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Are the e+e and lp multiplicity distributions Poissonian?
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We show that all available multiplicity distributions for vp, vp, p+p, and e+e processes, both
for central rapidity intervals and for the whole phase space, are well described by a two-parameter
Poisson-type formula. This formula is obtained when small clusters (resonances) are randomly pro-
duced.

I. INTRODUCTION

Standard hadronization models used to describe the
final hadronic state in e+e and deep-inelastic lp scatter-
ing, such as the uncorrelated cluster models' and the re-
cursive cascade models, ' are based on the idea that rapi-
dity correlations have short range. In the first type of
models, clusters are produced randomly, and the corre-
sponding multiplicity distributions are of Poisson type
(i.e., have D ~ (n ) ), provided that the cluster properties
are independent of energy. In the recursive cascade mod-
els, the multiplicity distributions are also approximately
Poisson-type (see below). On the contrary, the QCD
branching models lead to D ac (n ) and to approximate
Koba-Nielsen-Olesen (KNO) scaling. The available ex-
perimental data, both in e+e and in deep-inelastic Ip
scattering, exhibit a dispersion D of the multiplicity dis-
tribution which is approximately proportional to the
average multiplicity (n ) (as it should be for KNO scal-
ing) and not to ( n ) ' (as expected in a short-range-order
picture).

One can argue that, at large Q, there are modifications
to the short-range-order hadronization schemes, due to
gluon radiation, which can be described by perturbative
QCD. However, since the behavior of D discussed above
is already valid at small Q, one can hardly put the blame
on perturbative QCD corrections. Moreover, in e+e at
large Q, there are now e+e data available in which the
two-jet events have been isolated. This event sample has
the same features as the whole inclusive sample. Further-
more, soft processes also exhibit similar features at not
too high energies.

On the other hand, if one considers the shapes of the
multiplicity distributions, one realizes that they are close
to Poisson or even exactly Poissonian when the whole
rapidity interval is considered. However, in central rapi-
dity intervals, they are found to be much broader than
Poisson.

This puzzling situation has been discussed quite often
in the literature. Some authors have argued that the ob-
served approximate KNO scaling is fortuitous, and that
the data, both for hadronic processes at not too high en-
ergy and for e+e (Ref. 9), are consistent with the
short-range-order picture —plus corrections due to
hard-gluon radiation in e+e at high Q (Ref. 9). In the

following we produce further evidence in this direction,
by examining recent data in e+e (Refs. 6 and 7) and lp
scattering. ' '" We show in particular that for all these
data, including the data of Ref. 6 for central rapidity in-
tervals, the shapes of the multiplicity distributions can be
described by a Poisson-type distribution.

II. POISSON- TYPE DISTRIBUTIONS

We call Poisson-type distributions, the ones obtained
from a Poisson distribution of clusters having decay
properties independent of energy. In this case one has

D'= &n'& —(—n )'=E,(r&n &,

where IC,fr= (E ) /(K ), and (K ) is the average
charged multiplicity per cluster. In the cluster model one
usually considers' two rather extreme situations.

(a) The cluster decay distribution is just a delta func-
tion (this unphysical case is taken as representative of
narrow cluster decay).

(b) The cluster decay distribution is itself Poissonian
(this case being take as representative of broad cluster de-
cay).

In the first case, the multiplicity distributions of pro-
duced particles can be obtained in a straightforward way.
One writes first a Poisson distribution for clusters, with
(n, ) =(n )/(K) =((n )/D) . When written in a KNO
form (i.e., (n )P„versus z=n /(n ) ), the distribution of
clusters is identical to the distribution of final particles.
Hence,

g(z) = & n )P„=& n, &P„

(„& (n, &"'

n, e
n, !

where z=n /(n ) =n, /(n, ) =n, (D/(n ) ) . Equation
(I) gives the multiplicity distribution in the KNO form in
terms of a single parameter (n, ) =((n )/D)z. To obtain
P„requires, of course, the knowledge of a second param-
eter ((n ) ).

