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Induced fermionic charge in background gauge theories in odd space-time dimensions
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We have shown by using gauge- and parity-invariant regularization schemes such as dimensional

and higher-covariant-derivative methods that the induced fermionic charge in a U{1)gauge theory
in odd space-time dimensions is zero when the fermion mass is strictly equal to zero and recedes
towards the boundary when one starts with a nonzero fermion mass and allows it to approach
zero. In the latter case the induced charge is exactly the Chem-Simons index.

It has been shown by several authors' that the in-
duced fermionic current in odd space-time dimensional
background gauge theories contains a local parity-
violating term. In the U(1) case the induced charge cor-
responding to this term is the Chem-Simons index that
describes the topology of the external gauge field
configuration and the effective action provides a rnecha-
nism for generating a gauge-invariant mass for the gauge
particles.

We would like to stress, however, that these results
depend crucially on the method of regularization to re-
move the ultraviolet divergence and, indeed, such an
"anomaly" term does not exist when the fermion mass is
strictly equal to zero and the regularization procedure
respects the gauge and parity symmetry. The popular
Pauli-Villars regularization does not fall in this category.
g-function regularization, the gauge-invariant point-
splitting method, dimensional regularization, ' and the
higher-covariant-derivative method preserve the parity
symmetry and they all point towards the nonexistence of
such an anomalous term. On the other hand, if the fer-
mion mass is nonzero to start with (as is the case in Ref.
2), the parity symmetry is already broken at the classical
level and, not suprisingly, the induced ferrnionic current
regularized by any of the methods mentioned above will
have a parity-violating piece. But it is, in general, nonlo-
cal and vanishes smoothly everywhere within a finite re-
gion as the ferrnion mass goes to zero, provided the
external field tensors fall off sufficiently fast at infinity.
The induced charge, however, turns out to be indepen-
dent of the fermion mass and is precisely the Chern-
Simons index (g 14m)f Ft2d x, i.f the field is static. The
nonlocal expression of the charge density also leads to
the interesting observation that the induced charge re-
cedes towards the boundary as the fermion mass tends to
zero. On the other hand, if the fermion mass is strictly
equal to zero, no induced charge is produced at all. The
purpose of this note is to elaborate these points and to
emphasize the subtle difference between the m =0 and
m ~0 theory of fermions in odd-dimensional gauge
theories by the use of one of the gauge- and parity-
invariant regularization schemes (the dimensional regu-
larization).

The common starting point in any of the regulariza-
tion schemes mentioned above is to express the induced

fermionic current in terms of the fermionic propagators
in a gauge-invariant way:

(j"(x))=tr[y"G(x, x)],

G(x,y)=(x —y),

2)=y"D„, D„=P„—gA„.

To first order in g, the vacuum expectation value of the
current is given by the expression

(j"(x))=try" SF(x,x)

+ig f d y S,(x,y)y S,(y, x)A„(y)

(2)

We first consider the fermion mass to be strictly equal
to zero. The first term

SF(x x)= lim f d pD~3

is identically equal to zero when dimensional regulariza-
tion is used. The second term gives a contribution '

and no parity violation takes place. Convergent terms
arising out of a higher number of vertex insertions (to
order g and above) will also be nonlocal and involve
derivatives of the field tensors. Because of the oc-
currence of these derivatives the net induced charge (in-
tegrated charge density over an infinite volume) will be
zero if the field falls off sufficiently fast at infinity. The
induced current can be thought of as a dielectric
phenomenon arising out of vacuum polarization.

For a massive fermion, in momentum space the ex-
pression (2) looks like
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d q;q.„+, , „dp gf+m „gf—g+m
Ig e ' " 'q'tr y" y"

(2m ) (2m. ) p —m (p —q ) —m

Using Feynman parameters and the identity
tr(y&y"y )=2@"' in three dimensions, the integral (3)
can be evaluated to give us

Consequently, the induced charge

Q= f (j (x))d x

d3
( p( )) g ~va q iq —xF

4~ (2~)3 ~a
( 2)1/2 f d X f d3y e

—2m ~x —y

Sm
(8)

2

)& arcsin
q +4m

' 1/2

(4)
In the static background, when F&2 depends only on y,
and y2, (8) can be exactly evaluated when the domain of
x„x2 is infinity,

1
lim
2 ( 2)1/2 arcsin[q /(q +4m )]'/ l

2im
/

We thus obtain

Q= — f F,2(x)d x
4n. /m

f

=+ f F12(x)d x .
4m

This is independent of m and is precisely the Chern-
Simons index for the gauge field configuration. Howev-
er, in order to obtain such an expression for Q it is abso-
lutely necessary to start with a nonzero value of the fer-
mion mass.

The comment made above becomes clearer when one
considers the configuration space. The induced charge
density can be found, by direct integration over the q
variables in (4), to yield

(JO( )) gm f d3 12 —2m~x —y ~

F12(y)
8n2 fx —y /2

The dimensional regularization suffers from the ambi-
guities regarding the meaning of e"" in dimensions oth-
er than three. Nevertheless, that the result (4} is correct
can also be verified by the method of higher covariant
derivatives.

The expression (4} for the induced fermionic current is
nonlocal and vanishes smoothly as m goes to zero. The
remarkable thing to notice is that for the static field, i.e.,

F„„(q)=5(q )F„„(q1,q2),

the charge Q = f (j )d x is immediately calculable,
since

Q
g f d2 F ( ) f~d„—2i imr

2' 0

—+ y P y (9)

showing, once again, that Q is independent of m. The
crucial thing here is the integration over the x variables,
which is linearly divergent if one had set m =0. It is the
nonzero m that damps out such a potential divergence at
the cost of 1/m, which cancels with m sitting outside
the integral in (8).

The most interesting point to notice here is that the
induced charge evaluated from (8) over any finite volume
(over x) will be zero as m~0. In that case the x in-
tegration in (9) will be free from any linear divergence
and consequently the factor m sitting outside will make
the induced charge zero in the massless limit. This, cou-
pled with the fact that Q over infinite volume is nonzero
even for m ~0, implies that in this limit the charge is
residing on the surface of infinite sphere (in two space
dimensions).

Therefore, the two cases m =0 and m ~0 are
different. In the first case there is no net induced charge
at all and in the second case the induced charge stays at
the boundary only. That the two cases are basically
different have been realized by the authors of Ref. 8.
Since in (2+1)-dimensional theories the fermion mass
term breaks the parity symmetry of the Lagrangian, the
above observation reflects the fact that the parity viola-
tion cannot be continuously switched off.

Before concluding we would like to point out a simi-
larity of the phenomenon observed in this note with the
work of Bell and Rajaraman in the context of the obser-
vation of fractional charges in (1+1)-dimensional field
theories. Their argument reveals that in some cases, al-
though the total charge when integrated over the whole
volume remains an integer, for any volume excluding
infinity the charge is fractional; the compensating frac-
tional charge stays at the boundary. We seem to have
obtained an integer analogue of it in the odd space-time
dimensions.
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