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A geometrical model for multiparticle production at low as well as high pz is discussed. Below
the threshold of substantial production of jets, the model has geometrical scaling and Koba-
Nielsen-Olesen scaling, the latter being a result of Furry branching in multiplicity distribution at
each impact parameter. Above the threshold the production of jets is explicitly taken into account

by use of perturbative QCD. The separation into soft and hard components is done in the eikonal

formalism consistent with unitarity. Geometrical scaling defines the soft component of the eikonal
function. The hard component is related to the jet-production cross section; the p& cutoff is not
chosen arbitrarily, but is to be determined by o,&

and cr„t. Forward-backward multiplicity correla-
tion can be calculated separately for the cases of no jets and with jets. The emphasis in this paper is
on the formalism of the model. The procedure to determine the multiplicity distribution at all s is
discussed.

I. INTRODUCTION

In a recent paper, ' we have shown that a model for
multiparticle production at low pz based on Furry
branching and impact-parameter smearing can lead to
Koba-Nielsen-Olesen (KNO) scaling and can produce a
multiplicity distribution P„ that fits well the experimental
data in the CERN ISR range, &s (65 GeV. In that
model the violation of KNO scaling, as observed by the
UA5 Collaboration at the CERN SppS collider, is attri-
buted to the production of low Ez. jets (cal-led minijets),
observed by the UA1 Collaboration. We develop here
the formalism to include jet production in the geometri-
cal branching model consistent with unitarity and to de-
scribe the forward-backward multiplicity correlation in
that model. At energies where jet production is unimpor-
tant, we have calculated the correlation parameter, which
agrees well with the data from the ISR (Ref. 6). The re-
sult is relatively independent of the details of P„. At
higher energies where jet production could be important,
we have at present only a crude estimate, which is in
rough agreement with the data from the SppS (Ref. 7).
An extensive phenomenological work on the subject is
currently in progress.

It is generally agreed that at some value of the collision
energy the production of jets should become an impor-
tant part of the total cross section; however, there is some
disagreement on whether or not the observation of mini-
jets by UA1 should mark the beginning of such a regime,
since the experimental criteria for the definition of a jet
have been set rather arbitrarily. Our view on this issue is
based more on the general observation that a number of
features of high-energy data exhibit energy independence
up to the top of the ISR energies. They are (1) KNO
scaling, (2) (pr) =350 MeV, (3) cr„/o„,=0 17, and (4).

B/0 t t —0 3, where B is the slope of the diffraction peak.
Features (3) and (4) are usually referred to as geometrical
scaling. The fact that all these scaling properties are
violated at &s )200 GeV clearly suggests that a thresh-

old exists somewhere between the top of the ISR and the
bottom of the SppS collider energies, say, 100 GeV for
definiteness. Above that threshold a new dynamical pro-
cess makes a sufficient contribution to the total cross sec-
tion as to make the scaling violation noticeable. It does
not mean that for v's (100 GeV such processes are
nonexistent. Since important contributions from the
hard scattering of quarks and gluons are not only expect-
ed theoretically but also observed experimentally, it
seems reasonable to identify the new dynamical process
with the production of jets and to regard 100 GeV as the
approximate value of &s, above which such processes
can no longer be ignored —whatever the criteria for the
definition of a jet may be. The observation of minijets by
UA1 should be regarded as a specific demonstration of
the plausibility of this view. Conversely, we would re-
gard any theoretical interpretation of the high-energy
data that does not take into account the production of
jets at &s ) 100 GeV as missing something dynamically
significant.

Although the study of long-range correlations was ini-
tiated a long time ago, even before the ISR data on
forward-backward (F-B) multiplicity correlation was pub-
lished, the subject laid dormant for many years until the
CERN collider experiment kindled renewed interest in
it. A large number of papers' ' have reported on re-
cent studies from various approaches, ranging from dual
parton model based on specific dynamics to statistical
models practically devoid of dynamical details. Nearly
the only consensus is that the F-B correlation is as impor-
tant as the multiplicity distribution in characterizing the
nature of the dominant mechanism for particle produc-
tion at low pz-. Our aim in this paper is to investigate
how various dynamical and geometrical properties of our
branching model without and with minijets affect the F-B
multiplicity correlation.

The branching model is, relatively speaking, a late co-
mer as a possible description of multiparticle production
at low pr (Refs. 17—20), despite the fact that Giovan-
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nini ' long ago worked on QCD branching and its con-
nection with jet calculus. Its virtue lies in the dual
property that on the one hand it agrees at the level of
leading order with the results of perturbative calculations
for hard-collision processes, while on the other hand its
dynamical content can be extended to the realm of soft
interaction, where no calculational method (perturbative
or nonperturbative) in QCD exists, since no small param-
eter is assumed in the branching mechanism. Multipar-
ticle production in soft hadronic interaction is a many-
body problem involving long distances (long in the sense
that the relevant distance scale is & m „'). Thus it is not
only natural but sensible to make use of the powerful
techniques of stochastic methods ' to treat what is un-
tractable in strong interactions. What has been lacking
in the past was a convincing demonstration that the
branching model provides an excellent phenomenological
description of the data. Because of the complexity of the
various strands of physics involved, we believe that the
demonstration must come in stages.

The first step toward serious phenomenology in the
branching model has been taken in Ref. 1. Regarding
minijets as being responsible for the violation of KNO
scaling, a subject that extends beyond the scope of
branching anyway, we focused our attention on the issue
of KNO scaling in the ISR energy range. We found that
branching alone is insufticient: it must be supplemented
by impact-parameter (IP) smearing. The importance of
considering the geometrical aspect of extended objects in
collision (such as hadrons and nuclei) has been known for
a long time. Various attempts have been made to
smear narrow distributions (such as the multiplicity dis-
tribution for e+e annihilation) to get broad distribu-
tions that scale at ISR (Refs. 25 —28). Our success in
amalgamating branching with IP smearing implies that,
even at fixed impact parameter, the multiplicity distribu-
tion is broad and unlike those associated with jets pro-
duced in hard processes. Above 100 GeV, minijets make
a significant contribution to the total cross section and
their effect in further broadening the multiplicity distri-
bution must separately be taken into account.

