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For Abelian and non-Abelian pure gauge theories, I show that there are at least two classes of
stochastic models which, although associated with the same Hamiltonian in the classical continu-
um limit, correspond nevertheless to quite different quantum dynamics. Models in each class are
explicitly constructed and the nature of their weak-coupling behavior is discussed in the frame-

work of the theory of small random perturbations of dynamical systems. The stochastic models in

one of the classes seem appropriate for a rigorous definition of nonperturbative pure gauge theory.

I. INTRODUCTION

Quantum fields regularized on the lattice is one setting
in which one may have a reasanable chance to obtain re-
liable quantitative predictions of nonperturbative effects.
Of course, what one is ultimately aiming at is the con-
struction of a continuum theory in a rigorously defined
a~0 limit (a being the lattice spacing). This leaves us
some freedom in the definition of the lattice theory. Be-
cause of this freedom it is of interest to be able to decide
whether two theories for which the actions (or the Ham-
iltonians) coincide in the classical a ~0 limit lead to the
same quantum continuum limit.

The continuum limit of interest here is the one taken
at coupling-constant values where the physical quantities
become independent of the lattice scale. This will occur
at second-order phase-transition points where the corre-
lation length diverges. These critical points are there-
fore the only points of physical interest in the whole lat-
tice approach. Lattice theories leading to the same be-
havior near the critical points are said to belong to the
same universality class and define the same physical
theory in the continuum. The problem of whether two
theories with the same classical a~0 limit are or are
not the same physical theory reduces therefore to the
problem of characterization of the universality classes.

For particular modifications of the lattice action, in

asymptotically free theories, numerical evidence suggests
a certain degree of insensitivity of the universality class. '

The whole problem of rigorous characterization of the
universality classes in classically equivalent theories is
however essentially open.

Another problem of interest, in the characterization of
the continuum critical behavior of lattice theories, is the
relation to (formal) theories in the continuum. These are
heuristically defined through perturbation theory im-
proved by renormalization-group considerations. If the
behavior of the lattice theories near the critical points
were ta match the renormalization-graup scaling predic-
tions of the formal continuum theory this would mean
that the leading-logarithmic summation performed by
the Callan-Symanzik equation already captures the
essential nonperturbative features of gauge theories. A
mismatch of the scaling laws, on the other hand, would
imply either that the lattice regularization scheme leads

to more than one universality class or that the perturba-
tive program should be carefully reanalyzed.

In this paper some of these questions are analyzed
through the construction of stochastic models for lattice
(pure) gauge theories and the study of their weak-
coupling regime by asymptotic analysis of the mass gap.
I use a Hamiltonian framework in the temporal gauge
( A =0) and the quantum lattice theory is described by
a stochastic differential equation of the diffusion type,
different theories being associated to different drift
terms.

The main benefit arising from a stochastic description
of the theory is the existence of powerful stochastic tech-
niques for the study of the lowest positive-energy eigen-
value (mass gap} of the elliptic operator associated with
the stochastic differential equation (SDE}. Furthermore,
terms proportional to exp( —a/g2), which cannot be ob-
tained from perturbation theory, are the simplest ones to
deal with by weak-noise asymptotic techniques. In this
sense (weak noise} stochastic techniques are the natural
tool to deal with nonperturbative effects.

In Sec. II, I summarize the stochastic formulation for
lattice theories which was established in detail in Ref. 2
and derive a new equation (2.8) for the drift term. Also
described in Sec. II are the methods to compute the
mass gap from stochastic techniques. The relevant
mathematical results are summarized in an Appendix.

In the final two sections I discuss two types of sto-
chastic models which, through the reconstruction algo-
rithm, are shown to be rigorously related to Hamiltani-
an functions that, in the a~O limit, tend to the pure
gauge QED and QCD Hamiltonians. The models are
however seen ta correspond to different quantum sto-
chastic dynamics in the sense that whereas the link vari-
ables in the models of type I are driven by the
differences of the (chromo)magnetic fields in neighboring
plaquettes, in models of type II the drift is the magnetic
field parallel ta the link. At the root of this difference is
the nature of the terms, in the reconstructed Hamiltoni-
an, that survive in the a ~0 limit.

The drift caeScients in the stochastic differential
equation satisfy the drift equation (2.8) and an integrabil-
ity condition (2.9). They are however also shown to be
the gradient of the logarithm of a formal quantity which
plays the rale of the vacuum state. In the models of
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type I the vacuum" is, in leading order, an exponential
of the integral of the square of the magnetic field. One
shows that in the models of type I the mass gap at weak
coupling behaves like exp( —a/g ). Therefore, although
these models have a well-defined continuum limit, they
certainly correspond to a universality class different
from the one suggested by renormalization-group-
improved perturbation theory.

For the models of type II the quantity that plays the
role of the "vacuum" is the exponential of a topological
number. Furthermore, the non-Abelian models have a
scaling behavior of the same type as the one implied by
the renormalization group.

Let H be the Hamiltonian of a lattice gauge theory in
1+d dimensions:

2

H = Q Ei Ei + VM,
2a (

(2.1)

where Ei is the (chromo)electric field operator defined
through

LEi Ui )=5ii Ui4' (2.2a}

or

5
I X ( l4 )ab5(U }

( I4 )ab5(U)
ab 1 ab I ab

(2.2b)

IP I being a basis for the Lie algebra of the gauge group
G and Vbr (the magnetic potential) a gauge-invariant
function of the lattice variables UI EG.

