. In detail we find, for the vector
potentials,

We begin by setting out the covariant forms of our
two-body Dirac equations containing simultaneous elec-
tromagneticlike vector, timelike vector, and scalar in-
teractions together with their four decoupled four-
component forms (in the c.m. rest frame). (The covariant
spin-dependent forms appearing in them are nonpertur-
bative features of the constraint approach enforced by the
requirement that these equations be compatible. } For
two relativistic spin- —, particles interacting through a sys-
tern of world scalar and vector potentials the compatible
16-component (or 4X4 matrix) Dirac equations take the
form

G BE)
(e, E—) —i —

y2 +BlnG y2 P P
2 E2

l+(1—G)p ——BG y2y2,2
(2a)

A2 —— (e2 —E2)+i y—. G
2

BE2
+B lnG y &P P

1

1—(1—G)p+ —BG y, yt,2
(2b)

and, for the scalar potentials,

S) ——M) —m) ——Gy2
2

BM,
S2 ™2 + 2Gy M 1

(3a)

(3b)

In Eqs. (2a), (2b), (3a), and (3b) the variable P =p, +p is
the total momentum, —P =m is the c.m. energy
squared, and P=P/w. The variables e; are the (con-
served) c.m. energies of the constituent particles given by

e, =(w'+ m f —m 2 )/2w,

E2 (w +m 2 1
)/2w

(4)

E, (A, V)=G ((e, —A) —2e V+V },
E2(A, V)=G ((e2 A) 2e V+—V —),
G = 1

1 —2A /m

(Sa)

(5b)

(5c)

The mass potentials M &,M2 are parametrized not only in
terms of an underlying world scalar potential S but also
in terms of A, the invariant function responsible for the
electromagneticlike vector potential. The simplest
choice' for these potentials consistent with the correct
nonrelativistic and semirelativistic limits is

Mf(A, S)=m &+G (2m S+S2),
M2(A, S)=m2+G (2m S+S ) .

(6a)

(6b)

The kinematical variables m =m
&
m 2/m and

E =(w —m, —m 2 )/2w are the relativistic reduced mass
and energy of a fictitious particle of relative motion. The

In terms of these energies the usual relative momentum
becomes p =(e2p, —@~2)/w. In order that Eqs. (la) and
(lb) be compatible it is necessary that the functions E~,
E2, G, M, , and M2 depend on the relative separation,
x =x

&

—xz, only through the coordinate four-vector
x2„=(g""+P"P")x, transverse to the total four-
momentum P. It is also necessary that E&, E2, and 6 be
related to each other as functions of two scalar functions,
say A(x2) and V(x2) corresponding to the fact that the
two vector potentials each have separate timelike and
electromagneticlike parts (which contain both timelike
and spacelike pieces). The relations to A and V are not
unique, but the simplest choice (that guarantees the
correct nonrelativistic and semirelativistic limits) is
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corresponding value of the on-shell relative momentum
squared then takes the form

b (w)=[w —2w (m f+mz)+(m, —mz) ]/4w

Equations (la) and (lb) can be reduced with no approx-
imation to four decoupled (with diagonal y; ) four com-
ponent Schrodinger-type equations. For convenience we
decompose the 16-component f into four V„z by writing

= 2 2=
&tt)

—mt')

in terms of the c.m. energy of the two-body system w.

g= QX,Xz '0,
where

(7)

I
&=+++

O
1

One finds'
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where

ks, =2m~S +S'+2m~ V V—'+2~~A —A',

@ss———V ln(X&XzG
' ' )/2+[Vln(X~XzG ' ' )] /4+(VlnG) (3+cr& oz)/18,

@so———(8 lnX&/BrL cr, +8 lnXz/Br L crz)/r,

4T —-Sr[ (rc} ln—G/Br —8 InG Ir}r)lr +V lnG V ln(X&Xz)]/6,

@Do——(At —8) l4 —
I ezo, V[oz(At —'8)]lw +e,az V[o

~
(At 4'.)]/w——cr, crzV lnG (At —8)

cr, —V ln(X, )crz (At —0)—oz V 1n(Xz)cr, (At —8) I( —)'(4S,—b )/(2Xgz),

(8)

with

X, =(E,y', +M, )/G,

At =V(M i +Mz )/4M, Mz,

@=V(E]+Ez )/4E/Ezy /yz .

This Pauli form is the two-body analog of the standard
Dirac equation reduced to two coupled two-component
equations in which the characteristic form

y (e—V) —m —S appears in denominators of its L S and
Darwin terms. That potential energy and e-dependent
denominator structure enters our equations through the
X forms. In spite of its formidable appearance, the gen-
eralized two-body Pauli equation (8) is as easy to work
with as the nonrelativistic Schrodinger equation because
of its simple momentum dependence and decoupling.

III. APPLICATIONS TO MESON SPECTROSCOPY

In Ref. 1 we tested the effect of the exactly covariant
nonperturbative structure in our equation on relativistic
quark-antiquark interactions. %e found it plausible that
our equation might accurately reflect the (hyper) fine
structure of @CD with an appropriate heavy-quark static
potential as input since the correct Breit structure for
QED is generated by the static Coulomb potential alone
[see Eq. (47)]. We will extend that investigation here to
use these relativistic wave equations to test the range of
validity of selected one- or two-parameter models for the
heavy-quark static potential.

Richardson's model for the static interquark potential

V(q)-1/q ln(1+q /A )

interpolates in a simple way between asymptotic freedom
[V(q )-1/q ln(q /A )] and linear confinement

[V(q )-A iq ]. This interpolation is not tied at all in
the intermediate region and only roughly tied in the
large-r region to any field-theoretic data. Nevertheless it
provides a convenient one-parameter form for the static
quark potential:

V (
~
r

~
) = Sn A r /27 Snf ( A—r ) /27r,

where
—xt

f(r)=1 4—
[ln(x ' —1)]'+n'

For r~0, f (Ar)~ —1/lnAr, while for r ~ ao,

f(Ar)~1. In order to extend this model relativistically,
we replace r by its covariant generalization (so that we

have compatible constraints) (r =Qx f ) and assign the
Coulomb-type part to an electromagneticlike vector in-
teraction while fixing the confining part to be half scalar
and half timelike four-vector. That is, 5 =V=SmA r/54
while A = —Smf( Ar) /27r The separa. tion of the
confining part into one-half scalar and one-half timelike
four-vector is admittedly ad hoc. [If one assumes howev-
er, that the confining part is pure scalar, then the L S
multiplets for the light mesons become partially inverted
M ( Pz ) & M ( P, ). ] This assumption, although not
unique, leads to a cancellation of spin-orbit effects at long
range, and consequently prevents partial multiplet inver-
sions for the lighter rnesons. As we did in Ref. 1 we per-



TWO-BODY DIRAC EQUATIONS FOR MESON SPECTROSCOPY 1985

form numerical calculations of the qq bound states using
(8). To solve for the eigenvalue b (w) we use an iterative
technique since the N's depend on m. To display the re-
sults we use a spectroscopic notation that describes the
quantum numbers associated with the upper-upper
decoupled four-component Schrodinger-type equation.
In this investigation we use a more systematic fitting pro-
cedure than the one we employed in Ref. 1. We vary the
single potential parameter A together with the b, c, s, and
u quark masses in order to give the best 7 fit to the 53
mesons listed in Table I which have well-known experi-
mental values and uncertainties. We leave out of the fit
the g, g', and other mesons whose spectral properties re-
quire annihilation contributions. We also leave out the a,
5, and S*, Po-like mesons whose quark status is ambigu-
ous. The definition of X that we use is

aR(P ') =
27 ln(F /A )

For static solutions this leads to the field equation

V EE=4nQ(. 5 (x x—, }—5 (x—xz))

with the field-dependent permittivity

@=9/16m ln(
~

E/A
~

), Q =&4/3 .

(12)

(13)

Adler and Piran solved this equation through combined
analytic and numerical techniques and integrated the re-
sulting energy density to obtain the static quark potential

V„„;,(x, —x2)= f d'x E'(x, x„xz)/8n. . (14)

This potential includes subdominant long-range parts in
addition to the linear potential, i.e.,

exPt w th }2

pj'((gw t' Pt )&+ ( gw th)2 }
(10) V =aQr+2/3Q (16m/9)' K lllK r+0(1),

(15)

where N =number of mesons fit —number of parameters
and iL}; and hm; correspond to the meson masses and
their uncertainties. For hw " we use the numerical un-
certainties in our calculations. This best fit to the overall
meson spectrum gives, in units of GeV, A =0.420,
mb ——4.912, m, =1.561, m, =0.407, and m„=0.143. As
we showed in Ref. 10, Richardson's potential, used with
the nonrelativistic Schrodinger equation, is unable to give
any fit at all to the light mesons. In contrast, as can be
seen from Table I [the first theory column (RP) (units are
GeV}], our exactly relativistic scheme gives a reasonable
fit to most of the meson spectrum with just one potential
parameter, its worst results being the m-p splitting and
the masses of some of the higher I light mesons. This rel-
ativistic model yields a m-p splitting of 476-178 MeV
below the measured value of 634 MeV. The E-I{ ' split-
ting is 75 MeV below the 397-MeV value. The D-D'
splitting is very close to the 142-MeV measured value al-
though the absolute scale is about 100 MeV ofF. The F-
F' splitting agrees with experiment just as well while its
absolute scale is in much better agreement with the mea-
sured value than is that of the D. The m-m' and p-p' split-
tings are in reasonable agreement with the observed
values. (The exact covariance of our wave equations is
designed to handle the highly relativistic motion exhibit-
ed by these systems. ) The f rl, splitting is-just 3 MeV o{f.