Further testing of the physical relevance of the geome-
trical branching model must now go beyond the multipli-
city distribution, and the natural next step is to examine
its implications on correlations. In the absence of a reli-
able prediction on the two-particle inclusive distribution
at this stage, we concentrate on the long-range forward-
backward multiplicity correlation. We shall show that a
branching process by itself does not have F-B multiplicity
correlation, just as back-to-back jets do not. However, IP
smearing introduces correlation for branching, and
smearing in the virtuality of the jets does the same for
minijets. For these and other reasons the correlation pa-
rameter is nonzero at ISR and increases at the SppS col-
lider.

An important part of our approach is to demonstrate
that jets can be introduced at higher energies consistent
with unitarity and geometrical scaling of the soft com-
ponent. Since the border line between an event with a jet
and one without is somewhat fuzzy, our approach is actu-
ally the opposite of the experimental one. We use geome-.

II. THE GEOMETRICAL BRANCHING MODEL

We review in this section the key points of the geome-
trical branching model. ' We give first the highlights of
Furry branching, and then IP smearing.

In connection with the study of cosmic-ray showers,
Furry first considered the branching equation

F„=(n——1)F„& nF„, —k k k

t
(2.1)

where F„"(t) is the multiplicity distribution at time t due
to branching; n is the number of particles at t, and k is
the number of initial sources at t =0. The notion of time
may be ill defined in multiparticle production at high en-

ergy, but its meaning in (2. 1) can be unambiguously de-
duced by multiplying (2.1) by n and then summing over
n, yielding (with g„F„"=1)

t =ln(n lk), (2.2)

where n is the average multiplicity

n=ynF„". (2.3)

Later we shall emphasize the dependences of n and k on s
and the impact parameter b. For now, we need only re-
gard (2.1) as the essence of a stochastic process describing
branching, viz. , for an incremental increase in t, or s, any
one of the n particles can branch.

If we define the generating function Gi, (u, t) by

Gg(u, t)= g u "F„"(t),
n=k

it can be shown from (2.1) that
k

GI, (u, t) = pu
1 —qu

(2 4)

(2.5)

where p =e ' and q = 1 —p. By negative-binomial expan-
sion of (2.5) we get

F =k
n

n —1
k n —k

n —k (2.6)

In the following we shall always take F„k to be zero for
n &k. From BGk/Bu and 8 Gk/Bu evaluated at u =1,
we further get

n =k/p, (2 7)

trical scaling to define the soft component and introduce
jets in the hard component in such a way that their com-
bination satisfies unitarity at all energies.

The plan of the paper is as follows. In Sec. II we re-
view the geometrical scaling model without jets. It is
then applied to the problem of F-B multiplicity correla-
tion in Sec. III. In Sec. IV we extend the geometrical
scaling model to include jet production in a way that is
consistent with unitarity. Then in Sec. V we develop the
formalism for calculating the correlation parameter when
the collision energy is above the jet-production threshold.
A rough estimate of the parameter is given in the Appen-
d1X.
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y2 =—(n n—)/n-Z -2
k pg

Let us now define an evolution parameter w:

w =n/k =e' .

(2.8)

(2.9)

F„(w)= I'(n ) 1

I (k}I (n —k+1) w

1
1 ——

w
(2.10)

The factorizability of (2.5) implies an important prop-
erty of the Furry distribution, since for k =k&+kz we
have

GI, (s, t)=G& (s, t)GI, (s, t) .

It then follows from (2.4) that

(2.11)

F„' '(w}= g F„'( w)F„'(w)5„„+„
n&n2

(2.12)

a relationship of some significance in the following.
The Furry distribution (2.10) was applied directly to a

phenomenological description of P„ in pp collision with
only moderate success. ' However, after IP smearing the
result gave a spectacular fit of the KNO distribution in
the ISR energy range. ' The key point is that the branch-
ing process is a description of particle production for
every collision between hadrons at any (random) impact
parameter b. The number of initial sources of branching
depends on b in a way that is related to the opacity of
hadrons in the eikonal model. It is after the integration
over b that the resultant multiplicity distribution should
be compared to the data. For the purpose of facilitating
subsequent discussions on correlation, let us recall the
geometrical description of hadronic collisions.

For i/s & 100 GeV we assume geometrical scaling so
the impact parameter may be written in the form
b =Rbo(s), where R is a dimensionless scaled radius, in
terms of which the eikonal Q(s, b) becomes simply Q(R).
The inelastic overlap function g (s, b) becomes

g (R)=1—exp[ —2Q(R)], (2.13)

which satisfies f dR g (R ) = l. If, in general, Q„(s,R )

denotes the multiplicity distribution at a given b, then IP
smearing means

P„= f dR g(R)Q„(s,R), (2.14)

Then the Furry distribution in terms of w for any nonin-
tegral k is

k

A variety of possibilities have been considered for
Q„(s,R) in the past. ' In the geometrical branching
model we identify Q„(s,R ) with the Furry distribution
F„"(w), and introduce the R dependence in a specific
way. ' Since both n and k depend, in general, on s and R,
we assume that they have the same R dependence by fac-
torizing as follows:

n(s, R)= (n )h (R),
k(s, R}=(k)h(R) .

