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CP-violating lepton asymmetry dne to B B-mixing
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As a result of B-B mixing, associated production of B-B pairs yields like-sign lepton pairs when

both B s decay semileptonically. Formulas are given for the CP-violating charge asymmetry of
these like-sign pairs. It is argued that previous calculations based on quark diagrams are unreliable

and that the asymmetry might be considerably larger. It is concluded that a reasonable estimate of
the asymmetry lies between 10 ' and 10, but neither the sign nor the magnitude can be reliably

calculated.

Evidence for B-B mixing has been found' from the ob-
servation of same-sign dileptons from a system originally
containing a B-B pair. Neglecting errors this leads to a
value

It is possible to search for the CP-violating charge asym-
metry given by
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Equation (4) for the B Bmass matrix fo-llows from the
box diagram considering only the intermediate top
quarks. The box diagram involves the Kobayashi-
Maskawa (KM) matrix factors

the transitions to the states
I

n ) of Eq. (3). There are
three classes:

(A) b(d)~c+c+d+(d)~bd,
(Bl) b(d )—+c+u+d+(d )~bd,
(B2) b(d)~u+c+d+(d)~bd,
(C) b(d)~u+u+d+(d)~bd .

(8a)

(8b)

The (d) represents the "spectator" in the initial transi-
tion; of course, the role of d and d is exchanged if we run
the arrows from right to left. In addition to these "spec-
tator" decays there are also exchange contribution such
as

b+d ~c+c~d+b,
b+d ~u+u —+d+b .

(9a)

(9b)

A, g, ; B, g„g,; C,

We then write

We shall emphasize the spectator graphs, which dom-
inate the calculation of Hagelin, but the exchange graphs
do not modify our general discussion. For each class of
transition in Eq. (8) there is a characteristic combination
of KM elements:

which are subject to the unitarity constraint
r» rp(g MA+—2( (,Ma+(„Mc). (10)

k. +0, +(i =o ~ (7)

The approximation used in obtaining Eq. (2) is

I
1 121 ~~ I M121.
The main problem is the calculation of I &2. Whereas

M, 2 involves a sum over virtual intermediate states
which is dominated by t + t, I &2 involves a sum over real
states. The most detailed calculation is that by Hagelin
who assumes these states can be described in terms of
quarks (either qq or qqqq ). He calculates the "absorptive
part" of the box diagram. In this paper we wish to look
at an alternative approach.

We first look at the quark transitions that contribute to

To interpret Eq. (10) we focus first on type-A transi-
tions. These arise from a term in H of the form

~cy ~edhA+H. c.
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where hA is given explicitly in the Appendix. The total
width for transitions of type A is
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where we have used a set of intermediate states which are
CP eigenstates with eigenvalues (CP)„.We have used

(CP)h~(CP) '=h~ and the convention
i
B ) =

~

bd ),
~B )= ~db), with CPiB )=—iB ), CPiB )=
—

~

B ). The quantity (CP )& is the average value of CP
for the intermediate states

i
n ) contributing to I ~. The

same considerations hold for transitions of type C for
which pc ——0.99. Comparing Eq. (10) with Eq. (13) we

have

Mr = pl(CP)—I (14)

where I=A or C. For the case of B-type transitions the
contributions to I &2 involve only the interference be-
tween the allowed (V,i, V„'d) and the doubly suppressed
( V„&V,d ) transitions. We shall also use (CP )a for the fac-
tor ( —Ma/pa) although it only relates to the CP values
associated with this interference term.

To determine the value of I o we may relate it to the to-
tal width. The major contribution to I comes from the
allowed B-type transitions:

where pB is estimated to be 0.44. Estimating from the
quark model the relative rates of other nonleptonic de-
cays and using the measured value for semileptonic de-
cays one estimates that about 55%%uo of all decays are of
type B so that

ro
0.55r

I Vcb I I Vud I PB
(15}

In the calculation of Hagelin the main intermediate
states are four-quark (qqqq ) states and the relative values
of the MI in Eq. (10) are determined by phase-space in-

tegrals

Mc=F
m,

MB=F 1 —p
mb

m,
MA F 1 —2p-—

mb

(16)

where we have kept only the leading order in m, /mt, .
The value of P in Hagelin's calculation is —', ignoring

QCD corrections and approximately unity if they are in-
cluded. Comparing Hagelin's equations for I,2 and I
yields

F= 8m. fs = —0.06, —
mb

(17)

Here I o yields the rate expected in the limit m, ~0 and

p„is the phase-space suppression factor, calculated in

the quark spectator model to be 0.12. The corresponding
expression for the contribution of A-type transitions to
I,2 can be written

