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Transformation of neutron polarization in polarized media and tests of T invariance
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A general analysis is given for the modification of neutron polarization resulting from passage

through a polarized medium. The previously proposed search for precession (properly defined) of
neutron spin about kgb remains a valid test of T invariance in the presence of other spin-

dependent interactions which cause further changes. However, as noted by Bunakov and Gudkov,

the development of transverse polarization along this direction is not an absolute test, but, if such

polarization is found, the measurement of corresponding asymmetry in the transmission of polar-

ized neutrons is shown to furnish an unambiguous test. A complete set of such tests is given.

I. INTRODUCTION

Some time ago' we suggested that the propagation of
polarized neutrons through polarized media could be
used to search for T-noninvariant interactions. Subse-
quently, Bunakov and Gudkov pointed out the presence
of other spin-dependent interactions of the neutron which
also affect its polarization in the same way. This would
make the search for T noninvariance through the sug-
gested tests, if not "impossible, " at least considerably
more dincult. These arguments were elaborated further
by Stodolsky. In this note, we systematically examine
the Bunakov-Gudkov mechanisms and show that, al-
though there appears to be a simulating mechanism cor-
responding to every possible spin change which could be
induced by T-noninvariant interactions, attention to the
primary definition of T invariance permits a clear and
unambiguous distinction between effects which are a
consequence of T-invariant interactions alone and those
which require the participation of T-noninvariant in-
teractions.

Section II reviews the originally suggested tests of T in-
variance, and the disculties noted by Bunakov and Gud-
kov. The Bunakov-Gudkov-Stodolsky effects are then
fully analyzed, and the results are then simply related
through the basic requirements of time-reversal invari-
ance. Our conclusions are summarized in Sec. III.

II. THE ORIGINAL TESTS
AND BUNAKOV-GUDKOU-STODOLSKY

SIMULATIONS

The occurrence of a term fr proportional to tr (k X S)
in the forward-scattering amplitude for neutrons of
momentum k incident on a target with spin S, manifestly
violates time-reversal invariance. When polarized neu-
trons pass through a polarized medium, the real part of
fr would cause the neutron spin to precess around
ncckXS while the imaginary part of fzwould cause.
differential absorption of neutrons with spin up and down
relative to n, and a corresponding change of transverse

polarization along this direction. Bunakov and Gudkov
drew attention to the fact that, in addition to a possible
term of the form fr, the forward-scattering amplitude for
neutrons contains additional spin-dependent terms whose
combined effect produces similar consequences. In their
view, this makes the proposed experiments "impossible, "
which we may liberally interpret as an expression of their
opinion that detection of the proposed effects would be
inconclusive as a test of T invariance, because of the ex-
istence of such masquerading phenomena. Stodolsky ex-
arnined and confirmed, for certain cases, the assertion of
Bunakov and Gudkov that spin-dependent but T-
inuariant interactions can mimic the signals which were
proposed as tests of T invariance: he therefore proposed
other "true null experiments" which "cannot be faked by
the other interactions. "

We shall discuss below all possible changes of neutron
polarization which occur when traversing a polarized
medium and show that, for every such change, there is no
dis.culty, in principle, in distinguishing between a
genuine T-noninvariant effect and a spurious Bunakov-
Gudkov-Stodolsky counterfeit.

The (spin) wave function X of the incoming neutron is
transformed, after traversal of a finite target, into MX,
where M can be written in general as

M = AI +Bo +Car, +Der&,

where A, 8, C, and D are complex functions of all vari-
ables other than the neutron spin. We choose the direc-
tion of the neutron beam as the z axis and assume that
the target polarization lies in the x-z plane. Then any
term in M proportional to o. necessarily violates T in-
variance, if the target has a form and composition such
that a time-reversed neutron beam, viz. , one incident
from the opposite direction with reversed polarization,
sees a target which is indistinguishable from the original
one, apart from a well-defined change of polarization. If
we make a decomposition similar to (l) for the elementa-
ry forward-scattering amplitude,

f=foI+f~(tr S)+fp(tr k)+fra. (kXS),
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the various terms (in decreasing order of importance)
have the following clear interpretation.