(2.18)

(2.19)

Thus the evolution parameter w is a function of s only:

w(s)=(n) /( k) . (2.20)

From (2.17), Ii (R) is constrained by the normalization
condition

tb j=1, (2.21)

which, in turn, in conjunction with (2.19) defines (k ) as
[k(s,R ) j, the average number of initial clusters.

A crucial part of the model is in specifying the R
dependence of h (R), which is the key link between
branching and geometry, as evidenced by the variables of
F„"(w): only the superscript k depends on R through
(2.19). That is, R specifies the initial condition of the col-
lision process; k (R ) (with s omitted) specifies the number
of initial clusters (or sources} at that R. What happens
thereafter is specified by the branching process for each
cluster in a factorizable way [cf. (2.12)]. Since the
efficiency for particle production must be intimately con-
nected with the opacity of hadrons, it is reasonable for us
to assume the relationship

b (R)=hoQr(R), (2.22)

where y is an adjustable parameter in the model, but ho
is fixed by (2.21). In Ref. 1 we have been able to render
an excellent fit of P„by choosing y to be

y =0.3+0.05 . (2.23)

One of the aims of this paper is to show that this value of
y is consistent with what is necessary to yield the ob-
served F-B multiplicity correlation. In this sense of an
overconstrained system we have therefore no more free
parameters in the model.

In the following we shall need th2j. For brevity we
denote it by

(2.24)

which we shall abbreviate by the notation

(2.15}

whose dependence on y is shown by the dashed line in
—1 6RFig. 1, on the basis that Q(R) has the forin 1.4e

(Refs. 25 and 1). From (2.8) and (2.20) we get

Average multiplicities, defined by

(n ) = g nP„and n = g nQ„ (2. 16)

w —1=(C2 p, }(n), — (2.25)

are then related by C, =(n')/(n )'. (2.26)

(n)=[nj .

Clearly, n depends on both s and R.

(2.17) We use the experimental value of 1.2 for C2 and the
value of p determined by the best value of y to specify
the s dependence of w, assuming that ( n ) is a known
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FIG. 1. Plot of p and B vs y. Data points are from Ref. 6.

The bracketed range of y is from fitting the multiplicity distri-
bution in Ref. 1.

function of s. Note that this procedure yields the s
dependence of ( k ). What has been used as empirical in-
put is the value and constancy of C2. The output of the
model are the values and near constancies of the three
higher moments C3, C4, and C5.

III. FORWARD-BACKWARD CORRELATION
WITHOUT MINI JETS

We now investigate the implications of the geometrical
branching model on F-B multiplicity correlation. In this
section we focus first on the energy range &s & 100 GeV,
for which there is KNO scaling and our model is quite
successful in producing the observed P„without minijets.

The multiplicity correlation has been measured either
for forward and backward hemispheres without a rapidi-
ty gap, or with a gap of kg=2 at g=0, where g is pseu-
dorapidity. We shall concentrate on the latter because it
eliminates any contaminating effects due to short-range
correlation, which is usually regarded as having a range
of hg &2. Let us use n, and n2 to denote the particle
multiplicities measured in two detector windows separat-
ed in g and having arbitrary g widths. For definiteness,
we may associate n

&
with a window in the forward hemi-

sphere, and n2 backward, with an g gap of at least 2 units
between them.

In terms of the joint multiplicity distribution P„„ the
1 2

average n z for fixed n, is defined by

( n z(n, ) ) = g n 2P„„ /P„
Pl 2

(3.1)

(nz(n, ) ) = A +Bn, ,

as has been observed, then it can be shown that ""
(n, n, &

—(n] &(n, )8=
(n', &

—(n, &'

(3.2)

(3.3}

where P„=g„P„„.If (nz(n&)) depends linearly on
1 2 1 2

n&, i.e.,

(3.4)

which follows from (2.11) and (2.12), we therefore have

P„„(w)=I dR g(R)F„' (w)F„' (w) . (3.5)

The R dependences are exhibited explicitly here to make
transparent the origin of lang-range multiplicity correla-
tions. Nate that if it were not for IP smearing, P„„

1 2

would have been factarizable, and correlations would be
totally absent.

There is a tacit assumption in (3.5) that should be men-
tioned. The detector windows for n& and n2 should not
only be separated, but also be wide enough themselves so
that all the particles produced by branching from k

&
and

k2 are included. Otherwise, the evolution parameter w
on the right-hand side of (3.5) must be reduced to refiect
the appropriate amount of branching necessary; con-

We want to establish here the relationship between this
correlation parameter 8 and the parameter y discussed in
the previaus section.

In the geometrical branching model the number of ini-
tial sources of branching is k (R) at R. How these k (R )

sources are distributed in rapidity is a subject that has
not yet been investigated in detail. It is reasonable to as-
sume at this point that they are uniformly distributed
throughout the rapidity range that excludes the fragmen-
tation regions, since we regard the branching model to be
applicable to only the particle production process in the
central region due to the overlap of the incident hadrons
in the transverse plane, while the spectatorial portions
are mainly responsible for the production of particles in
the fragmentation regions. In this picture of uniform dis-
tribution of the initial sources in the rapidity space, we
further assume that the sources in the forward (back-
ward) hemisphere give rise to particles through branch-
ing that stay mainly in the forward (backward} hemi-
sphere after the hadronization process is complete. Some
crossover is unavoidable, but the particles that do are
limited in rapidity range and would be excluded from a
consideration of the long-range multiplicity correlation, if
the separation between the forward and backward detec-
tor windows has a pseudorapidity gap bg) 2. The basis
for this view is grounded in the observation that phenom-
enologically the extent of branching, as measured by w, is
not great since C2 ——1.2 and p is between 1.05 and 1.1,
we see from (2.25) that w is less than 3. That is, each
source branches, on the average, into less than three
charged particles. Considerable crossing or interlacing of
the branches is therefore not expected.