One assumes that H has a lowest-energy real eigen-
state P and by adding a constant to H this eigenvalue is
adjusted to zero:

HiI}=0 . (2.3)

The eigenstate P induces a unitary transformation from
I-'(g, dU, ) to I-'(i''g, dU ) by

2

H=P 'Hitch= QEi Ei + +bi EiI I I I (2.4)

where

g' Eib
bl ——

a
(2.5)

In (2.4) one recognizes the standard form of an elliptic
operator to which a difFusion process is associated with
the stochastic differential equation (SDE)

dUi= — yg bi + d&g N —1

2a 2X

+ —i g PdW(&a
(2.6)

II. LATTICE STOCHASTIC MODELS AND STOCHASTIC
CHARACTERIZATION OF THE MASS GAP

the (independent) Wiener processes being normalized to

(dIVi dWt }=5 ~5ii.ds (2.7)

and Tr(P)~) =5 ~/2 for the Lie-algebra basis elements.
For functionals of the dynamical variables UI defined

at a single time, statistical averages on the process
defined by Eq. (2.6) coincide with quantum-mechanical
expectations, computed in Hilbert space, on the state P.

For functionals of dynamical variables defined at
different times, i.e., for statistical multitime averages,
one obtains the same Euclidean correlations as in
imaginary-time quantum mechanics. One should be
aware of this fact and not to confuse the time label s of
the stochastic process in Eq. (2.6} with the physical real-
time t variable. This is also true if one uses a time-
dependent solution P(t) of the real-time Schrodinger
equation to generate the drift of the stochastic process.
Then, what the stochastic process Ui(s) does, is to repro-
duce the appropriate expectations and Euclidean correla-
tions on the state P(t) at fixed t.

The stochastic time s is always a statistical averaging
time, not to be confused with physical time. It therefore
plays a role similar to the one of the auxiliary g time in
stochastic quantization in the manner of Parisi and Wu.
The basic difference is that, whereas in stochastic quanti-
zation the stochastic process associated with the g time
performs averages over all Euclidean space-time
configurations, in the present "stochastic mechanics"
formalism the s time performs such averages in a fixed t
time slice and for a fixed quantum state at each t. The
immediate benefit one gains from this formulation is the
economy of one lattice dimension, which in numerical
simulations reduces the memory and computer time re-
quirements. Also, because in computing Euclidean
correlations the role of Euclidean time is now played by
the simulation stochastic time, one minimizes the finite-
size effects in the time direction.

The price one pays for these benefits is that, whereas
in the stochastic quantization of Parisi and Wu there is a
simple prescription to construct the drift (namely,
5 =5S/5U, S being the action), here the situation is not
so simple. Actually because of the association of the
drift and the ground state (for the ground-state process)
displayed in Eq. (2.5), one sees that already the construc-
tion of the drift implies a partial solution to the dynami-
cal problem.

As discussed in Ref. 2 the drift can be obtained in
several ways. The first uses an auxiliary equation which
for almost all initial conditions generates asymptotically
the drift for any specific interaction. For systems with
few degrees of freedom this is a reasonable way to con-
struct the drift for the ground state or even for a
positive-temperature state.

For many degrees of freedom, as in lattice theories,
the auxiliary equations become harder to handle and it is
convenient to look for alternative methods of drift deter-
mination. A possibility would be to obtain an exact or
approximate eigenvalue of the Harniltonian and to apply
Eq. (2.5). For a fixed Hamiltonian of any reasonable
complexity it is not an easy task to obtain an eigenstate.
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—,
' QEPbP+ 2 gbPbp = —V

l, a l, a
(2.8)

However for the operator H of Eq. (2.4) to be equivalent
to H of Eq. (2.1) one needs a unitary transformation, i.e.,
the existence of a ground state, related to bP by (2.5).
This means that in addition to Eq. (2.8) the drift b&

However for lattice gauge theories as (opposed to real
condensed-matter spin models) the Hamiltonian H is not
fixed because what one should require is that it reduces
to the QED or QCD corresponding continuum Hamil-
tonian in the a~0 limit. This freedom may be used in
the following way.

Choose a trial ground-state function P(y) of a set of
parameters y, then use the reconstruction algorithm to
obtain the Hamiltonian HR(y) for which P(y} is an ex-
act zero-energy eigenstate. At this stage one tries to ad-
just the parameters y in such a way that the a ~0 limit
behavior of Hz matches the desired classical continuum
limit. In Ref. 2 a family of states has been obtained in
this way for which Hz reduces when a ~0 to the same
limit as the usual Kogut-Susskind lattice Hamiltonian.
As will be seen later on, coincidence in the classical
a~0 limit does not imply the same weak-coupling be-
havior; i.e., models with the same classical Hamiltonian
limit may belong to different universality classes.

Concerning this second method of drift construction
through a ground-state ansatz one might wonder wheth-
er to establish a stochastic equation is indeed the most
eacient way to extract physical information from the
ground state. Is not the knowledge of the ground state
the same as having the exact solution to the theory'?
The following simple reasoning shows that this is not so.

In quantum mechanics, given the ground state ((}o,

one may always reconstruct the potential from V(x)
=A Ago/(2mgo) Eo O—n th.e other hand, for suffi-

ciently well-behaved potentials, one may prove the ex-
istence of a unique ground state. In this sense, to have
the interaction potential or the ground state is, in princi-
ple, the same. An exception is, of course, the case where
the field algebra is such that all eigenvectors of the Ham-
iltonian can be obtained from the ground state by appli-
cation of raising operators, as in the case of noninteract-
ing harmonic-oscillator modes. This is not the case for
the lattice Hamiltonian, and one should think of the ex-
act ground-state construction as just another way to
define the interaction.