The most important defect of Richardson's model is
that the intermediate region of its potential is not tied to
any field-theoretic data. Hence, we now apply our rela-
tivistic treatment to two potentials that correct this
deficiency. The first is based on nonperturbative solu-
tions to an e8'ective field theory derived by Adler. Adler
makes a series of approximations to the field theory of
QCD that lead to an eff'ective classical Lagrange function
which governs the dynamics of a number-valued quasi-
Abelian field (depending only on A ~& and A g ):

V =A( U(Ar)+ Uo } (16)

depending on two parameters A and Uo. Their nonper-
turbative solution is divided into four regions, giving
U(x) for 0&x &0.0125, 0.0125 &x &0. 125, 0. 125
(x &2, 2 (x. For 0 &x &0.0125,

U(x)= —(16m/27)(l+aix ')f (w )/w, (17)

where wp
——1/(2. 52x) and f (w) is the function defined

by w =f (lnf +gin lnf } with /=2(51 —19nI/3)/
(11—2n&/3) = ~» for n& ——3. The large-w behavior of f
demonstrates explicitly the asymptotic-freedom behavior.
For 0.0125 &x & 0. 125 the fit to U(x ) is given by

U(x) =K +a(x /0. 125)

where

E =P+y ln(1/x)+5{in(1/x)) +a{in(1/x))

and, for 0. 125 &x (2,
U(x) = K'+a' lnx +p'(lnx)2+y'(lnx)i

+~'(1nx) +e'(1nx)' .

(18)

(19)

(20)

The final part (x )2) combines the derived confining and
subdominant long-range parts:

along with a small-r behavior appropriate for the log
model. Unlike Richardson s potential, its interpolation
between the r extremes is not a guess but is based on the
solution to an efFective field theory. The Adler-Piran
model makes its significant approximations at the level of
the field equation rather than to its solutions. The static
potential that we actually use is extrapolated from their
leading log-log model. Its static form is

U(x)=K"+Qf (0)x+y" lnx +a"/x i~2+ @"/x . (21)

where for the leading-log model
The values for the numerical coefficients a, through p"
that apply for the leading log-log model can be found in
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TABLE I. The meson mass fits given here are produced by the covariant, nonperturbative generali-
zations via the constraint equation (8) of static potentials of Richardson (RP), Adler-Piran (APP), and
vacuum-modified Richardson (RVP). The RP and RVP potentials are one-parameter potentials. The
APP potential is a two-parameter potential.

Name

Y bb1'S,
Y bb2 S)
Y:bb 3'S,
Y bb4 S)
Y:bb5 S)
Y:bb6 S&

Y:bb 1 Pp
Y:bb1'P,
Y:bb 1'P2
Y:bb2 Pp
Y:bb2 P&

Y:bb2 P&

P:cc1'S,
1(:cc2'S,
P:cc3'S,
gp'. cc 1 Pp
X&.cc1'P,
72.cc 1'P2
P:cc1'D

~

g:cc2'D,
P:cc3'D,

:CC 1 Sp
'g&:cc2 Sp
B*:bu1 S1
B:bu 1'Sp
D*:cu 1 S~
D*:cu 1 P&

D:cu 1'Sp
Ds*.cs1 S1
D, :cs1'Sp

P:ss 1'S,
P:ss2'S,
f i ss1'P, .

fz.ss 1'P2
Q:ss 1'D,
f4.ss 1 F4
K* su1 S
K:su 1 P]
Kz .su1 P2
K2.su 1'D2
K* su 1'D3
K4 .su1 F4
K:su 1'Sp
Ki.su 1'Pi
p:uu1 S]
p:uu2 Sl
a, :uu 1'P&

a 2-.uu 1'P2

p3.uu 1 D3
m:uu 1'Sp
77:uu 2 Sp
b

&

..uu 1'Pi
m.2..uu 1'D2

Expt.

9.460
10.023
10.356
10.577
10.865
11.019
9.860
9.892
9.913

10.235
10.255
10.271
3.097
3.686
4.030
3.415
3.511
3.556
3.770
4.159
4.415
2.981
3.594
5.352
5.271
2.007
2.420
1.865
2.110
1.971
1.020
1.685
1.422
1.525
1.853
2.026
0.892
1.406
1.426
1.770
1.780
2.060
0.494
1.270
0.770
1 ~ 590
1.275
1.318
1.691
0.135
1.300
1.235
1.680

RP

9.469
10.021
10.369
10.647
10.891
11.112
9.849
9.887
9.915

10.234
10.258
10.278
3.114
3.685
4.126
3.400
3.490
3.547
3.793
4.198
4.559
2.996
3.614
5.229
5.169
1.918
2.322
1.770
2.119
1.981
1.063
1.831
1.499
1.630
2.069
2.436
0.839
1.336
1.479
1.875
1.948
2.332
0.485
1.347
0.629
1.606
1.222
1.367
1.860
0.143
1.363
1.195
1.774

APP

9.464
10.026
10.368
10.634
10.860
11.060
9.853
9.887
9.909

10.235
10.259
10.275
3 ~ 116
3.684
4.102
3.418
3.492
3.535
3.792
4.171
4.501
3.023
3.625
5.321
5.287
1.996
2.377
1.903
2.071
1.975
0.975
1.793
1.430
1.554
1.981
2.334
0.911
1.387
1.512
1.911
1.947
2.304
0.504
1.371
0.889
1.746
1.372
1.495
1.927
0.133
1.622
1.318
1.867

RVP

9.485
10.022
10.343
10.596
10.815
11.012
9.863
9.903
9.930

10.218
10.246
10.265
3.135
3.670
4.071
3.404
3.494
3.547
3.777
4.141
4.466
3.000
3.592
5.270
5.211
1.962
2.332
1.812
2.122
1.975
1.055
1.782
1.468
1.596
2.003
2.341
0.885
1.341
1.479
1.841
1.907
2.257
0.480
1.353
0.745
1.606
1.256
1.394
1.838
0.140
1.355
1.236
1.761

Ref. 3. As was the case with Richardson's potential, the
covariant generalization of the Adler-Piran potential
beyond the replacement

~

r
~

~Qx~~ is not unique. We
choose, for all regions,

S =V= ,'A( f(O)gAr+) "»A-»

+a"l&Ar +IC"+ Uo) (22)
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and

A(r) = V(r) S——V . (23)

Note that with this choice of A, its large-r behavior is
—1/r as is that of Richardson's potential. We make
slight modifications in the potential in order to match
V(r) between various regions in such a way that its first
and second derivatives are continuous so that the various
relativistic spin and Darwin corrections will be well
behaved. This relativistic extension yields the results that
appear in the second theory column (APP) of Table I.
Comparison of the results generated by this potential
with those generated by Richardson's shows an improve-
ment in most all sectors of the meson spectrum except
the high-mass uu mesons, for which this potential gives
mass predictions that are too large. For the heavy Y sys-
tem and P system this potential produces clear improve-
ments particularly in the L S splittings. The spin split-
tings produced by this potential are smaller for the f-ri„
D-D', F-F but larger for the K-K' and P-p systems
than are those generated by Richardson's potential. The
accompanying +2 value for this potential was about 980
compared to 1710 for the Richardson potential. In units
of GeV, the best fit parameters were A =0.224,
AUD=0. 410, mb ——4.911, m, =1.535, m, =0.227,
m„=0.0924. Of the 53 mesons the five that contribute
the bulk of the X value are the P, g, K', K, and X2
mesons of magnitude 434, 70, 67, 62, and 61, respectively.
This compares with the top five generated by the
Richardson potential of the K', P, D, m., and t/i of 597,
387, 242, 71, and 57, respectively.

The third model that we consider is a modification of
Richardson's potential based on the technique of
Lichtenberg, Namgung, and Wills for including flavor-
dependent vacuum effects. One carries out this
modification by substituting rr/27~sr/(33 —2nf(r)} in

V, A, and S with nf(r) modeled as nf(r)
=X exp( —2mf r }. However, the connection of this po-
tential to an effective field theory although closer than
Richardson's (which assumes nf ——3) is not as systematic
as that of Adler and Piran. Such a vacuum modification
cannot be made so simply to the Adler-Piran potential.
Since no extra variable parameters are introduced by the
substitution, this third model still has just one potential
parameter. This model produces a fit that is about as
good as that produced by the Adler-Piran model (see the
third theory column) being better for the lighter mesons
and slightly inferior for the heavier ones. For the heavier
mesons it is also slightly inferior to the fit produced by
Richardson's potential without the vacuum correction.
For example, the f ri, splitting is 10-MeV off the mea-
sured value versus 3 MeV off for Richardson's potential.
The F-F splitting is improved, and the D-D splitting
about the same. The E-E splitting is significantly im-
proved being only 1 MeV off. The m-p splitting is also
significantly improved being only 38 MeV off the ob-
served m.-p splitting. The accompanying P value was
about 1060, significantly better than that for
Richardson's potential and about the same as that for the
Adler-Piran potential. The best fit values for the parame-
ters were A=0.430, mb ——4.904, m, =1.550, m, =0.361,

and m„=0.134, with units in GeV. The five mesons that
contribute to the bulk of this value are g, P,K, P', D of
amounts of 276, 251, 114, 87, and 75, respectively. Note
that in our wave equation, both the more physically de-
tailed Adler-Piran model and the vacuum modification of
Richardson's potential lead to an improved spectrum.