On the basis of this general picture we now make the
specific assumption that there are k

&
initial sources some-

where in the forward hemisphere that gives rise to the n
&

particles, and k2 in the backward hemisphere giving rise
to n2, provided that the n, and n2 particles are well
separated by a rapidity gap. This assumption is obvious-
ly well justified if the gap is very large; in our present case
it amounts to the assumption that kg=2 is wide enough.
Because of the factorizable property of the Furry distri-
bution,
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currently, k, and kz would not be the sources at t =0,
but at some later t. The experimental conditions of Ref.
6 satisfy our criteria for the validity of (3.5).

For the observables related to the n
&

window, we have
r =2.6/7. 2=0.36 . (3.17)

tance is for
~ g ~

& 3.6. Thus, assuming flat distribution,
we get

P„=I F„' I, (3.6)

I k
n', = y n', F„', (3.7)

n&/k& ——m, (3.8)

n] =n, +(w —1)n, , (3.9)

the last equation being a consequence of (2.8) and (3.8).
In performing the IP smearing of (3.9) we assume the
same R dependence for k, (R ) as for k (R ), i.e.,

k](R)=(k])a(R) . (3.10)

(3.1 1)

Similar results follow for nz. For multiplicities in both
windows, we have

This is reasonable so long as R is not too large for which
there may be so few particles produced that kinematical
constraints in rapidity may lead to nonuniform g distri-
bution of the initial sources. Since the effect of large-R
collisions on average quantities is negligible, we shall re-
gard (3.10) as valid for all R. Thus we obtain, from (3.9),

The resultant values of B as a function of y are shown by
the solid curve in Fig. 1.

The experimental values of B at the three upper ISR
energies are also shown in Fig. 1. Their average value is
0.14, which corresponds to y=0.27, well within the
range y =0.3+0.05 required by P„. We regard this as a
very satisfactory demonstration that the geometrical
branching model is consistent with the most prominent.
features of soft production of particles at the ISR ener-
gies.

It should be remarked that at the two lower ISR ener-
gies (24 and 31 GeV) the values of B are 0.032+0.015 and
0.063+0.016, respectively. At those energies the central
rapidity plateau extends out only to

~ g ~

=2 or less.
Thus the value of r would be smaller, resulting in lower
values for B. However, we feel that there is no quantita-
tively reliable way to determine the precise value of B,
since there are numerous uncertainties at lower energies,
not the least of which is the greater importance of the
effect of diffractive production of particles (which has no
F Bcorrel-ation) for the rapidity cut and acceptance of
the experiment. We have therefore left those two data
points out from Fig. 1.

krak
n&n2 ——~ n&n2 „'„——n&n2,l 2

nln2

(3.12)
IV. GEOMETRICAL SCALING,

HARD PROCESSES, AND UNITARITY

(n]n2 ) = j n]n2 I =Jtl(n ] ) (n2 )

Substituting these results in (3.3) we obtain

(3.13)

(3.14)

&n, & (n, )
(n) (n &

Then it follows from (2.25) and (3.14) that

(3.15)

C2 —IB= 1+
{p—l)r {3.16)

The experimental value of C2 in the ISR range is 1.2.
The dependence of p on y is shown by the dashed curve
in Fig. 1. It has been shown in Ref. 1 that the value

y =0.3+0.05 is consistent with C2 ——1.2 and gives a good
fit of P„ throughout the ISR energy range. Now, the
value of r depends on the correlation experiment. In Ref.
6 the pseudorapidity cut is for

~ q ~

& 1, but the accep-

Notice immediately that without IP smearing we would
have factorizability in (3.13) with ]]l=1, and there would
be no multiplicity correlation. Now, consider the com-
mon case where the two windows are of equal size,
symmetrically placed on opposite sides of g =0. Define

As discussed in Sec. I we regard the production of jets
through hard collisions of partons as an important part
of the total cross section that cannot be neglected when
~s & 100 GeV. Various attempts have been made to as-
sociate the rising total cross section with jet produc-
tion. ' The simple addition of the soft and hard corn-
ponents of cr„, has been criticized ' on the grounds of
unitarity, since each of those components is a8'ected by
the other by unitarity correction. However, experimen-
tally there is no ambiguity in identifying an inelastic
event as being either one with jets (hard), or one without
any jets (soft), once the criteria for a jet have been adopt-
ed. Those events are unquestionably additive to make up
the total inelastic contribution to o„,. The crux of the
problem is not whether or not there are two components
that are additive, but rather whether or not there exist
components that can more easily be calculated and can
be continued from lower to higher energies. For, in as-
surning a soft component o, «, which may or may not be
constant, one is also tacitly assuming a simple energy
dependence. It is that energy dependence of cr,o« that is
subject to unitarity correction when the hard component

is nonzero
In the geometrical branching model the empirical law

of geometrical scaling is adopted as an essential property
of the model for &s ~ 100 GeV. In extending to higher
energies we seek to combine a component that persists to
be geometrical scaling with a component that involves
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o"=m. f db'(1 —e ') .
0

(4.8)

The interpretation of (4.8) is that, at every b,
1 —exp( —2Q, } is the probability of a hard scattering,
whether or not it is accompanied by soft production. By
a mean-free path argument, Q~(s, b) is then half the
average number of hard scattering per collision at s and
b, and can therefore be written as

(4.9)Q, (s, b) = —,
' A (b)tr, «(s),

where

A (b) = f d r p(r)p(b —r) . (4.10)

p(r) is the longitudinally integrated matter distribution of
one of the incident hadrons at transverse coordinate r
normalized by f d rp(r}=1. Since Qo(s, b) is propor-
tional to A (b) (Refs. 25 and 39), we may write

Qo(s, b)
A (b)= f d'b Q,(s, b)