Furthermore, as we will see, the ground-state func-
tionals that are used to obtain the drift through Eq. (2.5)
are, in general, ill-defined divergent functions for an
infinitely extended lattice. In contrast, the drift, formal-
ly obtained from (2.5), is a well-defined dynamical quan-
tity. The stochastic model characterized by the stochas-
tic differential equation (2.6) may therefore be perfectly
well defined, while the functional ((} is an uncontrollable
useless quantity.

The third method to construct the drift is to obtain a
solution to a "drift equation" (2.8) and an integrability
condition (2.9). From Eqs. (2.1), (2.2}, and (2.4) one ob-
tains

should also satisfy the integrability condition

rn = f(g)—.
1

a
(2.10)

In the neighborhood of the critical points, it makes sense
to require invariance of the physical quantities under re-
scalings of the regularization cutoff. Therefore from
dm /da =0, defining P(g) = —a dg/da, one obtains

f(g)- exp —f dg

p(g)
(2.11)

If near a critical point g„;, the function P(g) admits a
power-series expansion

p(g) = —g p»(g —g„;,)"
k

(2.12)

one concludes that near g„;, the mass gap is logarithmi-
cally equivalent to

m —exp
ko —1

(ko 1)P» (g g 't)
(2.13)

where ko is the first nonvanishing order in the series
(2.12).

In QCD, since one expects g„;,=0, weak coupling is
the important regime to study. Furthermore, from per-
turbation theory, ko=3. The study of weak coupling is
also of importance for nonasymptotically free theories in
the sense that a vanishing mass gap at some finite
nonzero small-g value would signal the existence of a
(deconfining) phase transition at finite coupling.

The essential singularity near the critical point, ap-
parent in (2.13), renders unsuitable the usual weak-
coupling expansion. By contrast, the stochastic formula-
tion of lattice theories is in a particularly favorable situa-
tion in the sense that exponential factors such as those in
(2.13) appear naturally in the theory of small random
perturbations of dynamical systems, ' being related to

(2.9)

f ~ being the structure constants of the gauge group.
Equations (2.8) and (2.9) will be used in Sec. IV to con-
struct the models of type II.

In the remainder of this section I will discuss brieAy
how one can benefit from the stochastic formulation to
obtain new numerical and analytical methods to corn-
pute the mass gap and thereby characterize in a rigorous
way the phase structure of lattice theories. The most
relevant mathematical results related to these methods
are summarized in the Appendix.

Once a lattice model is constructed the first task in es-
tablishing the existence and nature of the continuum
limit is to find the values of the coupling constant. where
the correlation length (inverse mass gap) diverges, as
measured in units of lattice spacing. Only at these criti-
cal points does the interesting physics of the models lie.
Since the lattice spacing a is the only available dimen-
sional quantity in gauge theories, any physical mass
should be given by
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estimates of the probabilities of exit of the stochastic
process from a bounded domain. Provided the drift and
diffusion coefficients satisfy the appropriate Lipschitz
continuity properties, the smallest positive eigenvalue m
(mass gap) of an elliptic operator such as H in Eq. (2.4)
is related to the corresponding stochastic process, Eq.
(2.6), in the following way:

m =sup[A, &0; sup E„e '& ~ I,
x&D

(2.14)

Ut 'dUi ———g PbP ds . (2.15)

where ~ is the first exit time from a bounded domain D
with C boundary BD; the eigenvalue problem Hu =mu
being defined with boundary condition u =0 in BD.

Direct numerical simulation of the SDE (2.6) supplies
a method to find the mass gap which is less noise sensi-
tive than the time-correlation methods. On the other
hand, noticing that in Eq. (2.6} e=g/&a plays the role
of a diffusion coefficient, one sees that weak coupling is
the regime of small random perturbations of the classical
dynamical system:

by attractive co-limit sets. Some results also exist for the
case where the classical system has hyperbolic fixed
points' '" (see the Appendix). Applications of these
methods will be discussed in Secs. III and IV.

III. MODELS OF TYPE I

The stochastic models, which will be called type I,
correspond to trial ground state P of the form [for
SU(N)]

P= +exp f TrU +H. c.1
(3.1)

where U is the plaquette product variable.
From the dynamical point of view the functional P,

despite its factorized plaquette product form, is highly
nontrivial as can be seen from the fact that, when ex-
panded in the (canonical) link variables, it contains
terms of high complexity. Actually there is a class of
states of this form such that the (reconstructed) Hamil-
tonian Hz obtained from

The asymptotic (small-g) behavior of m is controlled by
the nature of the classical dynamical system (2.15}. Ex-
tensive results exist in two qualitatively different situa-
tions, ' which for future reference we denote (A) and
(&)

In the first (A), if all trajectories of (2.15) leave
D UBD, m' tends to infinity when e~O, the rate of con-
vergence being given by

m'=[c, +O(1)]e

2

Hs —— g (EP +iLP )(EP iL( )—
a, l

(3.2)

with LI i' p /—p——, satisfies Ha p =0 and reduces,
when a~0, to the same classical limit as the Kogut-
Susskind Hamiltonian. Two simple states in this class
are

c, = lim T 'minISDr(X);X, 6D UBD, 0&s & TJ,T~ 00

Sar (X ) being the functional

T2
S(X)=—,

' I [X, b(X, ) [ ds—. (2.15a)
1

In the second (8}, one assumes b v &0 along BD,
where v is the outward normal, implying that all classi-
cal trajectories of (2.15) remain in D for all s &0 and, in
addition, that there exists a finite number of disjoint
compact sets E„.. . , E„ in D such that the co-limit set
of each solution of (2.15) with x(0) in Dg(U," ~K;) is

contained in one of the sets E;. In this case,

1
P, = exp g cos8

2g4 P

ci 0
$2 ——exp g sin

for U(1), and

2X l
P3= exp gzX —1 g

(3.3a)

