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Self-consistency equation for the order parameter and restoration of chiral symmetry
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An analytical method is used to investigate the chiral-symmetry-restoring phase transition at
finite temperature and density. The self-consistency equation for the order parameter at zero tem-

perature is extended and the corresponding equation at finite temperature is established. The or-
der parameter as a function of temperature and the phase diagram of the theory are obtained.

I. INTRODUCTION

II. THE MODEL
AND THE SELF-CONSISTENCY EQUATION

AT T=O

We consider the following Lagrangian with broken
chiral symmetry:
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where Ps is a scalar field, Pp a pseudoscalar field, and g
the nucleon field. The Lagrangian is invariant under the
following chiral transformation:

One of the most important symmetries of strong in-
teractions is chiral symmetry, which plays an essential
part in explaining strong-interaction phenomena at low
energy. As is well known, this symmetry is spontaneous-
ly broken at zero temperature. In recent years, many
authors investigated the behavior of the strongly in-
teracting system at finite temperature and density by us-

ing Monte Carlo methods. ' It was found that a chiral-
symmetry-restoring transition will appear as long as
temperature or density is high enough. The purpose of
this paper is to study this phase transition by an analyti-
cal method.

Lurie studied chiral-symmetry breaking at T =0 using
the self-consistency equation for the order parameter.
In this paper, we will extend his method to the case in
which temperature and density are finite.

We review briefly the self-consistency equation at zero
temperature in Sec. II. Using this equation and consid-
ering the fact that the physical nucleon mass is not zero,
we determine the momentum cutoff A in the theory. In
Sec. III, the self-consistency equation at finite tempera-
ture and density is established and the phase structure of
the theory is analyzed in detail.
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Introducing the conserved charge 7 associated with
the chiral invariance and the vacuum expectation values
of Ps and Pp,

m ps ———g TrSp(0),

m q&p= —g Tr[iy, Sp(0)],

(10)

where Sp=(0
~
Tg(x)g(y)

~

0) is the fermion propaga-
tor. Using the functional method and neglecting the
contribution of the fermion self-energy, one can obtain
the approximate expression for Sp(0) as follows:

d4
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From this equation we know that the physical nucleon
mass M is gys. Substitution of Sp(0) into Eq. (10) gives

d4p
%s ~ +4'g

(2m) p +g ps
=0. (13)

The integration in the equation is divergent. In order to
make the discussion meaningful, a momentum cutoff A
should be introduced. For the sake of convenience, we
adopt the three-momentum cutoff scheme in this paper;
thus Eq. (13) reads

tPsF(tPs) =o (14)

one can easily prove that

exp(iaX) 0) =
~

0) for ps ——0,
exp(iaX)

~

0)&
~

0) for ps&0 .

In the second case, chiral symmetry is spontaneously
broken. Therefore, yz is the "order parameter" describ-
ing chiral-symmetry breaking at zero temperature.

Lurie established the following self-consistency equa-
tions for y& and qz.
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Equation (14) has two possible solutions: ys ——0 or
F(ys)=0. The first trivial one corresponds to the un-

broken chiral symmetry. The second, nontrivial solution
will determine ys in terms of A, m, and g. If the corre-
sponding equation at finite temperature and density can
be established, then the order parameter can be deter-
mined as a function of temperature and the chiral-
symmetry-restoring phase transition can be analyzed by
this method. This problem will be discussed in the next
section.

For future convenience, the momentum cutoff A in
the theory has to be determined. Noting that the physi-
cal nucleon mass M is gys, we know that the equation
F (ys ) =0 has a nontrivial solution ps ——M /g. Substitut-
ing ys ——M /g into F (ys ) =0, we obtain an equation for
A. Setting M =1000 MeV, m =2000 MeV, and g =15
(Ref. 3), we find

Here and afterwards, the time arguments are continued
to the interval 0 & ixo, iyo &P. Using a well-known

trick, we can rewrite Eqs. (20) —(23) as

Z'= f [des][dip][de][de]

Xexp —f dr f dx(&+Jst)ls+JPP~) (24)
P
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esp=, f [d4s][d4p][d4][d4]0s
A=860 MeV . (16)

The order parameter used in this paper is qs, whereas
the order parameter used in most articles is
( 0

~

P(x )f(x )
~

0 ) . Let us look at how they are connect-
ed. According to Eq. (10) and the identity

Xexp —f « f dx(X+Jsgs+Jpgp)
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Therefore, ys is different from (0
~
P(x)P(x)

~

0) by a
constant factor.