Although Eq. (I) is strictly true only for infinitely nar-
row clusters (case a), it can be shown to be also approxi-
mately true (to a high degree of accuracy) for clusters de-
caying according to the Poisson law (case b). This can, of
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TABLE I. The values of the normalized moments C3, C4, and C5, obtained with the two-jet Lund Monte Carlo program with
standard parameters (see Ref. 3), for a u-uu string fragmentation (corresponding to vp~p X), at two different energies and for two
different rapidity span selections, are compared with the corresponding values obtained from Eq. (4) (and the corresponding equa-
tions for C4 and C5), using the value of C2 obtained in the Monte Carlo simulation. The errors in the Monte Carlo figures are about
1%.

All y

8'=4 GeV
All y

%=12 GeV

MC MC Eq. (1) MC Eq. (1) MC Eq. (1)

C3
C4
C5

1.29
1.62
2.17

1.29
1.62
2.17

3.29
7.87

21.4

3.28
7.78

21.0

1.29
1.62
2.16

1.29
1.63
2.18

3.72
9.44

26.9

3.71
9.46

27.6

course, be checked by comparing the corresponding dis-
tributions. However, it is more transparent to consider
the moments of these distributions, which are given by
very simple expressions, in the two cases (a) and (b). The
expression of (n ) =(E)(n, ) is, of course, the same in
both cases. For the second moment one has

(n') &.ir (lt.' &+ri
(2)

where ri=O for case (a) and ri= 1 for case (b). Likewise
one finds

3(«&+&)
(n&

(E )'+g'+3(E )ii
( )2

For case (a) (g =0) Eqs. (2) and (3) imply

C3 =C2+C2 —1,

(3)

(4)

with similar relations between C;(i &3) and C2. These
relations obviously determine the shape of the multiplici-
ty distribution, Eq. (1), once the second moment C2 has
been fixed. We see from (3) that relation (4) can also be
obtained in case (b) (ri= 1) in the limit (K)/(n ) ~0.
The same is true for the relations involving higher mo-
ments. The condition (E ) « ((n) ) is satisfied for small
clusters ((E ) of order 1) and high average multiplicities,
but it is no longer valid when considering rapidity inter-
vals of small length, where (n ) becomes very small.
However, in this case one finds from Eq. (2) (with ri= 1)
and the experimental values of D and (n ) (Ref. 6), that
(E ) «g. In this limit, Eq. (4) also holds. ' Numerical-
ly we have computed C3 in both cases (g=O and i)=1)
for all available rapidity intervals (from

! y ! &0. 1 to the
full one). In each case, the value of (E) is obtained
from Eq. (2) and the experimental values of D and (n ).
It turns out that the values of C3 obtained in the two
cases, differ from each other by at most 3% [the
difference in the values of D3 ——((n —(n ) ) )' being at
most 5%]. Thus Eq. (1) provides a good approximation
to the multiplicity distribution obtained in a model in
which small clusters, having decay distributions not
broader than Poisson, are randomly produced.

A well-known complication, not mentioned so far, is
due to energy-momentum-conservation constraints which

introduce negative correlations and thus are responsible
for a narrowing of the multiplicity distributions.

In order to examine its consequences regarding the va-
lidity of Eq. (1), we have performed a simulation using
the two-jet Lund Monte Carlo model. We have found
that Eq. (4), and the corresponding equations for the
higher moments, are satisfied to a good degree of accura-
cy, not only in a central rapidity interval (where the effect
of the energy-momentum-conservation constraints is
strongly suppressed), but also in the full interval (see
Table I).

III. COMPARISON OF THE POISSON-TYPE
DISTRIBUTION WITH DATA AT VARIOUS

ENERGIES AND IN VARIOUS RAPIDITY INTERVALS

o 3 &W&4 GeV

e 4 &W&5 GeV
5 &W&6 GeV

!
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a 6 &W&8 GeV
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b) Qg
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FIG. 1. Multiplicity distributions for (a) vp and (b) vp
scattering for various intervals of 8'. Data from Grassier et al.
(Ref. 10). The curve is obtained from Eq. (1) with
((n )/D)~=8. 4 for vp and ((n ) /D)2=5. 5 for vp.