(3.3b)

(3.4a)

lim ( —e lnm ') & V',
a~0

lim ( —e lnm')& V„,
@~0

(2.16a)

(2.16b)

m'- exp( —c/e ) . (2.17)

Situation (A) corresponds to cases where the classical
system has no fixed points in D and (8) corresponds to
the situation where the classical behavior is dominated

where V*=max[V„. . . , V„I, V„=minI V„.. . , V„),
V; being the minimum of the functional S(X) for paths
originating in x EE; and ending in BD. This is a case of
potential interest for lattice theories leading to a behav-
ior logarithmically equivalent to

c2
P4

——exp g (z —1) (3.4b)

for SU(iV), where c, and cz are constants to be discussed
below and

All states in this class share the property that all mag-
netic terms in the Hamiltonian H& that do not vanish in
the a ~0 limit come from the commutator term
[Ep,LI ] in (3.2).
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Consider, for example, the U(1) case. For the continu-
um limit of the reconstructed Hamiltonian associated
with a state of the form (3.1), one makes the replacement

(3.5)

where d is the space dimensionality, B~ the continuum
magnetic field, and 8 the average value of the plaquette
angle. By substitution of (3.5) in Hz one sees that to ob-
tain a finite a~0 limit one should have sin8 =0, i.e.,
8 =Oor m. It then follows that

2 gd
L(2 ——g g ri' c os8~f'(c os8~)B~ +O(a +'),

p(l)
2 2

i —g [E(L()=— g f'(cos8&)cose&+g pa B&[cos8&f'(cos8 )+3cos 8 f"(cos8&)]+O(a "+') .
1 P p

Assuming that the gradient VB of the continuum mag-
netic field is finite, the term in LI vanishes when a~0
because the sum in large parentheses is proportional to

ga (VB) [((}'(cos8~)]

Then both for the states (3.3a) and (3.3b), the commuta-
tor term leads to const+ —,'g a Bz, as desired with

ep ——0 for (3.3a} and ep
——~, cl ——Yi for (3 3b).

In a previous paper2 the state (3.3b) is quoted with
c f 3

This is the result that would be obtained if 8p 0
was chosen. This is not the right choice because, in the
quantum state, 8p fluctuates around ~, where the max-
imum of the ground-state wave function (3.3b) is
reached. There is however no essential difference in the

(ci )

physics because denoting by Hz the Hamiltonian for a
particular choice of c

&
one has the relation

g 8 (}

2 88 Be
(3.6)

Then, if HQ=0, one obtains, as in (2.4),

ag H=P 'ag H(t(

2+5 8 8
2 ( Be( (}8(

i gag —b(, (3.7)
l, a I

where 5 is chosen in such a way that

plaquettes that share that link.
In the remainder of this section weak noise stochastic

techniques are used to analyze the asymptotic (small-g)
behavior of the mass gap.

Consider first the Abelian case. Let the lattice Hamil-
tonian be written as a function of the Lie-algebra coeffi-
cient variables 8I.

i.e., there is a simple rescaling in the eigenvalues (mass
gap, etc.) and in the coupling constant.

For SU(N) the expansion points, corresponding to
8 =0 and ~ of the Abelian case, are the matrices 1 and
—1. The last one is a member of SU(N) only if N is
even. By a calculation similar to the Abelian case one
concludes that the Hamiltonian Hz obtained from the
states (3.4) has the same a~0 limit as the Kogut-
Susskind one, if z = 1 in (3.4a) and zz ———1,
c2 N /(3N 1——) (N even) in—(3.4b).

In conclusion, the main properties of this class of
states and the associated stochastic models are the fol-
lowing.

(1) The relevant magnetic terms in the a ~0 limit all
come from the [E(,L( ] term.

(2) Expanding the variables in fluctuations around the
average and using (3.5), the leading term in the exponent
of the states P is a space integral over the square of the
magnetic field. In this sense they correspond, on the lat-
tice, to vacuum functionals of the type discussed by
Greensite' in the continuum.

(3) The nature of the stochastic (diffusion) process as-
sociated with this class of states is obtained by comput-
ing the drift from Eq. (2.5). The characteristic feature is
that each link variable is driven by the differences of
(powers of) the magnetic field in each pair of coplanar

P(=iag b( ——g +s in/( ( ge
(3.8)

is independent of g.
Then, the weak-coupling limit of the lattice model is

the weak noise limit of the SDE:

de( ——P(ds+(g +s) dP'( (3.9)

and the theory developed, for example, in Ref. 8 may be
applied. The results are obtained by showing that, with
a complete gauge fixing, the classical system

d8
ds

=P( (3.10)

corresponds to the situation (B) described in Sec. II,
with the co-limit set being just one attracting fixed point.
The behavior

arng -g exp( —V/2g )

then follows from the bounds (2.16).
Our gauge fixing in three- and two-dimensional space

lattices is as follows: Given an arbitrary field config-
uration L on a three-dimensional lattice it is always pos-
sible, by a gauge transformation, to make U( ——1 (8( ——0)
in all links along the z axis. Next one picks a particular
xy plane and in this plane the remaining gauge freedom
is used to transform to the identity all links along the x
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direction as well as those along a particular fixed line
parallel to the y axis. One denotes by go(L) the gauge
transformation that performs these changes on the
configuration L.

In two dimensions the gauge fixing to be considered
transforms to the unit group element (8( ——0) all links

along the x direction together with those along a partic-
ular fixed y axis. These (maximal) gauge fixings in two
and three space dimensions may be performed both in
the Abelian and non-Abelian models.