Based on the respective 7 values of 1710, 960, and
1060 of our three models there is obviously plenty of
room for theoretical and phenomenological improve-
ments in the potential. However, it would be naive to ig-
nore the (possibly complex) effects on the decay channels
on the potentials and mass eigenvalues. In lieu of a sys-
tematic treatment of this effect we can get perhaps a
more realistic estimate of 7 by including the decay
widths as the main contribution to the theoretical error
that comes from leaving out the effects of the decay chan-
nel on the bound-state eigenvalues. When we carry this
out then all three 7 drop in value. The Richardson po-
tential which was the worst of the three for the light
mesons involving at least one light quark improves sub-
stantially in acceptability since those mesons have the
largest widths. Its g drops from 1710 to 696 in a new fit
in which we choose hw "=max(I', , hw;"" ). The five
mesons contributing to the bulk of the 7 values are the
D, P, P, X2, and Y of 218, 128, 120, 39, and 25, respec-
tively. Note that the K' and P mesons drop from the list
and the X2 and the f are added. The E' drops from the
list because its width makes the (slightly) worse fit less
significant. For the same reason the X2 and Y are added.
The ~ drops out because a better fit can be obtained by
varying m„at the expense of the heavier large-width
light-quark mesons. For the Adler-Piran model this new
fit produces a P which drops substantially from 960 to
353 again due in greatest part to a lessening impact of the
contribution of the heavier (large-width) light-quark
mesons. The five mesons that contribute to the bulk of
the X are the f X2, D, Y, and P of amounts 129, 59, 56,
49, and 38, respectively. Note the drastic drop of the P
from 434 to 38 and the dropping of the E' and E from
the list. The E' drops from the list because its poor fit
becomes less important whereas the E drops from the list
because it can be fitted much better at the expense of the
higher width mesons containing an s quark. Finally, the
modified Richardson model has its 7 dropping from
1060 just to 922 with a new fit. This relatively small drop
is due to the fact that its original fit to the light-quark
mesons was very good and hence it did not benefit very
much from inclusion of the widths as the theoretical er-
ror. With only a slight change in order the P, g, K, f',
and D mesons still contribute the bulk of the g with
values of 262, 232, 117, 107, and 80, respectively.

This method for incorporating uncertainties due to our
ignoring the decay channels is admittedly crude. Howev-
er, all of the fits still have 7 well above 1 so that there is
still substantial room for improvement in the potential
(both theoretically and phenomenologically). Note that
the m-p splitting remains unchanged for this modified 7
fit to the vacpum-modified Richardson potential at about
605 MeV. For the other two potentials it is not as stable.
For the unmodified Richardson potential it drops 15
MeV to 471 MeV while for the Adler-Piran potential it
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rises from 756 to 825 MeV.
With this modified fit it is still noteworthy that in our

wave equation, the physically detailed Adler-Piran model
leads to an improved fit over that given by the Richard-
son potential. This is evidence that our relativistic wave
equations are able to accurately capture the features of a
physically realistic model even in nonperturbative cir-
cumstances.

If this is so, we should examine the sensitivity of our
equations to the dynamical structure of the nonrelativis-
tic heavy-quark potential that leads to our relativistic
one. The potential of Eichten and Feinberg" (EF),

V =kr —a, lr, (24)

has given excellent results when used nonrelativistically
to fit the heavy-meson spectrum. If we split it into
S =V =kr l2 and A = —a, /r we too can use it to obtain
an excellent fit to the heavy mesons. However, unlike the
three models described above, it generates very poor fits
to the light mesons with a single set of parameters for
both light and heavy mesons. For example, its K —K'
splitting is -600 MeV instead of -400 MeV and its m.-p
splitting is about 1000 MeV. The main structural
difference between the EF potential on the one hand and
Richardson's and the Adler-Piran potential on the other
is that the EF potential does not have asymptotic free-
dom forms built into its short-range part. Apparently
this feature plays a crucial role in generating good fits for
the light mesons even though it is a very short-range
effect which one might think should effect only the
heavier mesons. Presumably, the improper short-range
behavior of the EF potential distorts the parameter
values needed for a good fit to the heavy mesons so much
that they cannot yield reasonable results for the lighter
ones. The more physically detailed Richardson (modified
and unmodified) and Adler-Piran potentials "take the
pressure oF' the parameters to make the heavy-meson
fits thereby enabling good fits to the light mesons.

In Table II we list the masses of meson states that are
as yet unobserved that each model predicts (using the pa-
rameters for each obtained from our fits to 53 observed
mesons). Note that in calculating both our meson fits
and predictions we have neglected the effects of the off-
diagonal tensor terms (which mix different orbital states)
and the off-diagonal L (s, —s2 ) terms (which mix
different spin states). In a future work we will include the
effects of these terms.

As a final digression on the relativistic dynamical
structure contained in our equations, we display a set of
plots that show how drastically different the behavior of
our quasipotential 4 is from that of its nonrelativistic
limit (2p(A+V+S)), particularly at short distances
where the repulsive spin-spin potential present in the 5&
states dominates. Figures 1 —4 show this difference for
the Y(9.460), P(3.097), P(1.020), and p(0. 770) mesons
in terms of potentials generated by the Adler-Piran po-
tential. Comparing these plots we also see the important
c.m. energy (w) dependence of 4 (the nonralativistic limit
is w independent). Notice that at large separation the po-
tential experienced by the quarks in the Y meson virtual-
ly coincides with the nonrelativistic potential. As the

Name

bb7 Sl
bb1'D,
bbl D2
bb1 D3
bb1'Sp
bb2'Sp
bb1 P',

bb2'Pi
bb1'D2
bb2'D2
cc4'Si
CC1'D2
cc2'D2
cc1 D3
cc2 D3
cc1'Pi
cc2'Pi
cc1'D2
cc2'D2
b@2 Si
bu1 Pp
bu 1 Pi
bu 1'P2
bu1 Di
bu 1'D2
bu1 D3
bu2 Sp
bu1 Pi
bu2'P,
bu1'D2
bu 2'D2
cu2 Si
cQ1 Pp
cQ1 P2
cQ1 Di
cu1 D2
cu1 D3
cu2'S,
cu1'Pi
cu2 Pi
cu1'D2
cu2'D2
C$2 Si
cs 1 Pp
cs1 PI
csl P2
cs1 Di
cs1 D2
cs1 D3
c$2 Sp
cs1 Pi
c$2 Pi
cs1'D2
cs2'D2
$$1 Pp
ss1 Di
ssl D2
SQ2 Si
$Q 1 Pp

RP

11.317
10.152
10.166
10.179
9.391
9.985
9.896

10.264
10.168
10.467
4.507
3.828
4.228
3.859
4.257
3.506
3.964
3.833
4.233
5.796
5.528
5.604
5.663
5.906
5.935
5.964
5.753
5.621
6.066
5.942
6.316
2.576
2.169
2.408
2.674
2.729
2.775
2.476
2.346
2.891
2.736
3.213
2.739
2.363
2.500
2.581
2.836
2.888
2.934
2.644
2.523
3.046
2.896
3.357
1.231
1.902
1.995
1.699
0.984

APP

11.243
10.157
10.167
10.176
9.397
9.993
9.894

10.265
10.169
10.462
4.451
3.816
4.194
3.839
4.214
3.506
3.949
3.821
4, 198
5.846
5.607
5.661
5.702
5.943
5.960
5.977
5.818
5.679
6.082
5.964
6.304
2.624
2.256
2.440
2.715
2.751
2.781
2.554
2.397
2.904
2.755
3.192
2.685
2.329
2.446
2.509
2.777
2.815
2.847
2.612
2.466
2.968
2.820
3.253
1.125
1.842
1.933
1.761
1.052

RVP

11.196
10.156
10.168
10.180
9.384
9.980
9.911

10.252
10.170
10.440
4.414
3.807
4.168
3.834
4.193
3.509
3.927
3.812
4.173
5.786
5.539
5.612
5.668
5.891
5.916
5.942
5.741
5.636
6.033
5.923
6.621
2.563
2.180
2.413
2.659
2.707
2.748
2.459
2.356
2.851
2.714
3.145
2.700
2.340
2.480
2.557
2.795
2.841
2.881
2.598
2.503
2.981
2.848
3.267
1.172
1.849
1.936
1.679
0.959

TABLE II. New meson mass predictions based on the same
covariant generalizations used in producing Table I.
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TABLE II. (Continued. )