(4.11)

In a geometrical scaling model A (b) is not energy in-
dependent but is

Qo(R )
A (s,b)=

oO(s) f dR'Q, (R)
' (4.12)

o„=m f db (1—e ")
0

b 1 —e

o«, =2m f db (1—e "),
0

(4.1)

(4 2}
where

(4.13)oo(s)=nba(s) .(4.3)

hard scattering of partons. Since the latter is not restrict-
ed to the energy regime &s & 100 GeV, the issue is really
whether or not jets can be defined in such a way that
their production noticeably breaks geometrical scaling at
&s around 100 GeV. We recall that because of the mass-
lessness of the partons a cutoff in transverse momentum
is unavoidable, and therein lies the ambiguity of what
characterizes a jet. Our physical reasoning for using
geometrical scaling of the soft component as a means to
define jets of the hard component is based on the conven-
tional understanding that the increase of cr„, with energy
is due to (a) hadron size getting larger and (b) hadrons
getting more opaque. Since hard scattering of partons
has the effect of rendering the host hadrons more absorp-
tive, it should increase the hadron opacity, described by
the eikonal function 0, without changing the size. The
issue of hadron size is a matter of geometry, and as such
geometrical scaling should therefore continue to be a
property of the soft interaction even when hard interac-
tion begins to enhance the opaqueness. In short, we re-
gard geometry and opaqueness due to soft interaction as
being independent from the additional opaqueness due to
hard interaction, at least until unitarity mixes them up.
A thorough demonstration of whether or not this view is
realistic requires extensive computational work which is
to be reported elsewhere.

The simplest way to impose unitarity is by means of
the eikonal formalism, in which one has

in the approximation that the real part of the elastic
scattering amplitude is zero. For &s &100 GeV, the ra-
tio cr„/o«, has been found experimentally to be ap-
proximately constant at the value 0.175+0.005, the prop-
erty of geometrical scaling. At &s =540 GeV, the ratio
is found to have increased to 0.215+0.005. From ele-
mentary scattering theory this means that the absorption
has increased. We therefore write the eikonal Q(s, b) as a
sum of two components,

Q(s, b) =Qo(s, b)+Q, (s,b), (4 4)

Qo(s, b)=Q0(R), (4.5)

where b =bo(s)R. The hard component, Q&(s, b) is zero
for &s & 100 GeV, and represents the effects of added ab-
sorption for Vs & 100 GeV.

Substituting (4.4) and (4.2}, we can separate the inelas-
tic cross section into the soft and hard components in the
conventional way:

~In=~ +
o'=m f db (1—e ')e

0

(4.6)

(4.7)

where Qo(s, b}, the soft component that possesses the
properties of geometrical scaling, is the same as for
&s &100 GeV, i.e.,

It then follows that we can write

o j«(s } Qo(R )
Q, (s, b) =

2ao(s) f dR Qo(R)
(4.14)

It is important to stress that o;et has been introduced in
(4.9) without the specification of the criteria for a jet.
Whatever its definition, a hard scattering takes the par-
tons out of the incident beams and therefore makes a
direct contribution to 0&.

Using (4.5), (4.13), and (4.14), we can express cr,~(s) and
o „,(s) in terms of oo(s) and cr;„(s), with Qo(R) being re-
garded as a known function from dtr Idt (Ref. 25). From
the data on tr,

~
and tr«, at ~s =540 GeV, o;«can be

determined. The model would be a success, if the corre-
sponding pT cutoff suffices for all other values of s, and
would be especially attractive if all other scaling violation
effects can naturally be explained in terms of the produc-
tion of jets so defined. The phenomenological work will
be reported elsewhere.

Regarding Qo and 0
&

as known, we return to
(4.6)—(4.8) to discuss the topological cross section o„
for the production of n particles. According to (4.7},tr' is
the soft component of the inelastic cross section, since
the integrand describes the probability of soft interaction
multiplied by the probability of no hard scattering. On
the other hand, the integrand of (4.8) does not rule out
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soft interaction accompanying a hard scattering. Thus
we have

o.
n

=o.;„Pn =o'P„'+ca "P„", (4.15)

ao 2 200(R)o'„=rr'P„' =cr() dR (1—e '
)

0
20)(s&R) k(R) (4.16)

(rkPk o dR (1—e ' '
)

00 —2Q (s,R)

0

XH„(s,R), (4.17}

where H„(s,R) is the multiplicity distribution associated
with jet production. Note that in (4.16) we have used the
Furry distribution soft production, as in Sec. II, but un-
like the situation below the jet threshold the dependence
on Q, (s,R }breaks the KNO scaling property of P„' above

jet threshold. Nevertheless, the soft interaction is
specified by the same quantities Qo(R) and F„"' )()v); in

this sense the soft component is defined by a continuation
of the mechanism that gives rise to geometrical scaling.
The breaking of geometrical scaling is a direct and una-
voidable consequence of the nonvanishing probability for
hard scattering. These considerations are independent of
the behavior of o()(s), which has never been relevant even
below jet threshold, since the multiplicative factors can-
cel in the ratio o,)/(r „,.

The normalization requirements

virtuality v, and (p (u) is the multiplicity distribution of
particles associated with initial-state bremsstrahlung.
For the soft production of particles associated with a
hard scattering, we assume that the Furry distribution
F) (tu) continues to describe the inultiplicity distribution
of I low-pT particles. The parameter u is still specified by
(2.25) with C2 ——1.2 and @=1.03 (see Fig. 1), but with
(n ) modified to represent the low-pr component of the
average multiplicity evaluated at the residual energy that
remains after the energy expended for the hard process is
subtracted. The use of F)"(w}, is not only the natural as-
sumption but also the objective for carrying out the de-
tailed analysis of the soft process below the jet threshold
in Ref. 1.