1 SZJ
ZJ 5Jp

(27)

III. THE SELF-CONSISTENCY EQUATION
AT FINITE TEMPERATURE

AND THE PHASE STRUCTURE
OF THE THEORY

We consider the case in which the temperature T is
finite and the chemical potential p is zero. To get the
self-consistency equation, we introduce the external
sources coupled to Ps and Pe according to

—m')0s = —gA' —Js
m')4 =— igloo 0—J, —

(28)

(29)

then setting Js ——0 and J~ =0, we obtain

From Eqs. (26) and (27) we know that esp and yzp are
independent of x because Z is only the functional of Js
and Jz, which are spacetime constants.

Taking the statistical average value of the equations of
motion

&J=Jsgs(x)+ J~gp(x)

where Js and Jz are spacetime constants, and define

ZJ= Tre -~~'

(19)

(20)

m ps& ———g TrS+&(0),

m q)pp —g Tr[iy5S~p(0)] ——.
(30)

(31)

SFp(x —y) = Tre P Tg(x)g(y),ZJ (21)

In order to solve these equations, S~p(0) has to be deter-
mined. Applying the operator y.B on both sides of Eq.
(21), we have
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where we have used the equation of motion

r d4=f40s+ifrAA
as well as the identity

(33)
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with

TP(x)g(y) =-,'[f(x),P(y)]+ —2'e(xp —yp) [1(i(x),g(y)]

(34)

Setting Js ——0 and JP ——0, we finally obtain

i "
f dp 'Y'Ji+'f f—'sp+f rsvp'pp
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0 „„(2m.) p 2+f2(pp2
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It has been proven that the terms involving 5/5Js and
5/5JP stand for the contribution of fermion self-energy
to the propagator. To obtain an analytical, approxi-
mate solution, as Lurie did at T =0, we neglect the func-
tional derivative terms in Eq. (32). Now we have

( Yd f f'sp'if—r H'pp—)SFp(x —y) = i 5' '(x —y—) . (36)

+ pFp(+p) =0

where

(41)

2= 2VP=f'SP+f PP .

From Eq. (40) we know that the physical nucleon mass
is a function of temperature. Inserting (40) into (28) and
(29), we obtain the result

Considering that SFp(x —y) satisfies the condition

sFp(x y} l,=o= sFp(x y}I,—= —ip

we write down the Fourier expansion as

(37)
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and introducing the three-momentum cutofT' A, we obtain

2
2 g 2 2 2 1/2 2 2Fp(yp}=m — A(A +g qrp) —g q&pin

2m2 gWp

d
I p I I p I

'
1

o (
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I pI 2g+g 2)' 2p]J2
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The equation Fp(yp) =0 can be easily solved. The result is shown in Fig. 1. When the value of T is small, the equa-
tion has a nontrivial solution. As the temperature increases, the value of yp decreases. When T is larger than some
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FIG. 1. The order parameter y& vs temperature T.
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FIG. 2. The critical temperature T, vs the critical chemical
potential p, .

critical value, the equation has no real root and the self-consistency equations (41) have only a zero solution. In this
case, the nucleon mass is zero and chiral symmetry is restored.

Setting tp& ——0 in F&(y&)=0, we obtain an equation for the critical temperature T, :

g A 2g 1

, +, , lpl lpl I,„(p
I I)

=o ~

From this equation, we find

1/2
1 A

T, = = 6
P, 2m'

m

g
2

=340 MeV . (46)

Now we consider the efFect of nonvanishing chemical potential. In this case, the self-consistency equations for the
order parameter still can be written as

(47)

Because the fermion propagator has some changes [substituting pi„by co„+p in Eq. (40), one can obtain SF&(0) at
1u&0], the function F&(qr&) now reads

2 g 2 2 2 1/2 2 2F&(g&)=m — A(A +g y&) —g p&ln
27r2 g f'p

1

2 p (
I p I
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I p I
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+ 1

I+exp[P[(
I p I

'+g'v p)'"+all
(48)

For any fixed p (&p, ), y& can be determined as a function of temperature according to equation F&(gap)=0. The re-
sult is similar to that in Fig. 1. Setting qr& ——0 in the equation F&(qr&) =0, we obtain the equation for the phase curve

T

2A2 2
1 1

, +, d
I p I II I2n &+exp[~ (

I p I P )I I+exp[A( I I I +~, )3
=0. (49)

The resulting phase diagram is shown in Fig. 2. It is in
good agreement with what several authors conjectured.

IV. CONCLUSION

We investigated a chiral-phase-transition model by an
analytical method. According to the self-consistency
equation, we obtain the order parameter as a function of
the temperature and phase diagram of the theory. This
shows the method is a useful tool for investigating the

chiral phase transition. We hope it may be extended to
study the chiral-symmetry restoration in QCD.
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