Name

su1 D&

su2 Sp
su2 Pl
su 1'D2
su 2'D2
uu3 Sl
uu1 Pp
uu1 Di
uu1 Dp
uu2 P)
uu 2'D2
bs1'S,
bs2 S)
bsl Pp
bs1 P)
bs1 P2
bs1 Di
bs1'D2
bs1'D3
bs1'S p

bs2'S p

bs 1'P
)

bshe'P,
bs1'D2
bs2'D2
bc1 Sl
bc2 S)
bc1 Pp
bc1 Pi
bc 1'P2
bc1 D
bc 1'D&

bc1 D3
bc1'Sp

bc2 Sp
bc1'Pi
bc2 P~
bc 1'D2
bc 2'D2

RP

1.768
1.501
2.061
1.870
2.641
2.277
0.731
1.671
1.800
1.960
2.387
5.422
5.987
5.716
5.784
5.839
6.078
6.105
6.132
5.361
5.926
5.806
6.234
6.112
6.478
6.345
6.886
6.674
6.728
6.767
7.005
7.026
7.046
6.268
6.844
6.741
7.141
7.030
7.367

APP

1.809
1.628
2.049
1.883
2.424
2.357
1.055
1.795
1.915
1.998
2.400
5.394
5.915
5.685
5.736
5.775
6.016
6.033
6.051
5.357
5.885
5.753
6.156
6.038
6.377
6.352
6.892
6.690
6.733
6.763
7.009
7.023
7.037
6.392
6.856
6.745
7.135
7.026
7.347

RVP

1.742
1.467
2.006
1.837
2.378
2.214
0.748
1.667
1.783
1.925
2.317
5.426
5.931
5.697
5.764
5.816
6.037
6.061
6.085
5.362
5.886
5.785
6.176
6.067
6.400
6.366
6.877
6.682
6.736
6.773
6.996
7.014
7.031
6.275
6.829
6.749
7.114
7.018
7.322
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-20
10
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FIG. 1. The nonrelativistic potential S+A+V (dotted
curve) and the relativistic quasipotential 4 /2p (solid curve)
are plotted together as functions of the invariant distance r for
the 1'S~,Y meson. Notice that even though the quarks in this
meson move slowly, the relativistic spin-spin corrections to the
potential at short-range produce a significant repulsive barrier.
The vertical axis gives the potentials in units of GeV and the
horizontal axis gives r in units of fm.

IV. CHIRAL-SYMMETRY BREAKING IN THE
TWO-BODY DIRAC EQUATION

The vr —p splitting of 605 MeV predicted by our rela-
tivistic extension of the modified Richardson model is
surprisingly close to the experimental value of 634 MeV
considering that we made no explicit effort to build the
chiral-symmetry limit into our equations. Before investi-
gating the presence of approximate chiral symmetry in
our quantum equations, we must make clear what we
mean by "chiral symmetry.

" We mean that the axial-
vector current jr5 generated by our model is conserved.
In field theory, this implies that the quark mass terms are

mesons become lighter the potential develops progres-
sively more energy dependence so that even at large sepa-
ration the constraint potential differs significantly from
its nonrelativistic limit. Figure 5 compares the different
4 's for the Q(3.097) and rl, (2.980) demonstrating the
strong spin-spin dependence of 4 .

In summary, using our coupled Dirac equations, we
have obtained overall fits to the meson masses (including
the lightest meson, the pion) that are surprisingly good.
Their goodness is a consequence of both the structure of
the phenomenological input potential and the way in
which the covariant constraint formalism dictates the
spin-dependent consequences of these potentials. In the
next three sections we examine three important proper-
ties of the constraint formalism (two nonperturbative and
one perturbative) that are responsible for the nature of its
spin-dependent consequences.

-f0

-15

FIG. 2. The same nonrelativistic potential as in Fig. 1 is plot-
ted together with its covariant counterpart for the 1 S&,+
meson. Notice that there is a slight change in the covariant po-
tential from that of the previous figure, demonstrating the ener-

gy and mass dependence in 4 .
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FIG. 3. The same sort of plot as that made in Fig. 2 but for
the 13S&,4 meson. Notice that for this case even the long-range
part of the covariant potential differs significantly from that of
its nonrelativistic counterpart.

FIG. 5.- This figure compares 4 /2p for the 4', 1 Sl (the
solid curve) exhibiting a short-range repulsive behavior with
that for the g„1'So (the alternately dotted and dashed curve)
displaying the strong spin dependence of the quasipotential.

zero in the Lagrange function and that the quarks experi-
ence no scalar or pseudoscalar interactions. Introduction
of finite-quark masses or scalar or pseudoscalar interac-
tions explicitly breaks chiral symmetry thereby produc-
ing a nonzero divergence of the axial-vector current. In
the absence of such explicit interactions„spontaneous
symmetry breaking may occur even when'the system re-
tains formal chiral invariance (8/Is =0) and m =0 and
is manifested by the noninvariance of the vacuum under
chiral transformations and the appearance of Goldstone
bosons (m„=O). One demonstrates the connection with
the pion as Goldstone boson as follows. The pion form
factor is given by

Formal chiral in variance then appears when either
m =0 (the spontaneous breakdown of chiral symmetry)
or F„=O (degenerate scalar and pseudoscalar multiplets
and zero decay constant}.

In order to see how our equations are structurally able
to reQect the chiral-symmetry limit, we shall treat the
scalar interaction using arguments similar to those
presented by Sazdjian in his treatment of the pseudosca-
lar interaction. In order to connect field-theoretic matrix
elements to the constraint formalism, Sazdjian assumed
that the constraint quantum-mechanical wave function P
and the field-theoretic wave function

(0
I j„5(0)

~

m(P) ) =iP„F (P} .

thus the on-shell matrix element of its divergence is

(0
~
8"j„(0)

~
m(P) ) = PF (P)=m —Q

2. 5

(25)

(26)

&Fr(xI x24 ~ = &0
I ~[tt'I(x1)a142(+242] I

~&

are at least proportional. The explicit operator nature of
this proportionality factor [see Ref. 6 and also Eqs. (61)
and (65) in Sec. V of this paper] is not important for our
purposes. For simplicity we shall assume that these two
objects are the same (f=XFT). Reducing out the pion
gives

0 ' 0

-2.5 and

&0
~ j„,(0)

~

~& —= &0 [ q2(0)r„rsyI(O) ~

~&

Tr(r qr51I') I,=,=o (28)

-5 0
(0

~

8"j„5(0)
~

n)= —[(I)I+8.z )Tr(y„y5$)]„

(29)

-1P,O

1O '

In this form, g is a 4X4-matrix wave function instead of
a 16-component column vector wave function. In order
to compute the trace we need the matrix forms of our
constraint equations:

FIG. 4. The same sort of plot as in the previous figure for the
1'Sl,p meson. The covariant potential for this case is sharply
different from its nonrelativistic counterpart at both long and
short ranges.

()'P I +M I }0= ——Ijl&.)'
2

l
0(M2 7 JI2) ~ Yf '

2

(30)

(31)
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where JR=8M, /Mz ——BMz/M, . [Note the importance
here of the existence of two (compatible) Dirac equations
for computing the right-hand side of Eq. (29).] Using
these equations the divergence condition becomes

Tr(f 1 ysf+ y s4Pz ) =Tr[ys(QP'z —gf 1 g)]
= [M, (0)+Mz (0)]Tr[y sl((0) )

=[m, +mz+S, (0)

+Sz (0)]Tr[y sl((0) ] . (32)

Thus, even in the presence of scalar interactions (which
formally appear to explicitly break chiral symmetry) for-
mal chiral invariance in the sense (0

~
8"j„s(0)

~

rr(P) ) =0
occurs provided that Mi(0)+Mz(0) =0 and that g(0) is
finite. If S;(0)=0 (as happens for linear confining poten-
tials)' then formal chiral invariance requires m; =0. De-
viations from chiral symmetry occur if m;&0 or S;&0.

In order for our quantum equations to reAect the spon-
taneous breakdown of chiral symmetry that occurs in
quantum field theory, they must contain two ingredients.
First, the wave equation must be made noninvariant un-
der chiral transformations through the introduction of
appropriate interactions. As we have seen, however, this
only leads to spontaneously broken chiral symmetry if
M, (0}=0. Second, the pion must appear as a Goldstone

(y1'P 1™1+lyz ~vyslysz 4

(Yz p +mz iy, aVy—s]3 51)4

(33}

(34)

For the potential V =kxi (a relativistic harmonic oscilla-
tor) he shows explicitly that

boson, namely, m =0. We have found suggestive nu-
merical evidence that our full equations do, in fact, have
the chiral-symmetry limit built into them for pseudosca-
lars. Specifically, we have found that for equal mass qq,
I =0 spin-singlet bound states, as the quark mass tends
toward zero, the mass of the bound state also tends to-
ward zero. If this were to continue to the formal chiral-
symmetry limit ["zero-mass" quarks and S;(0)=0] our
equations would yield "zero-mass" pions (Goldstone bo-
sons}. As numerical evidence we off'er the calculated se-
quence of masses m =0.164, 0.108, 0.067, 0.041, 0.023
MeV corresponding to the quark masses 0.141, 0.121,
0.100, 0.081, 0.063 MeV, respectively. This numerical
evidence strongly suggests that our equations contain
structures dictated by the spontaneous breakdown of
chiral symmetry.