Let us analyze the model defined by the state (3.3b).
The drift P( of the classical system (3.10) is

p( =iag 2b( =g in/2

a a8( a'a ~I= 2&
a a8~'Bs I as gael

a= —2g P( = 2——P(,
Bs 80, Bs

where the second equality follows from the fact that

P( — in/ .a

I

The conclusion is that a path satisfying 8( ——+P((8) is a
stationary point of the functional I.

Considering, in (3.13), a path against the classical flow
from one of the attractive fixed points to the boundary
one obtains

=c, g 21' sin8~ sin
p(I)

(3.11) V(P)=inf4+ f P((8)d8(

the sum being over the plaquettes that contain the link I
and g~ being + 1 or —1 according to whether I is a posi-
tive or a negative link in the plaquette.

Because (3.11) is a gradient dynamical system its at-
tractive fixed points correspond to the maxima of in/2.
They are therefore the set of points for which 8 =+a..
There are many configurations L" that are attractive
fixed points. However, it is easy to see that for any two
such configurations

g (L (() )L (()
g (L (2) )L (2)

i.e., all attractive fixed points are gauge equivalent.
Modulo a gauge transformation, the domain D for the

eigenvalue problem is chosen to be symmetric around
the attractive fixed points in the sense that the boundary
aD is reached whenever any one of the 8's reaches zero
(mod2m ). From the results described in Sec. II and the
Appendix it then follows that the principal eigenvalue
has the weak-coupling behavior

=min4g [1ng(L ) —ln(()(aD}] . (3.15}

Using the gauge-fixing transformation go, defined above,
on a boundary configuration L&D it is easy to see that
the minimum in Eq. (3.15) is obtained in two dimensions
when L and LzD differ by one plaquette, and in three
dimensions when they differ by four plaquettes. The
conclusion is

V(02)2 4c(

in two dimensions, and

V($2)3 16c&——

(3.16a)

(3.16b)

in three dimensions.
A similar reasoning for the lattice stochastic process

associated with the state (t(, , where now the attractive
fixed points lie at 8 =0 (mod2m. ) ((((p and the boundary
points have at least one 8 =+m., leads to

am -g exp( —V/2g ),
where Vis the infimum of the functional

(3.12}
V(P()2=4,

V(p()3 ——16 .

(3.16c)

(3.16d)

2
s(aD) d8I = g f —P((8) ds (3.13)

for paths between the attractive fixed points and the
boundary.

The Euler-Lagrange equation for this variational prob-
lem is

(3.14)

Consider a path par ametrized in such a way that
8( ——+P((8), i.e., a path composed of pieces along which
one either follows the classical How or exactly opposes
this flow. In the first case Eq. (3.14) is automatically
satisfied and in the second one obtains

For the non-Abelian stochastic models associated with
the states P3 and P~ [Eqs. (3.4)] the analysis is similar to
the Abelian case. The elliptic operator under study in
this case is

ag H=(t( 'agbHQ

,'g'+' g EI EI + y-ag'b( E(, (3.17)
a, l a, l

b, o'b' y ( UIP} b( UIP) 'b' (3.18)

In the g~0 limit the classical dynamical system associ-

where b( (g la)EI pl(t(. C——onsider the dynamical vari-
ables to be the matrix elements (U(},b of the link vari-
ables. Then, the coefficient A,b, .b. of the second-order
derivatives a'la(U(), ba(U(), .b. in (3.17) is [cf. the repre-
sentation (2.2b) of E( ]
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ated with the operator (3.17) is [cf. Eq. (2.6}]

dUI

dS
= —g U(gag b( (3.19)

dU(
)&A ' ~ag gU(g b( ds.

I

Considering, as before, a path against the classical flow
of (3.19) one obtains

s(BD) 4 a aI =4/ g y(U(p), „E('in/(A ),(, , bd(U)), b .
I a

Using now the representation (2.2b) of E( and the form
of the matrix A [Eq. (3.18)] one finally obtains

I=4g [in(I}(0)—In/(BD)] . (3.20)

Using the (maximal) gauge fixings described above and
defining the boundary BD points as those for which at
least one plaquette has minimal z (for Pi) or z =1 (for

(t~) one obtains the following estimates in three dimen-

sions:

64N /(N 1) (N even—),
64N/(N+1) (N odd),

V((|}4)i——64Cz (N even) .

(3.21a)

(3.21b)

From the discussion of the weak-coupling behavior of
type-I stochastic models one sees that in all cases the
mass gap (principal eigenvalue) approaches zero as
exp( —c/g ). Therefore, the correlation length diverges
and a continuum limit of the models is possible. The
scaling, however, is different from the exp( —c /g ) im-

plied by the renormalization-group analysis of perturba-
tive continuum non-Abelian theories [whenever P&&0 in

Eq. (2.12)]. Also, one sees no essential difference be-
tween the Abelian and non-Abelian models.

The conclusion is that the models of type I have non-
trivial dynamics and a possible continuum limit, but
they certainly belong to a universality class with proper-
ties different from those expected from the perturbative
continuum gauge theories.

IV. MODELS OF TYPE II

I now turn to the construction of a different class of
models, which will be called type II. The search for al-
ternative models with the same classical Hamiltonian
limit is motivated in part by the question of existence of
models with a weak-coupling behavior of the mass gap
of the type exp( —c/g ) as suggested by the renormal-

As in the Abelian case, this dynamics has attractive fixed
points corresponding to the maxima of in', i.e., at z =1
for (1, 3 and at z = —1 (N even) for P4 [Eqs. (3.4)]. The
drift is independent of g for 5=2 and the weak-coupling
behavior of the principal eigenvalue is as in Eq. (3.12),
with V the infimum of the functional

. t, (gD) d U(I= g f +aging UPb(
0 dS

ization group for non-Abelian theories. In this, one will
be guided by the following necessary condition.