H„(s, r) is defined in such a manner that the normaliza-
tions

g 4J(u) =1,
J

(v)=1

(4.23)

(4.24)

ensure the validity of (4.19). Despite the range of integra-
tion in (4.22) being from 0 to s, the definition of a jet is
contained in f (s, u), which, according to the usual pro-
cedure in the QCD parton model, is

dX ) dX2f (s, u)= F(x „v)F(xz,u)
0 jet +1 x2

y Fk(R)( ) (4.18}
XS (s)x ),x2~u) (4.25}

QH„(s,R)=1 (4.19)

where F(x;,u) is the parton distribution of the incident
hadrons, and

guarantee that the multiplicity distributions P„(soft), P„
(hard) and P„(overall) are all normalized similarly:

g P„'= g P„"=Q P„=1 .
n n n

(4.20)

An n-particle event with jets has many contributions to
its multiplicity. Let j denote the multiplicity of hadrons
with large pr belonging to (back-to-back) jets, m the mul-

tiplicity of hadrons with small pT belonging to the
initial-state bremsstrahlung before the hard scattering be-
tween partons, and I the multiplicity of low-pT hadrons
due to soft interaction of the residual hadronic system.
Their total is n:

n =I+j+m . (4.21)

X@,(u)%' (v), (4.22)

where 4, (v) is the multiplicity distribution of a jet with

If v is the virtuality associated with a hard-scattering pro-
cess whose probability of occurrence is f (s, u), then we
have

H„(s,R)= +5„,+, + f du f(s, v)F,"(R)((v)
Ij rn

dS(s,x),x2, u)= —,
' dz 5(v —Bx)x2s),

dz
(4.26)

u =kr/4= —„x)xmas(1 —cos 8), (4.27)

as a consequence of which B in (4.26) is (1—z }/16. The
minimum value of v for which a hard scattering is to be
identified by a jet is vo, a parameter to be adjusted to fit
the total cross section above jet threshold. In terms of v0
the limits of integration of z in (4.26) are +zo, where

1/2
16v0

(4.28)z0 —— 1—
X )X2$

This cutoff in z guarantees the finiteness of the otherwise
divergent integral in (4.26) if v is first integrated over.

z being the cosine of the parton-parton scattering angle in
the c.m. system of the partons and d&/dz the corre-
sponding differential hard-scattering cross section. There
is some ambiguity in the best value for v, since it depends
how the higher-order corrections are dealt with. A
favored choice is v =kT/4, where kT is the transverse
momentum of the scattered parton. Another choice
that is phenomenologically motivated is v =p,„,/4,
where p,„,=3 GeV, a value somewhat lower than QEr
of 5 GeV used by the jet-finding algorithm of UA1 due to
the underlying event. We shall use
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Indeed, cr,« in (4.25) is defined by that n, +n2 exhausts the total multiplicity of any event,
then, with

f*dv f(s, v)=1,
0

(4.29) ngnnfinn, +n
ft 11l2

(5.3)

«& dx2 '0 dz do'
cr,«(s)= f f F(x, )F(x2) (4.30)

which is necessary for the proper normalization of H„;
thus (4.22) can be recovered. The dependence of H„„on the

1 2

impact parameter, as it is with H„ in (4.22), is through
k, (R) and kz(R) in (5.1). The hard component of the
joint distribution with IP smearing is, similar to (4.17),

in which the virtuality is as specified in (4.27).
In general, the parton distribution F(x;,v ) in (4.25)

should depend also on the transverse spatial coordi-
nates. ' However, since the dominant contribution to
(4.25) comes from small x;, that dependence is not impor-
tant and we have factored out the b dependence from
(4.25) allowing it to appear in (4.22) only through the k
parameter in Fl"(lv) in a way already described in Sec. II.

V. FORWARD-BACKWARD CORRELATION
WITH MINI JETS

o "P„"„=oof dR (1—e ' ' )H„„(sR) .

Let A, denote the ratio

Then from (4.15) we have

P„=AP„'+(1 —A, )P„",

P„„=A,P„' „+( 1 —A, )P„" „

(5.4)

(5.5)

(5.6)

(5.7)

We have seen in Sec. III that F-B correlation below jet
threshold is due to IP smearing. Since there is no multi-
plicity correlation between the two jets produced in
e+e annihilations, one might naively expect that the
F-B correlation in hadron-hadron collisions above jet
threshold would remain the same as below. This is, how-
ever, not true in reality, as we shall now show.

We begin by generalizing the jet-production formalism
to allow for forward and backward windows separated by
a pseudorapidity gap as in Sec. III. Let jl (jz) denote the
multiplicity of hadrons in a jet produced in the forward
(backward) window, and let rnid and m2 have similar
meaning related to the initial-state bremsstrahlung.
Denote further the jet-associated multiplicities of low-pz.
hadrons produced by soft interaction in the two windows
by I

&
and l2. Then the joint distribution of n

&
and n2

hadrons in those windows associated with hard processes
is, following (4.22),

from which follow

&n; & =k&n; &, +(I —)}{&n; &„,

&nln2& =A&nln2&, +(1—k)&nln2&g,

(5.g)

(5.9)

B,+(1—A, )(K,K, )'"+()t, ' —1)LB„B=, , (5 10)
1+(1—A, )K, +(A,

—' —1)L

&n, n, &
—&n] &,&n, &,

&n', &
—&n, &'

(5.11)

(5.12)

with obvious notation. Substituting these equations in
(3.3) yields

k)k2
Hn n& lp lll2 j~m~ j2m2~n&, I~+j&+m~

l)JI Nl )

12j~m ~

X n2, 12+j2+m2 (5.1}

L=
&n', &, —&n, &,

' (5.13)

In the symmetric case, i.e., & n l & = & n2 &, we have
E

&

——E2. We shall for simplicity consider this case only
in the following.