Our numerical demonstration parallels an analytic one
given by Sazdjian in which he computes an analytic spec-
trum using two-body Dirac equations for the pion with a
pseudoscalar interaction. The equations he uses are

w =(m, +mz+4k(l+2s+2n, )+t[mzi+mzz+4k(l+s+2n„)] —(mi —mz) I' }'

&14=(yi pi+m, +U, W =0 (36a)

which vanishes as m &, m 2 ~0 for the ground state
(s =l =n„=0} Like h.is exact model, our equations for
s =1 predict that the p mass does not tend to zero as
m, , mz ~0 (in fact, in our model it approaches about 300
MeV).

Before extending our chiral-symmetry arguments for
scalar interactions to the case of the combined scalar and
vector interactions that actually appear in our quark
models we compare the chiral-symmetry limit of our
two-body Dirac equations with the chiral-symmetry limit
of equations derived recently by Sazdjian. ' He also uses
the constraint approach but solves the problem of compa-
tibility in an entirely different way. We restrict our com-
parisons to scalar interactions of spin- —, particles. Our
approach' emphasizes the appearance of the scalar po-
tential as a modification of each constituent mass depend-
ing on a supersymmetric position coordinate:

~lo=ys ('Y P +m 4' ys (y P;+m;+S }'.

The supersyrnrnetric x~ dependence leads to the strong
compatibility conditions [S„Sz]=0. The maintenance
of supersymmetry forces a relativistic condition that
plays the role of Newton's third law (4,=4z) on the S;
to take the same form as that of the spinless ease
(2m, S, +S, =2mzSz+Sz ). Sazdjian starts with two
modified Dirac equations

I

and

2)zit'=(yz'Pz+mz+ Uz)/=0 . (36b)

First he guarantees that the squared versions of these
equations are compatible. After multiplying Eq. (36a) by
( —yip, +m, ) and Eq. (36b) by ( —yzPz+mz) he finds

[p, +m, —(m, —y, p, )U, ]/=0,
[Pz+m2 ( 2 Yz Pz)U2] P

each of which is of the form

(37a)

(37b)

&;g=(p; +m; +4; )/=0 .

As in the spinless case compatibility follows from

4, =hz=4(xi) .

(38)

He solves the third law problem, N& ——42, by choosing
U1 (mz ) 2 P2% and Uz =(m1 Y 1 pi )%. This leads
to

[y, P, +m 1+™zyz Pz }Q]$=0, —

[3 2 Pz ™2~™1—yi Pz)+)0=0

(39a}

(39b)

and guarantees the strong compatibility of the squared
equations [%„&z]=0. His approach does not lead to
[2)1,2)z] =0, the strong compatibility of the Dirac opera-
tors, but instead to the weak compatibility condition
[1)„2)z]/=0. That is,
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ÃI 2]1 =[y iPi +%if—(y2 P2+)+24=0 (40)

For scalar interactions

(41)

At first sight there is no direct link between our I; and
his 2);. That is, $,.&ys,.S, nor is S;=(m~. —yi.p, )%.
However, one can make a connection by bringing the
operators yz.pz of Eq. (39a) and y, .p, of Eq. (39b) to the
right of 'll and then using (39b) and (39a},respectively, to
eliminate yap & g and y iP, g. This leads to

2 i B'M
Slit — yi pi+mi+ m&5'+miQ + —

yz xJ
1 —Q r Br

/=0, (42a)

2 i BQ
+21 y2 Pl ™2 m 1++m2+ yl xl

1 —Q~ r Br
/=0. (42b)

As Sazdjian points out [S„Sz]+0but [$„2)z]/=0. However, [ysP)„ysP)z]=0. This indicates that there is indeed
a connection between his Q and our S, . In fact 4, =ys, Xl, if

Si ——
2m z 5'+ m z'M

1 —'M

2m &S'+m&V8
2

(43a)

(43b)

Note that these satisfy 2m &S, +S& ——2mzSz+Sz.
jtan s parametrization g~~~~ the ~mp~~~s~o~ that S;~0 as m, 0, i.e., in the chiral limi

ishes However, despite the connection between our equations and his, like the field-theoretic results, our potentials S,.
do not vanish in the zero-mass limit. In addition, Sazdjian s parametrization lacks a well-defined heavy-particle limit.
Apparently, only through direct comparison of each potential with the corresponding field-theoretic potential could the
proper mass factors be extracted which would rectify this difference (see Appendix A).

In the general case when both vector and scalar interactions are present the matrix forms of our equations are

[y p, +M, /G+(E, /G —e, )y P]g+ yi fyjBln—G y+ y Pfy—Py. 6+ —PA y=0, ( la')

g g

Q( —y p~+M~/G (Es/G e~—)y P)—+—y BlnGyif yj+ yCy Pfy —P+ yAtg=—0,
2 2 2

(lb'}

where Afis defin,ed above and 6 =BE& /Ez BE&/E, . If-—
we use y P = (P, +Pz )/w we find that

M(+M~
Tr[ys(pi+gfz)g(x)] =w Tr[ysp(0)] . (44)E

We then use the expressions for M;, E; given in (7) and (5)
and S, V-O, and A —1/r lnr to obtain

Tr[ysV i+I~ 4 ]= „,Tr[ysf(0)1 (45}
(1—2A /w)'

Although this result formally displays the chiral-
symmetry limit as m &, mz ~0, the uncertain behavior of
the wave function at the origin makes evaluation of this
limit difficult.

V. THE WEAK-POTENTIAL SLOW-MOTION
APPROXIMATION AND ALTERNATIVE FORMS OF

THE NONPERTURBATIVE AND COVARIANT
CONSTRAINT EQUATIONS FOR TWO

SPIN-
q

PARTICLES

In this section and the next we wish to investigate two
related questions about the quasipotential form given in

Eq. (8). First, when one has been given a phenomenologi-
cal input potential in the form of the covariant scalars A,
V, and S does the resultant quasipotential 4 display rel-
ativistic spin structures that extrapolate the correspond-
ing semirelativistic spin structures given by a related
quantum field theory? Second, in cases where our equa-
tions are supposed to describe a system governed by a
particular quantum field theory, is there a way of deter-
mining the invariant scalars A, V, and S in order to con-
nect the relativistic quantum-mechanical description pro-
vided by our equations to quantum field theory? The
answer to both questions is affirmative and is supplied by
the direct connection between our equations and the To-
dorov equation. We find that for weak potentials the
upper-upper component of Eq. (8) reduces to the To-
dorov equation for scalar and vector interactions. The
Todorov equation itself is covariant and reproduces the
correct fine-structure effects in bound-state calculations
with either scalar' or vector potentials. ' In this section
we answer the first question by demonstrating this weak-
potential connection as well as its production of slow-
motion forms familiar from quantum field theory. In ad-
dition, we examine alternative forms of our unapproxi-
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mated equations that are related to yet other field-

theoretic results. In the next section we answer the
second question by su'pplying the missing link between
our equations and those of relativistic quantum field

theory —the connection between the Todorov equation
and quantum field theory. This is provided by Todorov's
inhomogeneous quasipotential equation which we derive
from the Bethe-Salpeter equation.

We demonstrate the connection of our equations to
that of Todorov by starting from our equations given in
their two-body Pauli form: Eq. (8). We remind the
reader that our equations in this form (apart from the en-

ergy dependence of 4 ) are as easy to work with as the
nonrelativistic Schrodinger equation because of their sim-
ple momentum dependence and decoupling.

Once we have found the weak-potential form of our
equations, we unravel their covariant structures by per-
forming an 0 (1/c ) expansion. As we shall see, we then
obtain a form canonically equivalent to the Fermi-Breit

I

approximation of the Bethe-Salpeter equation. That

form is more familiar than are those of our unapproxi-

mated equations but has the distinct disadvantages that it

is valid only perturbatively and possesses a complicated

momentum dependence.
We obtain the semirelativistic form of our equation

through a two-step reduction. First we find that our
equation reduces to the Todorov equation ' when the14, 1

potential is weak, i.e., of 0 (1/c ) times the total c.m. en-

ergy. In that case, all the terms in @Do are of 0(1/c )

relative to the kinetic p term. After taking the various
derivatives, all potential A, V, and S dependences are
dropped in the X„gz, and G terms so that M, ~m, ,
E;~e;, and G~1. Thus 7;~e;y,. +m, . Further, the
gradient squared terms appearing in 4&s and 4T are of
the same order as @Do and can be dropped. Hence,
specializing to the upper-upper component we find the
following Todorov equation for simultaneous scalar and
vector potentials:

p'c'+2m c'S+S'+2m„A A'+2e—V V'+— ,+, V'(A+V —S)+ V'A
2w ez+mzc e1+m1c 2w

1 (A+ V —S)L.
wr Br

Ez 1 8 1

2 CT1+ 2cr2 + AL (o, +o2)+ V Ao, cr2
@i+m, c @2+m 2c 3w

3 wr dr gr2 T +++ ST 4+ b( w)%+——1 1 BA BA
++

a 1 1 1 zz+ (p )—
mc mc1 2

a 1 rr
2

P' + 3
'P

2m1mzc r r
J

1 1 1+ 5(r)
2C m m1 2

(It is important to remember that r is an invariant and equal to
i
r

i
only in the c.m. frame. ) The Todorov form Eq.