For an eigenvalue problem of type (8), as defined in
Sec. II (i.e., one where the a)-limit set is attractive inside
the domain D of the Dirichlet problem), a necessary con-
dition for the mass gap to be logarithmically equivalent
to exp( —c/g ) is that the magnetic term V have the
form

f(U)+g(U),1

g
2

(4.1)

U denoting the lattice variables
Proof. If m —exp( —c/g ) then from (2.16) e-g (with

b( independent of E). The result then follows from (2.8).
From (4.1) it becomes clear why models of type I do

not possess the exp( —c/g ) behavior. The magnetic
part of the corresponding Hamiltonians contains a term
in 1/g which although vanishing in the a —+0 limit has
a determining effect in the weak-coupling behavior.

For the models of type II one looks for solutions to
the drift equation (2.8), restricted to the class of func-
tions for which g&E( b( vanishes, and chooses b( in

such a way that V~ leads to the desired a~O limit.
Consider first the gauge group U(1). In two space di-

mensions one obtains the solution

—l—«&8, (()a 2&2
(4.2)

where 8~(() is the angle variable of a plaquette containing
the link i [Uz(&) ——exp(i8 (&))] and « is a sign chosen in
such a way that it alternates between + and —along
the two space directions. The drift b& of (4.2) satisfies
the integrability condition (2.9), which in U(1) is simply

a a
B8 ' B8

(4.3)

and Eq. (2.8), for a magnetic term

1
VM 2 X g 8p(l)

16ag I (I)

'2
(4.4)

which has the desired a~O limit, as can be easily
checked using (3.5) with 8 =0.

Actually, it is relatively easy to find the "ground-
state" functional associated to (4.2) by Eq. (2.5): namely,

P= exp g ri 8 /4i 2g (4.5)

q~ being again an alternating sign, associated to the pla-
quettes.

In three space dimensions a possible solution is

( (Q(1)+Q(2))
2Q

(4.6)

where by Q(" one denotes one-fourth the sum of the an-
gles of the four plaquettes that are orthogonal to the link
and touch its end points. Q&" is therefore —,

' Xthe angle
of the holonomy operator of a loop of side 2a and in the
continuum becomes the magnetic field parallel to the
link. For convenience I will refer to these 2a &2a loops,
orthogonal to the link I, as the front and rear plaquetton
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of the link l.
The drift bl of (4.6) satisfies the integrability condition

and Eq. (2.8) leading to a inagnetic term

g (Q(1)+Q(2))2
Sag

(4.7)

with the right a~O limit. It could have been derived
from the state

(t = exp g 8, (Q,"'+Q,' ')/4g2
I

(4 8)

exp f e;&A "F'~d x (4 9)

which a partial integration and application of e;~I, B F'
=0 shows also to be invariant for A "~A" +8"P.

Although the processes now obtained for U(1} lattice
gauge theory lead to the same a~0 Hamiltonian limit
as the ones in (3.3), inspection of the drift shows that
they have an important physical difference. Whereas in
the processes associated with (3.3) the links are driven by
the gradients of the magnetic fields in neighboring pla-
quettes, in (4.2) and (4.6) they are driven by the magnetic
field itself. In two dimensions this is necessarily a trans-
verse magnetic field and in three dimensions it is the
magnetic field parallel to the link.

Also two dimensions is seen to be very different from
three in the type-II models, because of the alternating eI
sign, whereas in (3.3a) and (3.3b) they are qualitatively
the same.

Inspection of the reconstruction algorithm clarifies
why these two classes of processes, with so different
physical interpretations, lead to the same limit Hamil-
tonian. Using the exact zero-energy states P to recon-

which is actually local gauge invariant as a consequence
of the (lattice} Bianchi identity. The corresponding
quantity in the continuum is

struct the Hamiltonian (3.2), one sees that in type I the
(a ~0) magnetic term is obtained from the [EI,L&] part,
LI being of higher order in a, whereas in type II the
commutator contribution vanishes and f d x 8 is ob-

tained from the LI term.
Of importance to the weak-coupling behavior is also

the fact that one now obtains g-independent drifts,
whereas in the first class of models the drift obtained by
application of (2.5) to the states (3.3) or (3.4) is propor-
tional to g

It is when expressed in Lie-algebra variables (not
group variables) that the states (4.5) and (4.8) in this
class and their associated drifts have a simple form. I
have not succeeded in obtaining, from simple functionals
of the group variables, any consistent models with the
characteristics of this second class; namely, g indepen-
dence of the drift and reconstruction from the LI term.
For example, a functional of the form

U(QI )U(QI ) —H. c. ,

where U(QI') is the group element associated with the
plaquetton angle QI", would lead to a drift with the
same continuum limit as (4.6), but which is not con-
sistent because it does not satisfy the integrability condi-
tion (2.9). This will make the generalization to the non-
Abelian case more delicate because manipulations with
the non-Abelian Lie-algebra variables on the lattice tend
to be clumsier than those with group variables.

I will therefore use the fact that the state P of (4.8) has
a simple gauge-invariant continuum version (4.9) and try
to generalize it directly to the non-Abelian case because
gauge invariance of a functional of the Lie-algebra vari-
ables is easier to check in the continuum. If a gauge-
invariant continuum functional is found for the non-
Abelian theory, then its lattice version may be used as a
drift-generating ground-state functional. The straight-
forward non-Abelian generalization of (4.9),

exp f e;&&A,'FJ d x = exp 2Tr f d x e; I, A '(cVA "+igA JA ) (4.10)

is not suitable because it is not invariant under a local
gauge transformation

A "(x) A'"(x)=h(x)A "h '(x) ——h(x)B"h '(x) .