(a) fo is the (presumably dominant) spin-independent

part of the forward-scattering amplitude.
(b) fl represents the interaction between the neutron

spin and the spin of the target through magnetic and nu-

clear (pseudomagnetic) interactions, and is quite impor-
tant for neutron scattering.

(c) fz is a parity-nonconserving term representing the
difference in forward scattering for neutrons whose spins
are pointed along or opposite the direction of propaga-
tion. While not quite as important as fM, the existence
of such a term is now well established, and can be as
large as a few percent offo in particular cases.

(d) f7 is an as yet undetected term, whose occurrence
requires T noninvariance and, if there is no additional
factor (k.S) present, ' '" also P noninvariance.

Bunakov and Gudkov noted, and Stodolsky confirmed
by explicit calculation, that fr and fl acting in succes-
sion can simulate the effect of fr, viz. , change the neu-
tron spin components in the plane perpendicular to
n ~ (k XS). Similarly, longitudinal polarization produced
by the imaginary part of f~ would, as a consequence of
f~, precess about S creating transverse polarization
along y. Consequently, both of the primary effects of fr
[transformation of z component of neutron polarization
to x component and vice versa, and the acquisition (or di-
minution) of polarization along y] can be simulated by
secondary effects of f~ and fr .

A possible way to suppress these obscuring effects is to
use composite materials for which the average values of
fM (Ref. 3) or f~ (Ref. 11) are made as small as possible.
Another way to avoid these complications, proposed by
Stodolsky, is to compare pairs of transmission rates, for
given initial and final spin orientations, whose difference
authentically represents T noninvariance. We shall inter-
pret and extend Stodolsky's tests as part of a complete
analysis presented below.

A general examination of all possible spin transforma-
tions undergone by a neutron beam while traversing a po-
larized target [possessing the requisite symmetry de-
scribed after Eq. (1)] shows that despite the occurrence of
the Bunakov-Gudkov-Stodolsky disturbances, the origi-
nally proposed "signatures" for T noninvariance are still
useful. Spin precession about n remains an unambiguous
indicator. Differential absorption of neutrons with spin
up versus spin down (relative to n) and the associated
change of polarization along n are not definitive, but
comparison of the two could provide conclusive evi-
dence.

The density matrix of the incident neutron beam is
given by

p, = —,'(I +o"P), (3)

where P is the initial neutron polarization. The density
matrix of the transmitted beam is then given by

Pf ——MP;M

Replacing p, by —,
'0.&P&, where we have defined o.0=I and

Po =—1, pf will be given by a corresponding expression

with P& replaced by

PA
—= (Po ——1,P„',P', P,'),

apart from a normalization factor. From Eqs. (3) and (4),

Pf Vpv p v

where

yz&
———,'Tr(cr&Mo„M ) .

With M given by the general expression in Eq. (1), it is a
simple matter to work out the elements of y&„, which are
shown in Table I. It will be seen that for the off-diagonal
elements, which represent changes of neutron polariza-
tion, there is a possible D-independent (and thus T-
invariant) contribution in every case. So the occurrence
of any particular spin transition cannot by itself signify T
noninvariance, and one must look more closely at the na-
ture of these transitions.

Dividing by the normalization factor yoo, y 0/yoo gives
the j component P of the polarization of the transmitted
beam when the initial beam is unpolarized. Similarly,
yo /yoo is the polarization-dependent fraction A of the
transmitted beam when the incident beam is polarized
along j. Inspection of Table I shows that the terms
which remain when we set D=0 (as required by T invari-
ance) obey the restrictions yo, =y, o and y03=y30, while

gp2 = —p po. In general, the transverse polarization Py
generated in an unpolarized beam, passing through a
medium polarized in the (x-z) plane, would be unrelated
to the asymmetry A . But if the effects are caused by
purely T-invariant interactions, we must have P = —A .
On the other hand, if they arise solely from the (T-
noninvariant) differential absorption of neutrons with
spin up and down with respect to n—=y, we must have
P = A . Thus, one can clearly distinguish between the
two alternatives, if P and A„are nonzero.