(46), although not an 0 (1/c ) approximation, would be inadequate for strong coupling. Its spin-dependent and Darwin
interaction terms can only be treated perturbatively. As the second step, we carry out a further 0 (1/c2) expansion by
replacing the energy variables e; by m; and expanding the energy dependence in 2e A and 2m c S. fhis results in the
F«mi-Breit Hamiltonian for scalar and vector interactions when we take V=O. Finally, we specialize to A = —~/r
and S =0, the form for electrodynamics to the appropriate order. ' ' In that case, we obtain

P
2p

1 L
4c r

1

m
+

1

CT 1+
m1mz

1 2
2+ 0'2

mz m1mZ

+ 24m 1m 2C

8m CT1 CT2 3CT1 rCTz'r
o, .cr25(r)+

r r 4++ ——(w —m, c —m2c )4++ . (47)

As part of the manipulations leading to this form, we
have performed a canonical transformation' that yields
the momentum-dependent Darwin terms (appearing be-
tween (p ) and the 5-function piece). In summary, the
relativistic kinematical, dynamical, and spin structures of
our equation have allowed us to start with a static form
of the potential, valid in the nonrelativistic limit, and
with no additional assumptions, derive the standard rela-
tivistic corrections to the total energy operator. Note the
contrast between the complicated momentum depen-
dence of this noncovariant perturbative standard Breit
form and the simple Schrodinger momentum dependence
of the covariant nonperturbative form of our exact equa-
tion. Even though the quasipotentials are complicated

~ik=r5|(ri Vi —~i)+m|W=O

+24 1 52(Y2 (P2 ~2)+m2 W =O

(la')

(lb')

I

they are local and momentum independent' (although
dependent on the c.m. energy).

Before deriving the Todorov equation for N from
field theory (so that one would know what invariant
forms to use, say, for A and S) as a further comparison
between our approach and older two-body formalisms we
combine our two-body Dirac equations in the form of an
effective Breit equation' ' for electromagneticlike in-
teractions (V=O, S=0). In that case our Dirac equa-
tions reduce to
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Their sum produces the Breit-type equation

A, =[a,(1—G)+GA]P+(1 —G}p ——BG "Y21'2
2

(48a)
Gp ——,'VG X~2 +a2. —Gp+ —,'VG Xu,

A =[@ (1—G)+GA]P —(1—G)p+ —BG.y, y, .
2

(48b)
In the c.m. frame these become

A i
——e, (1—G)~GA~ —VG a2,

2

A, =(1—G)p+ —,'VG Xcr2,

(49a)

(49b)

A 2
——e2(1 —G)+GA ——VG a, ,

2

A, = —(1—G)p ——,'VG Xo, .

(soa)

(50b)

la, Gp —-'V'GXcr2 —V—G —G(e, —A)2 2

l——VG a2+P~m ~
4=0, (51a)

2

la, —Gp~-'VG Xo, p —VG —G(e, —A )2 2

+—VG a, +P2m z +=0 . (51b)
2

Multiplying the first Dirac equation by Physi and the
second by P2y52 and making the scale transformation
/=4/G leads to

—G(w —2A)+P, m, +@2m& 4=0 . (52)

This is similar to the Breit equation but with a Pauli cou-
pling. Note however that our wave function is governed
by two simultaneous equations so that this Breit-type
equation is accompanied by say the difference of the two
Dirac equations. This difference equation is missing from
those treatments that employ the single Breit equation
and a similar treatment that employs a single equation re-
cently proposed by Barut. ' Without a difference equa-
tion of this type one cannot obtain two separate free
Dirac equations from the Breit equation as the particles
move out of range of their mutual interaction unless addi-
tional restrictions are imposed on the solutions. These
restrictions must be compatible with the full relativistic
dynamics of the interacting system. Note also that the
cancellation that occurs when the two Dirac equations
are added shows that is is risky to make guesses of the
form of separate two-body Dirac equations based on the
Breit or a Breit-type equation. They are likely to be in-

compatible.
For the benefit of the reader who may still be hesitant

to adopt a new formalism for the two-body problem we
mention here an additional attractive feature. The exact
equation [Eq. (8)] for V=S =0, A = —a/r, and equal
masses reduces to [using Sz.( —)'= —Sz, ( —)'o i az
=(a} cr2 —3)/2]

26'~ cx
i p

T

a 3+ai a2 ma5 (r) Sw+6mG 1 a 1

r 1+2a/rw 3w w+2mG 12w r 1+2a/wr+ + 21w +52wmG+36m G

(w +2rnG)

S~ N 3a 2 a 3u +4mG+3(1+2a/wr) w +2rnG wr 1+2a/wr r4 w+2mG

4L S a w+mG + 2

rw(1+2a/wr) r~ w+2mG ++ ++ ' (53)

For singlet positronium this further reduces to

2ew~ a 2
p — — 0++ —b %+

E0 r2
(54)

w =&2m 1+ 1+
(n 6,)'—(55)

That is, residual Darwin and spin-spin terms in Ass (of
O(1/c ) since the O(1/c ) terms cancel among them-
selves in @ss) cancel exactly with @no for singlet states.
This can be shown by using cr &-cr2 ———3 and the fact that
since the states are spin singlets, the L-S and tensor terms
vanish identically. The exact eigenvalue for the eigenval-
ue equation Eq. (54) is

r —1/2 1/22

t

where

l ~[((~ ) )2 2]1j2 (56}

We presented its derivation through an alternative reduc-
tion of the two-body Dirac equations using the chiral rep-
resentation of the Dirac y matrices in Ref. 8. The result-
ing spectrum is correct through order a (vacuum and
Lamb-shift corrections are not included). The advantage
of the chiral representation is that along with the spectral
results, we obtain the exact 16-component wave function
as well. When one uses the chiral representation of the
Dirac y matrices, one discovers as a by-product that one
of the second-order equations analogous to the Pauli
forms [Eq. (8)] reduces (for weak potentials) to a relativis-
tic equation recently postulated by Pilkuhn ' while the
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other generates a new equation. This fact along with the
existence of the Breit-type equation [Eq. (52)) illustrates
an important but unusual property of our method. Since
our wave function is governed by two simultaneous but
compatible wave equations, these equations can be rear-
ranged in large number of equivalent structures —some
old, some new. The process of rearrangernent supplies
new relationships that exist in our method among other
wise competing descriptions of the two-body system.

homogeneous Bethe-Salpeter equation written in the
form

(G +U) Ix&=0,

where

(59}

Go ——G) G2

(G, and Gz are the single-particle Green's functions) and
the inhomogeneous equation

T = U+ UGOT (60)
VI. DERIVATION OF TODOROV'S

INHOMOGENEOUS QUASIPOTENTIAL EQUATION
FOR THE CONSTRAINT POTENTIAL 4

and

@&=0 (57)

(5S)

where

Beyond their incorporation of the chiral limit, why is it
that our equations are able to capture light-quark and
heavy-quark effects with a minimum of inserted potential
structure? After all, relativistic quantum constraint
equations (whether of the types used by us or Sazdjian)
are the relativistic counterparts to the Schrodinger equa-
tion induced by canonical quantization of a peculiar form
of relativistic classical mechanics. At the very least they
incorporate correct relativistic free-particle kinematics.
But more importantly Todorov has shown from a postu-
lated inhomogeneous quasipotential equation how the
dynamical potentials (4 ) of the constraint equation can
be obtained from relativistic quantum field theory. More-
over, Sazdjian has shown how to construct constraint
mechanics as the quantum-mechanical transform of the
Bethe-Salpeter equation. In this section we combine and
generalize these ideas to show how the constraint poten-
tial 4 (and thus the invariants A, V,S}can be obtained
from the off-shell scattering amplitude T of quantum field
theory through derivation of the Todorov inhomogene-
ous quasipotential equation from the Bethe-Salpeter
equation. We limit our discussion in this section to spin-
less particles. (We extend the argument to include spin in
the Appendix. ) We use a technique based on an operator
generalization of Sazdjian s quantum-mechanical trans-
form of the Bethe-Salpeter wave function. 2' We finish
this section by discussing some advantages of the con-
straint formalism over the older Bethe-Salpeter formal-
ism.

The two defining equations of quantum constraint
mechanics are

to derive the system constraint equation (58). In Eq. (60),
T is the off-mass-shell Feynman-scattering amplitude and
U is the Bethe-Salpeter potential.

