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Positivity of Bondi mass for R +R gravity
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We show, by invoking the current positivity-of-energy theorems, that asymptotically flat solu-
tions of R +(1/2P2)R' theories of gravity possess a non-negative Bondi mass. This conclusion is
reached provided that R & —P' everywhere. These results, in combination with Strominger's, in-

dicate that at least for a class of asymptotically flat solutions of higher-derivative gravity the
Arnowitt-Deser-Misner mass as well as the Bondi mass are non-negative.

Attempts to quantize gravity, or to study quantum
fields propagating on a curved background, indicate that
the familiar Einstein-Hilbert action might have to be en-
larged by the inclusion of higher-order curvature terms.
Further higher-derivative theories appear to enjoy better
renormalizability properties than general relativity. ' As
a consequence, lately, some efforts have been made to
understand their classical properties.

In a recent Rapid Communication Strominger has ex-
amined the stability and positivity of the Arnowitt-
Deser-Misner (ADM) mass for a restricted class of
higher derivative gravity described by the action func-
tional

S(g)= J R+ 2R &—gd x .

3
2CIR —R =T; (3)

i.e., it behaves as a massive scalar field, dynamically
determined by the trace of T„,

Suppose now (M,g„) is an asymptotically flat spaee-
time at future null infinity, 2+, solution of (2) and (3),
representing presumably an isolated gravitating system.
Asymptotic flatness at 2+ for the moment is taken to be
the standard definition; i.e., (M, g„„) is asymptotically
simple in the Penrose sense. The asymptotic behavior
of such nonvacuum space-times in the vicinity of 2+ is
already known. Exton, Newman, and Penrose, as well
as Kozarzewski have analyzed the asymptotic behavior

There it has been shown that, provided there exists a
spacelike hypersurface where R & —P everywhere, the
currently existing positivity-of-energy theorems guaran-
tee a non-negative AD M mass. In this paper, we
demonstrate that for the same class of theories the Bondi
mass is also non-negative.

The equation of motion derived from (1) in the pres-
ence of matter that we let be arbitrary for the moment
described by T„reads

G„,, =T„,+P (V„'tr,g g„„CIR R„„R—+ —,'R g„—, ) (2)

from which we infer that R satisfies
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and of course
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Here r stands for an affine parameter along the null geo-
desics, generators of the u =const null hypersurfaces ex-
tending out to 2+ (Ref. 6). The Bondi mass function
M(u ) at retarded time u has many equivalent
definitions. For example, it can be given as a two-
dimensional surface integral taken at the intersection of
the u =const null hypersurface with 2+, i.e.,

M(u )= — (gz '+cr cr +2R' ')ds1

2m
(6)

with o. being the leading term in the asymptotic form of
the shear of the null geodesics generating the u =const
hypersurface. It can be shown that (6) is equivalent to a
Geroch-Winicour linkage associated with an asymptotic

of Einstein-Maxwell space-times while Ludwig has
worked out the general case of arbitrary nonvacuum
spaces. Besides the fact that the five complex Weyl sca-
lars f, exhibit the peeling property, the allowed leading
behavior of the Ricci scalars (t); and scalar curvature R
are
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BMS (Bondi-Matzner-Sachs) time translation.
It is clear from (2) and (3) that R and its gradients

would exhibit an exponential fall of rate along the null

generators of the u =const hypersurface. Therefore if
T„„is well behaved at 2+ (see Ref. 5) one expects solu-
tions of (2) and (3) to be asymptotically fiat. Positivity of
M(u ) for these solutions is essential, because if the sys-
tem is allowed to have negative mass it could radiate
more energy than it had, perhaps an infinite amount.

The currently known positivity-of-energy theorems
and their extensions' cannot be straightforwardly ap-
plied to Eqs. (2) and (3} since the right-hand side of (2)
does not satisfy a priori the dominant energy condition.
However following Strominger we define a new metric
g, conformally related to g, i.e.,

R+ i gpv

Positivity and not singular conformal factor requires
R & —P everywhere. In that case (2) takes the form

G„„=', (V„PV„P— ,'g„„V,—PV—'P)——,'g„V($ }

with

[In (8) we have taken T&„=0.] Because of the fall rate
of R, and the transformation properties of the integrand
in (6) under conformal transformations the Bondi mass
of the two metrics is the same. However, now, the
right-hand side of (8) satisfies the dominant energy con-
dition and thus M(u ) is non-negative by the positivity of
energy theorem as applied to the case of Bondi mass in
general relativity. "

We should point out that the positivity of M(u ), like
the case of the ADM mass, has been reached under the
assumption that 0 =1+P R is nowhere singular (actu-
ally in the proof of Ref. 2, it required to be nonsingular
only on a spacelike hypersurface). This of course does
not imply that solutions with R ( —P locally or global-
ly necessarily have a negative energy, simply the proof
breaks down.

Another point worth mentioning is that positivity of
M(tt ) is actually independent of the weakly asymptotic
simplicity of space-time. One could have arrived at the
same conclusion provided that the underlying space-time
admits finite M(u ). Space-times admitting a finite Bondi
mass have been studied in Ref. 12 and in general they do
not satisfy the peeling property. In summary, we have
seen that solutions of R+(I/2P )R theories, admitting
finite M(tt ) and having R & —P everywhere, necessarily
have a non-negative Bondi mass.

P =in(1+P R ),
V(P) = —,'P (1—e ~)
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