Any departure from Py+ Ay =0 unambiguously indi-
cates the presence of T-noninvariant interactions. If we
inspect the remaining off-diagonal elements in Table I, we
find that T invariance (i.e., D=O) requires y;J to be sym-
metric if both i and j are orthogonal to y, viz. , if both are
in the (x,z) plane, while y;J. should be antisymmetric
when either i or j is along y. According to Eq. (5), yjk
measures the part of the excess of spin-up (along j) neu-
trons in the transmitted beam, which is proportional to
the polarization along k of the incident. Since a rotation
is represented by an antisymmetric submatrix, this means
that rotation (precession) of the neutron spin about the x
or z axes is perfectly consistent with T invariance,
whereas precession about y is not. This confirms the as-
sertion made in Ref. 1 that observation of neutron spin
precession about y is an unambiguous indicator of T
noninvariance. The transformations of neutron spin in
the (x,z) plane arising from Bunakov-Gudkov-Stodolsky
simulations have a qualitatively different character.
Table I shows that the excess of x-polarized neutrons in a
beam initially polarized along z, from T-invariant in-
teractions [proportional to Re(8'C)] is exactly the same
as the excess of z-polarized neutrons developed in the
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TABLE I. Matrix elements of y &
———Tr(cryo~ ). Diagonal elements which have not been mentioned in the text are omitted

for simplicity.

1=x 2=y 3=z

0
1 (x)
2 (y)
3 (z)

—,'(
I
a

I

'+
I
B

I

'
I
c

I
'+ ID I

')
Re(B A)+Im(CD* )

Re(D A )+Im{BC*)
Re( C*A )+Im(DB )

Re(A*B)+Im(C D)

Re(D*B)+Im(AC )

Re(C B)+Im(A D)

Re( A D)+ Im(B C)
Re(B D)+Im(CA*)

Re(C*D)+Im( AB *)

Re(A C)+Im(D B)
Re(B*C)+Im( AD*)
Re(D C)+ Im( A *B)

rpa Qa9p3 ap & (7)

where t)« ———1 for A, =2 and rI« ——+ 1 otherwise. When
one of the indices is zero, Eq. (7) is a statement of the
general polarization-asymmetry requirement of T invari-
ance:

P~=g AJ . (8)

The symmetries required by Eq. (7) for the remaining
off-diagonal elements, when neither index is zero, can be
deduced as follows. Replacing B, D, and C in Eq. (1) by
It, , h2, and )tt3, respectively, we find the following by
direct substitution in Eq. (6}:

1jk 2( I

~
I

' —It Itm )SJ'«+Re(aj kk ) &Jkm™(Ah —' ) .

(6')

Equation (6') shows that if It»:D is zero, as —required by
time-reversal invariance, rJI, , must be symmetric for any
two axes j and k perpendicular to y, and antisymmetric
(for j&k) when either j or k is chosen along y.

Finally, we show how the various tests all relate to the
basic condition of reciprocity,

C.(l3)= c&(n), (9)

required by T invariance. C (P) is the counting rate for
transmission of neutrons with spin along P when the in-
cident beam is fully polarized along cz. a is the direction
of spin corresponding to a in the time-reversed system.
Under the action of time reversal T (more accurately,
motion reversal if we adopt an active interpretation), k,
S, and a are all reversed. A further 180 rotation R
about y ~ (k)& S}brings k, S, and the (x,z} components of
o back to their original values but o.„remains reversed.
We may express this formally by saying that under R T,
cr. changes to g.cr. , where g. has been defined after Eq
(7). Under the assumption of rotational invariance, Eq.
(9}must also hold when a and P represent the R T trans-
forms of a and P, respectively. We distinguish between

same way in a neutron beam initially polarized along x.
On the other hand, true precession about y would require
the amount of z polarization arising from initially x-
polarized neutrons to be equal in magnitude but opposite
in sign to the x polarization resulting from initial z polar-
ization, as is seen to be the case for the terms proportion-
al to D.