However the modified quantity

cr=Tr f d x e; I, A '(8~A "+i ', gA JA "). —

has the transformation law

o. o.— Tr f d3x e;.i, hB"h '8'hB'h1
&gk

(4.11)

(4.12)

(4.13)

and therefore any quantity obtained from cr by applica-
tion of an invariant differential operator on the field

variables is gauge invariant. As seen from Eq. (2.5) this
would be the situation for a drift constructed from an
ansatz P- exp(o ). A gauge-invariant drift may there-
fore be obtained from (4.12).

Furthermore, noticing that the second term in the
right-hand side of (4.13) is just the winding number of
the gauge transformation one sees that the functional o.

of (4.12) is actually invariant for gauge transformations
that preserve the homotopy sector, which are the ones
that Gauss's law imposes on a physical theory. ' The
"vacuum" functional in this case is proportional to the
exponential of the Pontryagin index and its lattice ver-
sion will generate a drift satisfying Eqs. (2.8) and (2.9)
and leading to the desired a ~0 limit.

Although a continuum stochastic differential equation,
constructed directly from (4.12), might also be a viable
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description for non-Abelian gauge theories, well-defined

and computable quantities are easier to find on the lat-
tice. To construct a lattice version of (4.12) let

8(n, n +P } be related to the group element by

U(n, n +P)= exp[i8(n, n +pc))

from (4.20):

b (n, n+i)= — [Q (n, n+i}+Q (n+i, n+2i)],
2a

(4.22)

and consider the symmetrized quantity

S"(n)=—,'[8(n P—, n) +8(n, n +P)] .

Replacing, in (4.12),

A "(n)~ S "(n),1

ga

(4.14)

(4.15a),

where

Q (n, n +i)= ——,'y; k [8 (n +j,n +j+k)

+ ,' f 'P—r8~( n, n +j )

X8r(n, n+k)] . (4.23)

8, A "(n)~ [S"(n +j) S"—(n —j)],
ga

and d x~ „a,one obtains

(4.15b)

, Tr g g y,)k [—8(n, n +i)8(n +j,n+ j+k)7

+i ', 8(n,—n +i)8(n, n+ j)

X8(n, n +k)], (4.16)

AA A
where i, j,kC I+e„, e~, ke, J are positive or negative
unit vectors along each one of the three coordinate axes,
and

(4.17)y;Jk ——(agni)(sgnj)(sgnk)e~;
~ (J ~

~k [
.

When the Lie-algebra elements 8(n, n +P) are used as
basic variables on the lattice, rather than defining the
chromoelectric operator by its commutation relation
with U& as in (2.2a), it is more convenient to identify it
with the difFerential operator —iB/88& and write the
Hamiltonian as

2a (, 88( 88(
(4.18)

d8 (n, n +i)=d8, =i' ds+ dS'P
a

with

(4.19)

2

ib&
— (in')

a Qg
(4.20)

and d Wl are independent Wiener processes as in (2.6).
The reconstructed Hamiltonian (3.2) is now written as

H„= g — +LPg
2a I ()0

(4.21)

with I,;=(—ay/a8;}/y.
Let P= exp(cr), where a is the lattice function (4.16}.

The drift bi =b (n, n +i) for the SDE (4.19) is obtained

instead of (2.1). The shorthand 1 =/(n, P) has been used
for the oriented link (n, n +P) in 8(n, n+P}=@8&.

The stochastic differential equation for the variables
81 is then

Q (n, n +i) is the non-Abelian version of the rear-
plaquetton variable associated to the link (n, n+i). It
involves the boundary and interior link variables of a
2a X2a loop orthogonal to (n, n+i). As in the Abelian
case the drift (4.22} is the sum of a rear and a front pla-
quetton.

Because b ( n, n + i ) does not contain the link (n, n + i )

the commutator term [8/B8&, L& ], in the reconstructed
Hamiltonian, vanishes and the magnetic potential is ob-
tained only from QLl Lp . In the a —+0 limit

[8 (n, n +i)=agA ' (n)]

Q (n, n+i)~a ge,kF "(n)

and because LP = —(ia/g )bi the magnetic term in Hz
tends to the desired a ~0 limit.

The three-dimensional non-Abelian stochastic model
defined by (4.19}and (4.22) is therefore a model that cor-
responds to a Hamiltonian with the same formal a ~0
limit as the models defined by (3.4). However, as in the
Abelian case, the nature of the associated dynamical
process seems to be completely difFerent as is apparent
from the fact that the links are driven by the longitudi-
nal chromomagnetic fields rather than by the gradient of
the transverse fields.

The drift (4.6) and (4.22) for the Abelian and non-
Abelian models of type II is g independent and the mag-
netic term VM in the reconstructed Hamiltonian, ob-
tained from —+bi bi /2g, has a structure of the type
(4.1). There is, however, a serious flaw in the models as
they stand.