Let
I P& =cP

I
f& with 8=1 on mass shell and

[P p, 8]=0 so that P p I li & =0 just as for the constraint
state vector in (57). d" is otherwise arbitrary. We assume,
as does Sazdjian, that the Bethe-Salpeter and constraint
wave functions are related by a linear transformation:

Iy&= Ix&+BUIx& (61)

Go+8 =m'i5(P p)g . (63)

0 is an operator "integration constant" and may be a
function of P, pj, and xj and thus commutes with P p.
We let

1

pi —b —lO2 2

so that the unknown operator

B =nit 2
—Go

5(P p}
py —b —l0

(64)

(65}

is given in terms of the unknown operator J'.
We then demand that the most singular parts of 8 can-

cel in the approach to the mass shell ( U~0) so that

Iq&-Ix&.
Now, near the mass shell,

with B an unknown operator. Then when we use (59) in
the form IX&=GoU IX&+ IXo&, where IXo& is the
free-particle state satisfying (p; +m; ) IXo&=0, the first
constraint condition (57) implies

P p I
0&=o=P p(Go+»U Ix&+P p Ixo& (62)

But P'p
I xo& =(p i+m i

—p2 m 2) I xo& =0. Thus

P.p(Go+B)U Ix&=0,
which implies that

&ZP i
—&]P2

E ] +E'2 =N, E'
)
—62

2 2
m& —m2

1 1

2 2 ~ 2 2p, +m
&

—I'0 p2+m2 —iO

so that the most singular part of8 is

(66)

b (w)= [w —2(m, +m2)w +(m, —m2) ],
4m

P =p&+p2, ur = —P2 2

(mi) [J5(P p)5(pj 5) 5(pf+m—, )5(p—~+m2)],
(67)

We will determine N from field theory using both the which vanishes if
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~
I on shen

= 1 (68) Using (pq b—)
I Xo) =(p —b )

I Xo) =0 we find that

since 5(P p)5(p ( —b )=5(p, +m ( )5(p 2 +m 2 ). 2 is oth-
erwise arbitrary.

We now proceed to derive the constraint equation (58)
and from that a relativistic Lippmann-Schwinger-type
equation for 4 . Substitution of the expression for B in
(65) into (61) yields

I & & =~
I @& =

I
X &+~'&

2 2 . U
I
X &

—GOU
I
X &

p2 b2 lO

=ni 2, , U
I
X)+

I
Xo) . (69)

pj b lO

Next we let d"=2 so that 8
I g) =2

I g) and use

I Xo) =2
I Xo). Then

(p f b—)
I g) =ni5(P.p)2U

I
X) . (71)

IX) . (72)

However, if we rewrite this as

UIX& =IX&—G, IX&
p J b i0

(73)

To proceed with the derivation of (58) we need to write
IX) in terms of

I g) by using the transform equation
(61). But that transform depends on the nonunique func-
tion 2. That is,

I y) =in, , U IX)+ IX, ) .
p2 b2 lO

(70) and use (70) we obtain

. U
I
X& =&

I XO& =
I Xo& =

I @&—i~, , U
I
X& =

I
X& —60 I

X& .
pg —b —lO pj —6 —lO

(74)

Thus (72) reduces to

I
(((() =

I
X)+ in' —G U

I
X)

Pq —b —l0

so that the nonunique factor 2 disappears from the transform equation. Inverting this we can write (71) as

' —1

(p~ b)
I g) =n—i5(P p)U 1+ in —60 U

I f) .
p —b —iO

(75)

(76)

This equation is of the form of the constraint equation (58) so that comparison leads at once to an equation for 4 in

terms of U:

+ni 5(P p) U 1 — Go ni—5(P p)
pg —5 —lO

(77)

To obtain the Todorov inhomogeneous quasipotential equation we then solve (77) perturbatively with the use of (60).
We 6nd

(Is"'
I P) = ni5(P p)U'"

I
g—) = ni5(P p)T—'"

I @), (78)

O' '
I @)= ni 5(P p) U"'

I y &
—ni 5(P p) U'"—6 ni- .

Pg —6 —lO
U(1)

I y) (79)

Note that

U' '=7' ' y'"6 y'"
0

Hence,

(80)

O' '
I
P)= ni5(P p)T' '+n—i5(P p)T'"ni

2 2
T'"

I Q) .
p~ —b —l0

(81)
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This equation which we have just derived is a form of the
Todorov equation more restrictive than the requirement
of an operator equation of the form

4+ni5(P p)T+4mi T =05(P p)

pg —6 —l0
(83)

with no further restrictions on T. However, since T
operates on a ~g) which satisfies P p ~g)=0 while
5(P p) appears on the left, we see that (83) is an operator
identity only if the scattering matrix T is evaluated off
shell such that in momentum space its matrix elements
satisfy

Continuing with this perturbative solution we see that
(77) is formally solved by

+~i5(P p)T+4 mi
~ ~

T
~
f) =0 . (82)

5(P.p)
p~ —b —iO

7 (1)( 5(p l+pz —6 —e2)
p

p —q +p —i

If we let (x&x2
~
g) =e' "P(x~) where X =(e&xt

+e2x2)/tc, then the bound-state equation

(85)

lation of T that Todorov originally postulated' for the
quasipotential equation (83) for 4 . In our applications
we use (82) or its perturbative forms (78) and (81).

In summary, if we start with just the constraint condi-
tion P.p ~

P) =0 (a covariant control of the relative ener-
gy), then the Bethe-Salpeter equation (in both its homo-
geneous and inhomogeneous forms) leads to the con-
straint eigenvalue equation for

~
f) (58) with 4 given

by the Todorov quasipotential equation (82).
The lowest-order potential identification (78) leads to a

local potential. As an example, consider a simple scalar
Yukawa field theory. From field theory we know that, in
momentum space,

7'(el e2 pI p2} 'rp'(p' e'» (84)
(p&+@" )

~
P) =b'(tc)

~
P) (86)

where the relative momenta p' and q' satisfy P' p'=0
and P'.q'=0. But this is just the off-mass-shell extrapo-

I

becomes

d4 'd"
( d~ b)P—(x, —)+mg, g2 J e'~ '" "5(P p')6 F(z,p)g(z~)=0 .

(2n )

After we perform the z~~ and
p~~ integrations we find that

W (2~)4 4m'z~

(87)

(88)

which in turn becomes the local covariant Schrodinger-
type equation:

—P IXj
—Bg —2m a e f(xj )=b (w)P(x~), (89)

where

m(mp
m g )g2

——16am ) m 2a .
N

(90)

Equation (89} is a local homogeneous quasipotential
equation of the type given by Todorov in 1971 (Ref. 14).
Comparison of the form of (89} with that of (8) then
determines the invariant S, the scalar interaction corre-
spondin~ to a field theory for spinless particles as
—ae ' /

~
x~

~

. Notice that the relativistic reduced
mass m appears as a natural outgrowth of the field-
theoretic connection. (Of course this S is not the S we
used in the quark model calculations. No one has yet as
far as we know developed a method for extracting the
scalar portion of the nonperturbative QCD potential. )

Even though we have been able to connect the con-
straint approach to quantum field theory and we have
been able in previous sections to give a successful phe-
nomenological test of the constraint approach, why
should we adopt this approach rather than the time
honored Bethe-Salpeter equation? There are two sets of
reasons why we choose the constraint equation. The first

set consists of its advantages over the four-dimensional
form of the Bethe-Salpeter equation, in which there is no
separation of an instantaneous part of the interaction (but
which like the constraint approach is manifestly covari-
ant) while the second set consists of its advantages over
the instantaneous (three-dimensional) forms of the
Bethe-Salpeter equation.

The original four-dimensional form of the Bethe-
Salpeter equation has a set of extra unphysical solutions
that arise from the presence of an uncontrolled relative
time (or the conjugate variable, the relative energy).
These solutions are absent from the constraint approach
because the difFerence of the defining constraints on the
wave function yields P p ~

g) =0. In addition, workers
often apply the Bethe-Salpeter equation to the two-
particle bound-state problem with only the ladder ap-
proximation. This approximation does not yield (in the
four-dimensional form) the correct limit of a relativistic
(Klein-Gordon or Dirac) equation in the limit in which
one particle becomes infinitely heavy. In fact, the ladder
approximation leads, in calculations of relativistic correc-
tions to incorrect 0 (1/c) as opposed to 0 (1/c )

modifications. In the context of the Balmer formula,
this would give incorrect contributions of order a lna to
the total c.m. energy. In contrast the constraint
equations automatically give the correct heavy-particle
limits in the ladder approximation and do not lead to
spurious 0(1/c) or a lna energy terms. This makes
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where kj =k+k &R (satisfying k&.R=O). R' is an arbi-
trary timelike four-vector (usually chosen to be P) that
defines the equal-time frame. In vector field theories in
the Feynman gauge,

V1 72 V1 ~F2 ~

+ k2 Xll V2J.

while in the Coulomb gauge,

(k R ) Xt'Ry2 R

k~

)112 )1RY2R 1 71kl12kl
k2 k2 k2 2

j. kj

These three-dimensional rearrangements into instan-
taneous (in the c.rn. system) Coulomb plus perturbation
do lead to the correct a energy corrections if the first
part is used to compute the unperturbed wave func-
tions. Furthermore these divisions do not produce any
spurious O(a lna) terms in addition to the correct
O(a ) terms in the unperturbed part of the spectrum. '

Note that the choice of the Coulomb gauge in effect
forces a three-dimensional (1/k f ) rather than four-
dimensional (1/k ) propagator in the kernel so that like

them well suited for phenomenological applications.
These problems with the Bethe-Salpeter equation make
its use in phenomenological calculations suspect. While
the erroneous contributions in the Bethe-Salpeter equa-
tion can be eliminated by including the irreducible cross
ladder diagram in the Bethe-Salpeter kernel U, one need
only use the Born term in the constraint equation to ob-
tain the same accuracy. In fact with the Born diagram
alone as input, the quasipotential equation [or constraint
equation (58)] sums up all cross ladder and ladder dia-
grams in the limit of small exchanged mass and momen-
tum transfer. ' The Bethe-Salpeter equation ' does not
give this correct result in the ladder approximation. Tik-
topoulos and Treiman found that the reason for this is
that the leading asymptotic term in each ordinary ladder
diagram is exactly canceled by the leading terms of the
corresponding set of cross ladder diagrams so that one
has to take into account an infinite number of irreducible
diagrams in the kernel of the Bethe-Salpeter equation in
order to obtain the result (the eikonal approximation )

which is produced by taking the Born term alone in the
constraint or quasipotential approach.