Let r and p be de6ned as

where
&n, &, &n, &„

(5.14)

J, j (s)= f dv f(s, v)4j"(v)+"'(v)

X @' '(v)%" '(v),
J2 m2 (5.2)

where for simplicity we have neglected the energy expen-
diture for hard scattering and taken the F term outside
the integral over v. The superscripts on the multiplicity
distribution 4 and + signify the dependences on the win-
dow size and position. If the detector windows are such

Then from (3.11}and (2.25) we get

&n', &, —&n, &,'=(p —1)&n, &,'+(u —1)&n, &,

= [(p —1 }r + ( C2 —
)pr ] & n&, .

It then follows from (5.12) that

(p —1)E=—E) ——K~ ——

p —1+(C2—p)/r

(5.15)

(5.16)
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&nl )h y

nlrb

In 1 Ih (5.17)

For the contribution from hard scattering we first note
that the average ( n, ) h is

we then have, from (5.13),

I.= rei+2x~,'-

P —1+( C2 P—) /r
(5.32)

where

n ln2
Finally, for B&, we come to an important point in F-B

correlation for jets. First of all, we have

n, = y n, H„„
nln2

—kl—
X 1 p l1 Jj1m18n1, 1 +j +m
n

1
i'1J

1
m

1

—k, — klk2Fl Jj — g Fl l J.
12j 2m 2

~ ~ ~ ~ O O

(5.18)

(5.19)

& n1n2) h (t1l2) h+4& I 1J2)h+4& J 1J2)h

The jet correlation part is

&Aj2) h I j1J2 I h

where

J 1J2 p J1J2Jj1m1j&m2
jl m

1

J2m2

(5.34)

(5.20) = f dv f(u)j, (u), (5.35)

From (5.18) we have

5) =l)+J)+Pl) (5.21) J'1(u)= g j14, (v) .
Jl

(5.36)

where

~i = X I1F 1,
'

Il

A= gAJ,
Iml

m, = gm, J,
1m I

In a similar way we have

n, =l1+(j,+m, ) +21, X(j1+m, ) .

(5.22)

(5.23)

(5.24)

(5.25)

It is the integration over virtuality that makes it different
from

'2
j1XJ2= f duf(. )J1(u) (5.37)

Otherwise, the factorizability of the back-to-back jet
would imply j,j2 =j ~ Xj2. Thus, the origin of jet corre-
lation here due to virtuality smearing is similar to that in
soft interaction due to IP smearing, as described in Sec.
III.

The correlation (l, l2)h is not the same as in the pure
soft case considered in (3.13) because the integral over the
impact parameter b is different. We have

In the absence of any knowledge of the analytical form
for 4 (u), we shall, for simplicity, assume

1

& ~ll2 )h I ll~2 Ih P'h & ~1 )h

Ph ——Ih (R))h .

(5.38)

(5.39)

so that

(v)=4j (u), m, =j, , (5.26)
Thus from (5.33) we obtain

(n1n2)h —(n1 )h
——(ph —1)(l1)h+4dj2j+4dl~, (5.40)

J) =m) (5.27) where

(J', +m1) =2(J'1+J'1 ) .

It then follows from (5.17), (5.21), and (5.25) that

(5.28) dl2j = IJ1J2 lb IJ1Ih IJ2lb

dlj. ——[11 && J2 lb I11 Ih I J2 I h

(5.41a)

(5.41b)

&n1)h &nl )h &Il )h &Il )h

+2((J', )„—& J, )'„) . (5.29)

If we introduce some more symbols for abbreviations
sake,

dJJ. ——J &J2
—J &

2= '2 (5.42)

If we assume, as discussed after (4.30), that the only
klk2

dependence on b in (5.1) is in the soft part, Fl l, and not
1 2

in the hard part, Jl j,then the operation I
.

1 h injl 1 j2 2

(5.41) does nothing, i.e.,

&J, )„
pl=

&
), p, =

( ), p=pl+2p, -, (5.30) and dl~j
——0. Substituting these results into (5.11) for Bh,

we get

&j1 &h

(5.31)
(Ph 1)pl'+4r—iu,'

1%~+2/&j
(5.43)
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where

(5.44)

We note that y, z is nonvanishing because of virtuality
smearing, and ]M], &1 because of b smearing. A crude es-
timate indicated that the two terms in the numerator of
(5.43) are of comparable sizes, so the two types of smear-
ing are both relevant.

The soft contribution B, is as given before in (3.16).
Assuming scaling for the soft component, as we have for-
mulated the problem, 8, would remain at around 0.17
above jet threshold. For the symmetric-window case,
(5.10) becomes [cf. (5.16)]

B, +(1—A, )E+(A. ' —1)LB],B=
1+(1—A, )K+(A, ' —1)L

(5.45)

B is necessarily larger than Bs, if 8& ) 1, irrespective of
what values the other parameters have. (E and L must, of
course, be positive and A, &1.) As it turns out, B„ is

slightly less than 1, but large enough to render the second
and third terms in the numerator of (5.45) to be roughly
the same as the corresponding terms in the denominator,
thus ensuring B to be significantly greater than B,.

The physical reason why B can increase above B, is
that hard scattering increases the opacity of hadrons
from 00 to 0, so the increase of multiplicity due to jets in
the forward hemisphere is accompanied by an increase in
the backward hemisphere. This is the dominant effect
over and above the effect due to virtuality smearing. At
very high energy (n ) h can become much greater than

( n ), and A, significantly less than 1; hence, when K &&1,
B would approach 1.