We are going to consider the available data on vp, vp
(Ref. 10), pp (Refs. 11 and 14), and e+e (Refs. 6 and 7)
at various energies. For each process, we take, at each
energy, the value of (n )/D, determined from experi-
ment, and use the Poisson-type multiplicity distribution
in Eq. (I).

The comparison of the obtained multiplicity distribu-
tion in the complete rapidity interval with the experimen-
tal data is given in Figs. 1 —3. The used value of (n ) /D
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FIG. 2. Multiplicity distribution for p+p scattering for
different W regions. Data from Ref. 11. The curve is obtained
from Eq. (1) with ((n )/D) =6.5.

[the only parameter in Eq. (1)], is given in the figure cap-
tion. Experimentally, the value of (n )/D is practically
independent of the energy. Hence Eq. (1) leads to ap-
proximate KNO scaling. ' Note, however, that the
derivation of Eq. (1) in the context of cluster models re-
quires that (n ) ~D, so that (K ) =D /(n ) is indepen-
dent of s. This point is discussed in detail in Secs.
IV A-IVC and V.

Experimental results on the e+e multiplicity distri-
butions at 29 GeV from the High Resolution Spectrome-
ter (HRS) Collaboration (SLAC storage ring PEP) have
been presented in Ref. 6. In this work the multiplicity

1O'

10

10

10 F

IYI&0.25

distributions are given in various rapidity intervals

~
y ~ &yz centered at y'=0. Moreover, results are

presented separately for a two-jet event sample (selected
using sphericity and aplanatarity cuts), and for the whole
inclusive sample. Results on the pp multiplicity distribu-
tions in various rapidity intervals from the European
Muon Collaboration (EMC) are also available. '

In order to test the Poisson-type distribution in Eq. (1)
in central rapidity intervals we proceed as above. For
each rapidity interval we use Eq. (1) with the value of
(n ) /D measured in that interval (see Tables I and II in
Ref. 6 and Table II in Ref. 14). The comparison with the
experimental distributions is given in Figs. 4 and 5. The
multiplicity distributions obtained in Ref. 6 from the best
fit to the data using a negative binomial is also shown.
We see that the Poisson-type distribution also fits the
data well. The data of Ref. 6 for the whole inclusive sam-
ple are also well described (not shown).

Note that in the whole rapidity inrval, (n ) » (E )
and therefore the shape of the distribution in Eq. (1) is
close to a Poisson distribution of particles with average
(n ). On the contrary, in small rapidity intervals, (n )
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FIG. 3. Multiplicity distribution for e+e annihilation for
different values of 8'. Data from a compilation by the TASSO
Collaboration (Ref. 7). The curve is obtained from Eq. (1) with
((n )/D) =7.85.

FIG. 4. Multiplicity distributions for two-jet events of e+e
annihilation at 29 GeV for various rapidity span selections.
Data from Ref. 6. The curves are obtained from Eq. (I), with
the values of (n ) /D given in Ref. 6. The histograms show the
best fit to the negative binomial, obtained in Ref. 6.
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FIG. 5. Multiplicity distributions for inclusive events in pp
scattering at %=18-20 GeV for various rapidity-span selec-
tions. Data from Ref. 14. The curves are obtained from Eq. (1)
with the values of (n)/D given in Ref. 14. The histograms
show the best fit to the negative binomial, obtained in Ref. 14.

gets closer to (K ) and the Poisson distribution of clus-
ters, Eq. (1), is then much broader than the correspond-
ing Poisson distribution of particles.