I &2(A)=(V&Vd) g (B i&& ~

n )(n
~
hA iB)

where we have used fs =140 MeV, m& ——5. 1 GeV. The
quantities ( —Mr/pi) which we have interpreted in Eq.
(14}as (CP )I, then have the values

(CP )A ——0.39, (CP )a ——0. 12, (CP)c——0.06, (18)

where we have set P=l and m, /m& ———,'. Substituting

Eqs. (16) into Eq. (10}and using the unitarity relation (7),
we obtained the Hagelin result

r

riz=roF 0'+2&
mb

(19}

A point emphasized by Hagelin is that the "leading
term" in I,2 is proportional to gt with the result that it
does not contribute to the asymmetry Eq. (2) since Miz is
also proportional to g, and so has the same phase. Thus
the asymmetry is suppressed by a factor (m, /mb) . This
conforms to the expectation that in the limit m, —+0, or
more rigorously, m, ~m„,any CP-violating observable
like the asymmetry must vanish in the KM model.

To analyze this limit we rewrite the asymmetry using
Eqs. (2), (4), (7), (10), and (14):

—r,
a = [p~(CP)~ pa(CP)a]l—m

0 t
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In the limit m, ~0 we have pi —+1 and all (CP )r become
equal so that a =0. In Hagelin's calculation the cancella-
tion between the terms in the square brackets is very
large

P~(CP )~—Ps(CP )a

pc(CP )c

Pc(CP )c—Pa(CP )a

'2
mc

mb
= —0. 11 . (21)

However, we are really very far from the limit m, =0 as
indicated by the order-of-magnitude difference between

pA (=0.12) and unity and the corresponding range of
values required for (CP)I in Eq. (18). Thus, from our
point of view, the large amount of cancellation in Eq. (20)
requires very accurate values for the quantities (CP )I.

We believe the evaluation of (CP)I using quark dia-

grams is not sufficiently accurate even though the final re-
sult of- Hagelin may give a reasonable order of magnitude.
At the quark level the factors (CP )I represent the degree
of mismatch in phase space of the quark configuration
emergent from b decay (plus d spectator) with that of b

decay ( plus spectator d). To get efficient overlap, both
the d and d quarks must have bounded momentum in the
b rest frame; thus the overall quark configuration is col-
linear. From this point of view (CP)I may be roughly
viewed as the fraction of final-state phase space leading to
collinear configurations. However, the physical final

states contain several mesons and it is unclear that their
average CP is accurately represented by the quark model
picture.
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To be specific, consider the two-meson state D+D
and D*+D* for class A transitions. Given the limited
phase space, these states, which are primarily CP even,
may play a major role. The corresponding states for class
C, m.m and pp, are likely to be extremely rare because of
the large phase space available for extra pions. The
quark model, which appears to give a one-to-one
correspondence between SU(4)-related final states, would
seem to imply that the ratio of the rates for these two-
meson states is determined by phase space only. Thus we
are inclined to distrust the Hagelin relative values for
(CP )~ and ( CP )c.

As one goes beyond two-meson states one adds to the
sum in Eq. (3) states with the opposite value of CP.
Indeed all one has to do to change CP is to add a soft m. .
For states of class C the sum includes many terms of op-
posite sign. From general ideas of duality we expect the
quark model calculation to give a reasonable estimate of
this sum. On the other hand, because of long-distance
effects we do not expect an accuracy as good as 10%%uo and
so believe the cancellation in Eq. (21) is not trustworthy.

We now turn to numerical estimates of the asymmetry
a. Using Eqs. (4), (5), and (15),

2

The only uncertainty in the numerical coefficient comes
from the use of Eq. (1). The value of a varies inversely as
(b,M/I ); thus the relatively large value from the recent
experiment has the consequence of decreasing the value
of a relative to earlier evaluations.