These problems with the Bethe-Salpeter equation in the
ladder approximation occur when one uses the four-
dimensional kernel 1/k to compute the unperturbed
wave function. However, most of these problems do not
appear in the various equal time reductions of the Bethe-
Salpeter equation, in which one uses the three-
dimensional kernel 1/kj (1/k in the c.m. system) to
compute the unperturbed wave function.

In scalar field theories, one separates the four-
dimensional kernel 1/k as

1 1 1 (kR)
k2 k2 + k2 k2

the constraint approach the Bethe-Salpeter equation in
the Coulomb gauge provides a legitimate tool for phe-
nomenological quark model studies. (It is in standard use
in e +e calculations. )

However, in order to maintain the manifest covariance
of these three-dimensional rearrangements of the Bethe-
Salpeter equation one must introduce by hand certain in-
variants (e.g., k P, k~) that do not arise naturally in the
theory. One must decide in which frame the instantane-
ous part of the interaction is to be instantaneous. In con-
trast, in the constraint approach, the variable x j, unlike
its conjugate counterpart, k~ in the Bethe-Salpeter equa-
tion, arises as a mathematical necessity for the consisten-
cy of the theory and is not put in by hand. In addition,
unlike the "instantaneous" Bethe-Salpeter equation in the
ladder approximation, the constraint equation is local be-
cause of the simple momentum dependence of its
Schrodinger-type form. Finally, one need not divide the
single-photon-exchange diagram into instantaneous plus
perturbative parts. This fact is most strikingly demon-
strated by the existence of an exact solution of the con-
straint equation for singlet positronium with correct
spectrum through order a . The Bethe-Salpeter equation
has no known exact solution for singlet positronium with
single-photon exchange.

VII. CONCLVSION

In this paper we have used two coupled compatible
Dirac equations to calculate the mass spectrum of meson-
ic states composed of light or heavy quarks. The quality
of the resulting fits and predictions is a consequence of
the accuracy of the original nonrelativistic potentials that
our method uses as its starting point, the physical effects
of choices we must make in order to identify a family of
relativistic potentials that together extrapolate the nonre-
lativistic behavior of heavy-quark potentials to the rela-
tivistic regime, and (of greatest concern here) the spin-
dependent interaction structures produced by our exten-
sion of Dirac s single-particle wave equation to two cou-
pled Dirac equations.

The various connections of this work to relativistic
quantum field theory argue that as more becomes known
experimentally and theoretically about the relativistic po-
tential structure generated by quantum chromodynamics,
more detailed equations of this form may lead to still
better spectral results. Conversely, the relativistic spin
structures of our two-body Dirac equations already dis-
tinguish among extrapolations of heavy-quark potentials
of various types (e.g. , suggesting that the real chromo-
dynamic structure is badly modeled by the EF potential
at short distance or that schemes that possess only rela-
tivistic scalar potentials at long distance may invert spin-
orbit splittings). As we have seen, these equations add
their own relativistic treatment of mass parameters to
their handling of relativistic potentials to generate au-
tomatically the symptoms of approximate chiral symme-
try. Their spin structures, which are fixed by the unfami-
liar algebraic principle of compatibility of two indepen-
dent constituent Dirac equations, already contain not
only the usual semirelativistic spin structure of atomic
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physics (where such expansions are valid) but also the rel-
ativistic weak potential structure of Todorov s quasipo-
tential equation. Beyond any particular structures that
these equations assume in the presence of particular po-
tentials, their general significance lies in their connection
to quantum Geld theory as a quantum-mechanical trans-
form of the Bethe-Salpeter equation. In this light, our in-

vestigations here assume the same character as those of
other workers who attempt to mesh out the full nonper-
turbative field-theoretic two-body interaction structure
generated by a strong field by studying the efFects of can-
didate interactions or approximations to the full kernel in
the Bethe-Salpeter equation.
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APPENDIX: DERIVATION OF THE QUASIPOTENTIAL
4 AND INVARIANTS A and SFOR

T%'O SPIN-
2 PARTICLES

To include spin we need only make a few modifications
in the analysis given in Sec. VI. First, the spinless
Green's functions 6, and 62 of that section are replaced
by the corresponding Dirac forms. One then multiplies
both»des of (59) by (y, p, ™,)(y, .p,™,)/m, m, .
This has the effect of replacing the U in the spinless form
of that equation by U multiplied by this same factor.
After performing a similar operation on the spin- —, ver-
sion of (60) one can proceed with the proof as in the spin-
less case. The question that remains is how, say, A and S
are determined from T? Let us recall that our Pauli
equation [Eq. (8)] separates into four decoupled four-
component equations. Now the T matrix is a 1 6 )& 1 6 ma-
trix of the form e', e2f (s, t, u)1'"1' ' for scalar interac-
tions and e,ezf (t, s, u)y", y2„ for vector interactions. [For
timelike four-vector interactions the matrix amplitude
would be of the form e,e2f (t, s, u)yi Py2.P J Following
the work of Aneva, Karpchev, and Rizov in Ref. 14 (for
similar constructions see Ref. 32), we construct the corre-
sponding upper-upper 4 X4 amplitude from the 16 )& 16
amplitude in the following way. Define first the invariant
scattering amplitude

—c ~1+2~1~2 ~ C

~&~P2 ~2 ql i 'q2 +2) XXuk, (Pl) k (P2)~ (Pi P2 'qi q2)u p (qi)u p (qi) (A 1)

'T is a 16X 16 amplitude such as given above. We are interested only in a lowest-order (nonrelativistic) determination of
A and S, so we need only use

@"'
~ g ) = ni5(P p—)T."'

~ ijj ) (A2)

We specialize this equation to its upper-upper components since this is sufficient to determine A and p to lowest order.
The 4 )& 4T matrix needed for computing 4 is defined by

( 1 )a
l (2)a2 ( 1 )b

l (2)b2
+(Pl ~1 P2 ~2 'ql +1 q2 +2) X rt e k e k2 T b b (Pl P2 ql q2)e (A3)

Using

'~ ( 1 )

e&+m
& +a1 q1 'l „, 61+m 1

—a1 p1
u„(q, )= 0, uk (p, )=(e k"0)ei™i ei™i

we find

uk (pi )1'"u„(q, )=

u k (p2)1 'u„' (q2)=

e k"[(e,+m, ) —b + —,
' (p, —q, } io, qi —X pi]e„"'

p, +m,

k [(e2+m2 b + (P2 'q2) io2 'q2XP2]e„

f2+m 2

uk (pi )yiu. (qi )=

u k, (p2 )y2u.', (q~ ) =

e,"'[(e,+m, )' —b' —
—,
' (p, —q, )'+io, .q, Xp, ]e„' '

F1+m 1

e '[k( e2m+)2b —,
'
(p2 —q2) + i—o2.q—2 X p2]e,' '

P2+m 2

u k (p i )y 'i u .( q i ) =e k"l ( q i +p t ); +iejk ( q l p 1 )jo 1 k ]

u k (p2)y2u (q2) e k [(q2+p2) +iejk(qz p2), oak ]e,
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These can be simplified using Following steps analogous to (67)—(69) we find

(pi+qt)-(p2+q2) = —(pi+qi)
= —4b'+(p&

s
—p ix

—Bg —2m cx

—Pg /Xj
e

(e, +m. , ) b-
e, +m;

=2mI,
(e, +m, . )'+b'

e, +m,
=2E. =b (w)P(xt) (A5)

and

4~ ~~2 4~~ 4 ~

Then we find that for combined scalar and vector interac-
tions to lowest order that the 4&&4 amplitude analogous
to (85) is

5(p, +q, —p2 —qz)4m, mz
Tt', "(p,q)= etez

(p q) —+p, io—

(5(p&+q, —pz —qz)4we
+e&e2 (A4)

(p —q)'+) ~
—«

which through comparison with (8) would allow us to
identify A and S. One could further show that if the
0 (1/c ) terms are included then with the same
identifications of A and S we would reproduce (to that
order) the corresponding Darwin, spin-orbit, tensor, and
spin-spin terms appearing in (8). What is noteworthy is
that we only need to identify the nonrelativistic parts,
i.e., the lowest-order forms of A and S. The spin-
dependent and covariant structure of the two-body Dirac
formalism then automatically stamps out the correct
semirelativistic corrections.
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