IV. DISCUSSION AND REMARKS

(a) Energy dependence of E,ff. The values of
K ff —D /( n ) obtained using the available data, increase
with increasing energy. They range from K,&-0.4 to
K ff 1 .4. This had to be expected in view of the well-
known linear relation between D and (n ) (Wroblewski
relation). The energy dependence of K,ff can be qualita-
tively understood as a consequence of the energy-
momentum-conservation constraints. As discussed
above, these constraints produce a narrowing of the mul-
tiplicity distribution. Since this effect is larger at low en-
ergies, the value of K,& increases with s. With a simula-
tion using the Lund Monte Carlo program for e+e, one
finds a linear relation D=a(n)+b, for a very large
range of values of (n). The energy-momentum-
conservation constraints play an important role in build-
ing up this linear dependence.

The increase of K,& with s mimics, in the case of nar-
row clusters, a KNO-scaling situation in which the clus-
ter multiplicity (K) =K,ff increases with s, while the
average number of clusters, ( n, ) = ( n ) /K, ff, remains
approximately constant. However, in the short-range-
order models, this can only occur in a limited range of
energy. A simulation with the two-jet Lund Monte Carlo
program shows that K,z is practically constant above top
DESY PETRA energies.

(b) e+e multiplicity distribution at CERE LEP ener

gies . With a value of K,ff =D—/(n ), constant from top
PETRA energies to LEP energies, the value of the unique
parameter (n )/K, ff (——(n )/D) in Eq. (1) will decrease
substantially between these two energy ranges. As a
consequence, the e +e multiplicity distribution will
violate KNO scaling, getting narrower with increasing s.
(See, however, the restrictions mentioned in the last para-
graph of Sec. V.)

(c) Dependence of E,ff on the size of the rapidity inter
val. From the data of Ref. 6, one obtains the following
behavior of K,z. for the whole rapidity interval, the
value of K,ff is about one (both for the two-jet and the in-
clusive event samples), increases when the length of the
rapidity interval decreases, reaches a broad maximum of
about 1.4 in the two-jet sample (1.7 in the inclusive one),
and then decreases toward one for very small rapidity in-
tervals. As mentioned above, the value of K,& increases
monotonically with s. Therefore, the fact that its value is
close to one at 29 GeV is fortuitous. However, its varia-
tion with the size of the interval is again quite obvious
from energy-momentum-conservation constraints. The
induced negative correlations are smaller in central rapi-
dity intervals, and K,z increases. For very small rapidity
intervals, the clustering effect vanishes and K,z tends to
one. Again such a behavior is obtained in the two-jet
Lund Monte Carlo program.

The same type of dependence of K,ff on the size of the

rapidity interval has been observed in pp scattering. '

The value of K,& at the maximum turns out to be approx-
imately independent of energy. This result, which strong-
ly supports our cluster-model interpretation, is discussed
in more detail in Sec. V.

(d) Consequences for cluster size. A Monte Carlo simu-
lation in which clusters are identified with a realistic mix-
ture of directly produced particles and known resonances
leads a charged average cluster multiplicity ( K ) —l.4
(Ref. 16). It is therefore interesting that all measured
values of K,z, in the whole rapidity interval, are smaller
than 1.4 and that they reach a maximum of about 1.4 in
central rapidity intervals. This favors the view that clus-
ters are small and narrow and can be identified with
known resonances. A similar conclusion was reached in
Ref. 17 from an analysis of hadronic data.

(e) Hadronic processes. In multiple-scattering models
for hadron-hadron collisions such as the dual parton
model' one has a sum of contributions containing a
different number of strings. Multistring configurations
give substantial contributions at high energies. There-
fore, one might expect that the equations in Sec. II are ir-
relevant in this case. However, although this is true at a
quantitative level, these equations are still qualitatively
consistent with a multiple-scattering picture. Indeed Eqs.
(2) and (3) with g = 1 can be interpreted as the result of a
superposition, with Poisson weights, of identical strings,
having average multiplicity (K ), and fragmenting ac-
cording to a Poisson law (g= 1), or Poisson type if g&1
(for instance, g=1.4). Quantitatively, the multiplicity
distribution for hadronic processes obtained from Eq. (1),
is expected to be narrower than the experimental one,
especially at high energies. Indeed, the distribution of
the weights of the various multichain contributions (ob-
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tained from unitarity' ) is broader than Poisson weights.
Moreover, there are fiuctuations in the position of the
chain ends which are not considered in Eqs. (1)—(4). The
comparison with pp data' shows that Eq. (1) gives indeed
a too narrow distribution (see Fig. 6).