If we use the result of Hagelin, substituting Eq. (18)
into Eq. (24) or (25) we find

a = —2.5)&10 (26)

independent of the value of p. To fit the observed values
of e and e' we need a value of q of about 0.4 within a fac-
tor of 2. Thus Eq. (26) gives an asymmetry around 10

To obtain an alternative estimate we look only at the
contribution to I,z from class A intermediate states.
This should give a reasonable upper limit since it corre-
sponds to completely eliminating the cancellations in the
Hagelin calculation. To estimate (CP)~ we have calcu-
lated in the Appendix the contributions of the intermedi-
ate states D+D, D'+D, D+D*, and D*+D'
The calculation is carried out using the Stech factoriza-
tion approximation which gives reasonable results for
such measured exclusive decays as 8~De. If we assume
all other states cancel this gives

V,b
=3.8

V,b
(22) (CP )A-0. 25

and, from Eq. (25),

(27)

where we have used the experimental results of Eq. (1) in
the last equality. The explicit KM factors in Eq. (20) can
be expressed in terms of the CP-odd phase invariant J of
Jarlskog, Wu, and Greenberg:

a =1.1)&10
(1— )

( 1 p)2+~2

= —5.6 X 10 sin28, d, (28)

Im

Substituting Eqs. (22) and (23) in Eq. (20) we find

J
a = —7.6, [p~(CP )„—ps(CP )s]Re

I ~cb I'

[pc(CP )c—ps(—CP )s]Re

If we use the notation

V,b ——A)(. , V„b AA, (p i ri), —— —

Vd ——AA, (1 p ig)——

with A, =0.22, then J=A k g and

a =0.37' [ [p~(CP )~ ps(CP )s)K—
+[Pc(CP )c—Ps( CP )s](K—1)],

K=
( 1 p)2+~2

(23)

(24)

(25)

where H,d is the phase of V,d in our convention. Since
ri & 0 and p & 1, Eq. (28) gives a positive value for a. Note
that if we had accepted the value of (CP )~ from Eq. (18)
the answer would be 1.6 times as large. Thus we feel it is
possible but very unlikely that the asymmetry could be as
large as 10 . Equation (28) is a reasonable order-of-
magnitude estimate. Fits to the KM matrix based on
the value of e and 8-8 mixing tend to require

I
sin28, d I & —,'. Thus we are led to estimates not much

bigger than 10
Comparing Eqs. (26) and (28) we see that even the sign

of the asymmetry is uncertain. Thus we cannot rule out a
value even closer to zero than that of Hagelin. Our con-
clusion is that a reasonable estimate of the asymmetry
lies between 10 and 10 but that neither the sign nor
the magnitude can be reliably calculated.

It has been suggested by some authors that the asym-
metry might be increased as a result of new physics. The
most likely place for new physics to come in is in contri-
butions to M&z. For example, it is possible that the large
value of hM might be mainly due to new physics. Once
one uses, as we do here, the empirical value of AM, the
only effect is in changing the phase of M, z. In the Hage-
lin analysis the low value of a is in part due to the fact
that I &z and M &z have the same phase. However we have
argued that this feature of the Hagelin analysis is unreli-
able. Thus while a change in the phase of M, ~ will cer-
tainly change the asymmetry, we cannot tell in which
direction the change will be and we do not expect any
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change in our order-of-magnitude estimate.

This research has been supported in part by the U.S.
Department of Energy.

APPENDIX

In this appendix we consider the contributions of the
lowest-lying two-meson states to I,2(A). In particular,
we give estimates for D+D, D'+D, D+D*, and
D*+D

The part of the QCD-corrected effective weak Hamil-
tonian which gives type-A contributions can be written

H~ =g, hA+g, hA,

Because these are not CP eigenstates, the sign is not
determined by CP. Therefore, one must be careful to be
consistent in phase convention in order to calculate the
sign. As we will show, we find the sign to be negative.

To estimate the matrix elements in Eqs. (A3) —(A5), we
use the factorization approach of Stech. Specifically, for
8 ~D+D this yields

(D+D ihA iB)=a, —(D
i
J ' iO)1~2 P

(A6)

where

hA= —[f,c y (1 y, )b —d~y"(1 —ys}cSP
(Al)

J~b =c y~(1 ys)b—,

+f2 yI(1 ys—}c d y"(1 ys—}b ]

where a,P are color indices and f & 2 are QCD-correction
coefficients. In the leading-logarithmic approximation, '

choosing the scale p=5 GeV and A&z&-0. 25 GeV, one
finds

f) =1.14, f2- —0.315 . (A2}

I 12(D'D }=—O' I
&D'D

I

h
I

B & I 'pDD (A3)

where pz~ is the two-body phase-space factor. Similarly,
we find

r„(D'+D'-)

The f2 term is a QCD-induced, effective flavor-changing
neutral-current term. Of course, this term disappears in
the limit where QCD corrections are small (f,~l,
f2 ~0). Since (CP )h „(CP)

' =h A and CP(D+D )

=+1,

The factor a
&

is found by combining the direct contribu-
tion from the f, term in Eq. (Al) with that from doing a
Fierz rearrangement of the f2 term Th.is yields

a( f, +-,'f~ =——1.04 . (A7}

The matrix elements in (A4) and (A5) factorize in a com-
pletely analogous way.