The T-invariance restrictions on the matrix r~p can be
synthesized into

three possible cases.
(a) a and P are both chosen along the n—:y direction.

Then both will reverse sign under R T, and if we set P=a
in Eq. (9) we obtain

C„(n)=C „( n)—, (10)

which is the first of the "novel" tests of T invariance pro-
posed by Stodolsky. The choice P= —a yields an identi-

ty.
(b} Both rz and P lie in the (x,z} plane. Then both

remain unchanged under RT, and the choice rz=P now

gives an identity, while an interesting relation follows
from rz= —P:

CI( —I)=C )(l),
where I denotes any unit vector in the (x,z) plane. Two
further tests proposed explicitly by Stodolsky correspond
respectively to the choices I=z and 7=x in Eq. (11).
Since a and P do not have to be chosen in the same direc-
tion, we obtain, more generally,

(12)C((l') =C(.(l),
where I and l are any two unit vectors orthogonal to n, a
relation also mentioned by Stodolsky. It will be seen that
Eq. (11) is a particular case of Eq. (12}.

(c) a is chosen in the (x,z) plane while P is along n.
Then

C,(n)=C „(I) .

Particular cases of Eq. (13}are

(13)

(14)C„(y)=C (x) and C, (y) =C»(z) .

We have shown elsewhere how the polarization-
asymtnetry relation, Eq. (8), follows directly from the re-
ciprocity relations (9). Now we show how the remaining
relations also follow directly from reciprocity. From the
defining equation (5}, the matrix elements y k (when the
latin indices run over the spatial components from 1 to 3)
are directly related to the counting rates through

(15)

For any two directions I and I, orthogonal to y, RT in-
variance requires Eq. (12) to hold. When we make the
corresponding substitutions in Eq. (15), for j and k in the
(x-z} plane, we obtain an expression which coincides with
the definition of rz . Similarly, if j is chosen as n and k

Ck(j ) Ck( j) C.(j )—+C,—( j—)—
r~k ~roo=

Ck(j}+Ck( —j)+C «(j )+C k( —J)
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along I, we may replace the individual terms in the ex-
pression for y„& according to Eq. (13), which applies in
this case, and obtain an expression which is identical with
that which defines —yI„. Thus we have proved that the
symmetries imposed on y.k by the condition of T invari-
ance arise directly from the primitive requirements of re-
ciprocity.

Any of the six distinct cases of Eq. (7) serves as a test of
T invariance. The three equations in which one index on
each side is zero require measurement of neutron spin be-
fore or after transmission through the medium. Test of
the other three equations, in which no index is zero, re-
quires the spin to be measured both before and after
transmission. With available experimental techniques,
the method would be sensitive to interactions which
would not have been detected in previous experiments.

III. SUMMARY

The main conclusion of this paper is that the changes
of neutron polarization in passing through a polarized
medium provide several possible tests of T invariance.
Spin-dependent ( T-invariant) interactions beside the
sought-for T-nonin variant interaction complicate the

search by causing some of the effects to be expected from
a T-noninvariant interaction. Nevertheless, there is no
diSculty of principle in distinguishing between T-
invariant and T-noninvariant effects. All the proposed
tests are deducible directly from the primitive require-
ment of reciprocity, permitting no ambiguity about their
validity as tests of T invariance. Explicitly, the tests are
(a) comparison of polarization P produ. ced in an initially
unpolarized beam, with the asymmetry A for transmis-
sion of neutrons polarized in the same direction, and (b)
comparison of the detection rate C (P), for neutrons with
spin along P when the incident neutrons are polarized
along tz, with an appropriately related C&(a). A com-
bination of these rates can be interpreted in terms of spin
precession.
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