The fact that here the underlying physical picture is
different from that for "one-string" processes, can be
confirmed by looking at the values of K,z obtained from
the pp data at v's =540 GeV (Ref. 19). One obtains, in
the various rapidity intervals, values of K,z ranging from
1.7 to 9.3. This shows that here "clusters" are no longer
small and supports a multistring picture for high-energy
hadronic processes.

V. CONCLUSION AND PHYSICAL INTERPRETATION

The particle production in one-string processes is ex-
pected to correspond to independent emission of clusters.
Therefore the multiplicity distributions for two-jet events
in e+e and Ip scattering are expected to be Poissonian.
This expectation seems to be at variance with experiment.
The data in the whole rapidity interval show a ratio
(n )/D approximately constant corresponding to KNO
scaling rather than to a Poisson law. As a consequence

I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10

Z = n/gn)

FIG. 6. Multiplicity distributions for pp scattering at
&s =540 GeV, for two pseudo-rapidity-span selections

~ g ~
&0.5 and

~ q ~

&1.5. Data from Ref. 18. The curves are
obtained from Eq. (1) with the values of (n ) /D given in Ref.
18.

the average charged multiplicity per cluster,
(K) =D /(n ), has an energy dependence. This energy
dependence is different in different rapidity intervals.

In this paper we have shown that a Poisson multiplici-
ty distribution in clusters [Eq. (1)] with the parameters
(n ) and D taken from experiment, reproduces very well
the multiplicity distributions at all energies and for all ra-
pidity intervals. This interesting result, obtained here for
the first time, is, in itself, a numerical regularity with no
physical interpretation. Indeed the interpretation of Eq.
(1) based on independent emission of clusters, requires a
value of (E ) independent of both s and the size by of the
rapidity interval and this is at variance with the data.
However, we have argued in Sec. IV that the observed
dependence of (IC) in s and hy is a consequence of
energy-momentum (plus some effect resulting from gluon
radiation), and, therefore, the above interpretation of Eq.
(1) can be maintained. This claim is strongly supported
by the recent data on e+e (Ref. 6) and pp (Ref. 14) in
limited rapidity intervals. Indeed, these data provide us
with the value of (K ) =D /( n ) in a central rapidity in-
terval, where the effects of energy conservation are
strongly suppressed. The value of (K ) obtained from pp
reactions in the interval

~ y ~
& 1 and in the energy range

8& W(18 GeV, is (K) —1.3 —:1.4 (Ref. 14), while its
value in e+e at g =29 GeV and

~ y ~
& 1 for the two-jet

sample is (E ) —1.4 (Ref. 6).
As discussed in Sec. IV, a value of (E ) -1.4 is pre-

cisely the one found in a Monte Carlo simulation where
the clusters are identified with a realistic mixture of
directly produced particles and known resonances. ' The
same value of (K ) is needed in the context of the dual
parton model to reproduce multiplicity distributions,
long-range and short-range correlations in pp col-
lisions' ).

Of course one can argue that the above picture for
e+e and Ip scattering may be blurred at high energies
by the increasing contribution of gluon radiation. How-
ever, it is important to show, as we have done in this pa-
per, that all the one-string processes can be described, at
present energies, by a simple picture in which small clus-
ters are randomly produced, and, furthermore, that both
in one-string processes (for two-jet events) and in hadron-
ic reactions, clusters can be identified with known reso-
nances.
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