Using Lorentz covariance and parity, the most general
forms of the needed matrix elements can be written

(D (q)
~

A&'
~

0)=ifnq

(D' (q, e)
~

Vt'
~
0) =f,m, e„"(q),

(A8a)

(A8b}

(D+(k)
~

V„'"~B(p))=f+(p+k)„+f (p —k)„, (A9)

(D'+(k, E)
~

A„'
~
B(p)) = if'„'(k)—ia+(e* —p)(p+k }„

ia (e—" p)(p —k)

(A10a)

=( —1)z+'g
[
(D'+D'

~
hA

~

B & ( p (D'+(k, e)
~

V„'
~

B(p) ) =ge„„@'"(k)p'k~, (A lob)

(A4)

because for total angular momentum zero,

CP(D'+D' )=( —1)

with L being the relative orbital angular momentum of
the state. Since L =0, 1,2, both CP even and CP odd are
possible. In our calculation we find that D '+D' is

predominantly CP even. Finally, since D'D must have
L = 1, we find that

where"'z f+, f, a+, and g are real, Lorentz-invariant
form factors which depend on the kinematic scalar

q =(p k) . The deca—y constants fn and f, are also

real. The relative phase between the matrix elements in
Eqs. (A10) is the result of time-reversal symmetry. The
remaining phases are the result of a consistent choice of
phases for pseudoscalar and vector states.

In the nonrelativistic quark model, by comparing' to
other decay constants which have been measured, one
can estimate

and

CP ~D'+D )= ~D+D' )
' 1/2f,=175 MeV, (A 1 1)

I, (D*+D )=I, (D+D' )

—:—,'I iq(DD*)

g(B i hA i—D+D' )

X(D +D ~hA ~B)p g (A5)

which, except for g„is real by time-reversal symmetry.

where f,& 0 in our convention.

The form factors in (A9) and (A10) are calculated in
the quark model in Ref. 12 by using flavor independence
at zero recoil (p=O, k=O) and assuming a common q
dependence, F(q ), based on dominance of a B,' pole.
Here, of course, q is fixed for the two-body decays and
F(q ) suppresses the matrix elements. As discussed in
Ref. 12, a+ and a cannot be determined separately in
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this method. However, the lower limit of fa+ ——0.35, de-
rived in Ref. 12 from the measurement of the D* polar-
ization in B~D ev, is used here.

Since CPJ"(CP) '= —J„,in this convention only the
matrix elements in (A9) and (A10a) change sign under
B~B,D+~D . Therefore,

Also, since (A10b) does not contribute (by symmetry), we
find

I,z(DD') = (—,2a iG fnfn
m~y

X[f+a+(ms —m «)+a mn]p

I,~(D +D )
= —9.51 V,b I

'I ok,
' . (A13)

,'aiG —fnlf+(ms —mg') )+f mal'ppn

= —3.6f V,„fIog, . (A12)

Note that this term contributes with the same sign as the
CP-even states. Finally, summing over all polarization
states,

T

2 2 2
I zi(D'+D' )= g, ,'—a IG—fn mn f 3 r+ ——+a+ms 4 —2r+ —+fa+mii 4 3r+ ——

—
—,g mii(l 4r) —p2 4

= —7.8/V,
/

I (A14)

where r —= (mii Im, ) . The VV term (g ) gives a positive
contribution because (A10b) behaves differently under
CP. This term gives the L =1 contribution and is indeed
small ( —5%).

Therefore, if we only consider these DD-type states, we
get

decrease in the numerical coefficients of Eqs. (A13) and
(A14) so that the value of (CP )~ changes very little.

We have also estimated the contributions from the Pn.
and Pp intermediate states. These arise directly froin the
f~ term in Eq. (Al), but including the Fierz rearrange-
ment they are proportional to a2 where

(CP)~=0.25, (A15) az fz+ ,'f, =0.06——5 . - (A16)

where the value
~

V,b ~

=0.038, found in Ref. 12 from
semileptonic decays with fa+ ——0.35, has been used.
Varying fa+ from 0.35 to —0.96 in the analysis of Ref.
12 has the consequence of increasing the value of

~
V,b ~

from 0.038 to 0.052. However, there is a compensating

While we do not trust this very small value of a2, it is
probable that these states are indeed suppressed relative
to the others we have considered. Our very uncertain es-
tirnate is that the contribution of these states might in-
crease the magnitude of I,z, and thus (CP )A, by 20%.
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