In the Appendix we give very crude estimates of the
various terms in (5.45). With a wide margin of error, we
obtain B =0.4. While its remarkable agreement with the
observed value 0.41+0.01 at &s =540 GeV should not
be taken too seriously, the result cannot be totally fortui-
tous. At the very least, the geometrical branching model
cannot be ruled out on phenomenological grounds.

VI. CONCLUSION

We have formulated a model for multiparticle produc-
tion that has the following properties.

(a) It treats hadrons as extended objects so that impact
parameter is an essential variable in the description of
their collisions.

(b) At each impact parameter the mechanism of parti-
cle production is of the Furry-type branching, which
agrees in leading order with the results in perturbative
theory. Since no small parameters are involved, the
branching process is assumed to be still relevant at low
pz- even though perturbative theory is not. The multipli-
city distribution at each impact parameter is broad, and
cannot be identified with the narrow distributions of hard
processes, such as in e+e annihilation.

(c) Until the collision energy is high enough so that the
production of jets becomes important, the model
possesses various scaling properties: (a) constant average

transverse momentum, (P) geometrical scaling, and (y)
KNO scaling.

(d) Since the model incorporates the eikonal descrip-
tion of high-energy collisions, it is able to reproduce all
the main features of elastic scattering, such as the slope
of the diffractive peak and the first dip in do. /dt, as well
as the total cross section.

(e) The model can give a KNO curve on multiplicity
distribution that agrees with the ISR data to a high de-
gree of accuracy.

(f) It relates the efficiency of particle production to the
opacity of hadrons at each impact parameter.

(g) It yields the correct forward-backward multiplicity
correlation measured at ISR.

(h) All the scaling properties are violated at higher en-
ergies because of important contributions from jet pro-
duction. The incorporation of hard processes in the mod-
el has been formulated in a way consistent with unitarity.

(i) Geometrical scaling defines the soft component; the

pz cutoff for the jet cross section is not chosen arbitrarily.
(j) We anticipate that the model can quantitatively ac-

count for the (a) increase of the total cross section, (P)
breaking of geometrical scaling, (y) breaking of KNO
scaling, (5) increase in F Bmultiplic-ity correlation, and
(e.) increase in average pr.

In counting the number of free parameters in the mod-
el, one should, as always bear in mind what data the
model is to describe. For example, the eikonal function
Q(R) is an essential part of our model, but it is not free
because it is constrained by o,]/o „, and the first dip of
d o. Idt. If one adopts the Chou-Yang and Durand-Lipes
model for diffractive scattering, it can even be calculated.
Thus, taking, in addition a;„(s), (n ), and Cz as given by
minimum-bias experiments, parton distribution function
of the nucleon, and jet fragmentation function by hard
collision experiment, we have essentially only two param-
eters in the model.

(1) y: This parameter relates production efficiency to
hadron opacity. It is over-constrained by multiplicity
moments and the F-B correlation parameter.

(2) Uo: This is the minimum virtuality associated with
a jet. It is adjusted to fit the total cross section at
&s =540 GeV.

While much remains to be checked, the geometrical
branching model has thus far successfully met a variety
of phenomenological tests.

ACKNOWLEDGMENTS

I have benefited from discussions with many physicists,
especially F. Bopp, A. Capella, W. R. Chen, L. Durand,
J. Kwiecinski, C. S. Lam, T. Sjostrand, and L. Van Hove.
I am particularly grateful to S. D. Ellis who has pointed
out an error in the original version of this paper. I also
want to thank W. R. Chen for providing some computa-
tional assistance; it was in collaboration with him that
the initial stage of this program was successfully pushed
through. This work was supported in part by the U.S.
Department of Energy under Grant No. DE-FG06-85-
ER40224-A001.



1840 RUDOLPH C. HWA 37

APPENDIX

The formalism described in this paper allows an unam-
biguous computation of the correlation parameter 8.
There is one adjustable parameter Uo, which is the virtu-
ality cutoff. It is to be adjusted to fit cr;„above jet thresh-
old, a task that involves extensive numerical work. We
give here a crude estimate of B. The degree of reliability
of this estimate should not be taken to reAect the sound-
ness of the model, on the basis of which (5.45) is derived.

We first consider the jet correlation parameter yj, 2

defined in (5.24). We approximate f(s, u), defined in
(4.25), by

fov 'exp( —a~/u )8(u —uo),

the normalization factor being determined by (4.29).
From Ref. 47 we expect j i(v) defined in (5.36) to be pro-
portional to U' . The proportionality constant cancels in
the calculation of j,jz/J', . Taking aQvc to be 0.5
yields @~~2=0.1. A 100% modification of this number
would affect the final value of B by less than 8%.

We can use the UA1 data to get a rough estimate of
&n, &h and &n, &, . If we approximate &I, &h by &n, &„
we get pl=1 and pj 0 5» From e+e annihilation
data~. we have y(=0. 1, while for yz we approxiinate it

by the ISR value: yz=C2 —1=0.2. Taking pI, to be
roughly p= 1.06, we obtain

0.06+4 &&0. 1 && (0.5)'
0.2+ 2 X0. 1&& (0.5)'

For p we get from the UA1 data roughly p=2. For r
we use the value given in (3.17). Thus

K= 1

0.06+(1.2-1.06)/0. 36
=22

0.2+2X0. 1X(0.5)'
0.06+(1.2 —1.06)/0. 36

At vs =540 GeV we infer from Ref. 5 that A, =0.85.
Since 8, should be identified with the value 0.17 below
the jet threshold on the grounds of extended scaling of
the soft component, we have finally, from (5.45),

0. 17+0.15X 2.2+0. 18X0.55 XO. 64
1+0.15)&2.2+0. 18g0. 55

Despite the crudeness of the approximations made in es-
timating the values of various terms, we believe that the
margin of error for the final value of 8 should not exceed
the 50% level.
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