The drift being (ig /a)Ba—/c}8&, the quantity o (pro-
portional to the Pontryagin index) will increase without
bound along the classical trajectories of

d0 I =ib
ds

(4.24}

Therefore the stochastic process (4.19) is not positively
recurrent at small g and expectation values cannot be
obtained from time averages. This would seriously im-

pair the computational usefulness of the models.
This situation is easily corrected by noticing that the

magnetic term VM, in the exact Hamiltonian associated
with the stochastic process, does not change under the
transformation

o ~a+ricr, l)E [1,—1I,
where e is a constant and g an arbitrary + or —sign.
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This is so because, in Eq. (2.8), the term EI bl vanishes
in type-II models and the remaining term is quadratic in
the derivatives of o.. Therefore, the reconstructed Ham-
iltonian does not change if one replaces the drift-
generating functional {t= exp(cr ) by P= exp[f (a )],
where f (cr) is a piecewise linear continuous function
with derivative +1. The new drift is simply FIG. l. Periodicity off (cr ) for non-Abelian theories.

bP (new)= f'(cr)bl (old), f'(cr }EI 1, —I] . (425}

b, /g =Sm /g (4.26)

because a =(Str /g ) )(the Pontryagin index.
For U(1) there is only one class of fixed points in

(4.24). The zero magnetic field configurations are all
homotopically equivalent to 0I ——0 VI. Therefore
b/g —+De or equals some arbitrarily large cutoff in a,
A (if one wishes the process to be recurrent).

The next step is to use the stochastic small-noise tech-
niques to analyze the weak-coupling behavior of type-II
models. Let us consider the non-Abelian case. To ana-
lyze the spectrum of aH the stochastic differential equa-
tion is

de, =pids+g dWI (4.27)

A question to decide is the periodicity of f(a ). In the
non-Abelian case there is a family of fixed points of Eq.
(4.24) Z labeled by the Pontryagin index. Each fixed
point is'a class of homotopically equivalent configura-
tions with vanishing chromomagnetic field. In each
class the configurations are related to each other by
homotopically trivial gauge transformations.

As far as the stochastic process is concerned it makes
good sense to impose that all the fixed points (which are
the degenerate Yang-Mills vacua) should play a similar
role. Let, for definiteness, the gauge group be SU(2).
Then, from the continuum version (4.12) of cr and its
transformation law (4.13), one concludes that the fixed
points are stochastically equivalent if f (a ) is periodic
with period b, /g (see Fig. 1),

dO

ds
a
I (4.29}

has hyperbolic fixed points. This is easily checked using
Fourier transform and expanding in proper modes
around the zero magnetic field configurations.

If an hyperbolic fixed point is located inside the
domain D for the Dirichlet eigenvalue problem and if
the unstable directions are globally repulsive then, a re-
sult by Kifer" implies that the lowest positive eigenvalue
approaches a finite constant as g~0. This would be the
case if for D one chooses a small domain around the
a =0 configurations with boundary BD, for example, at
a =+6/Sg'.

Physically, however, the mass gap is the minimum of
the lowest positive eigenvalues for all possible boundary
condition choices. Therefore, for our problem, one
chooses the domain D of all configurations for which
0(a (Nb lg . The two extremal fixed points, at cr =0
and Nb/g, are on the boundary and because of the
periodicity off (a ) no other fixed point is globally repul-
sive. This Dirichlet problem does not fall into one of the
simple situations described in the Appendix. Hence, I
will use a direct estimation and diagonalization of the
Markov transition matrix to find the lowest positive ei-
genvalue.

From the Wentzell-Freidlin estimates (A5) it follows
that at small g the transition probability between the re-
gions close to each one of the fixed points is approximat-
ed by (logarithmically equivalent to)

the drift g&' being

p (n, n+i)=p;=tabi

P~„——exp[ —l(a, o+rblg )l2g ], (4.30)

,'f'(a )[Q (n, n+i—)

+Q (n+i, n+2i)] (4.28)

where I(a „o,+rb, lg ) is the minimum of the function-
al (A6a) computed for paths between the fixed point at
a =a, and the one at a =a,+rb, /g . Using the fact
that the deterministic dynamics (4.29) is of the gradient
type and a minimizing path that goes along the Aux
when o. grows and exactly opposes it when cr decreases,
one concludes

with f '( cr ) E I 1, —1 J,
Neglecting the zero modes because each fixed point is

considered to be a whole class of gauge-equivalent
configurations one concludes that the deterministic equa-
tion

I(o,o+rh/g )=4g [f(cr),„f(a);„]=2rh . (4.31)—

Therefore P+„——exp( —I }, I =rb, /g, and the Markov
transition matrix for the Dirichlet problem is
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e
—r

e
—2I

I —2e —e

e
—r

e
—r

1 —2e r 2e 2r+. . .

~ ~ ~ 0

—r —I

~
—r

1 —2e
—r e

—r

where all lines add to one and all off-diagonal elements in the first and the Nth line equal zero because, on reaching
the boundary, the process is suppressed. [u =0 on BD for the Dirichlet problem, see (A2).]

When g ~0, e &&e, hence for the asymptotic behavior it suftices to analyze the simpler matrix

1 0 0 0 ~ ~ ~

e-" 1 —2e-' e-r 0 ~ ~ ~

Mp —— 0 e

no.
p„=1—2 1 —cos

N —1

—re

n =1,2, . . . , N —2.
The Markov transition matrix is related to the elliptic
operator by Mp - exp( aH). Henc—e the lowest positive
eigenvalue (mass gap} at small g is

am =2 1 —cos exp( —6/g ) .

In the framework of the model defined by (4.25) with

f (o ) as shown in Fig. 1 one obtains a definite value (b, )

for the scaling coefficient in the exponential. The impor-
tant point to retain, however, is the 1/g dependence in
the exponential. This feature will be scheme indepen-
dent in the framework of non-Abelian type-II models.
The scaling coeScient is in fact regularization-scheme
dependent. In the continuum limit one is only con-
cerned with the neighborhood of the fixed points; there-
fore a different f(cr ) (nonpiecewise linear) may be chosen
provided it satisfies f'(o ) =k 1 and f"(o')=0 at the
fixed points. Then f (o ),„—f(o );„may take whatever
value one likes.

For the U(1} model there is no natural periodicity to
be chosen for f (cr). Defining the Dirichlet eigenvalue
problem with can =0 at the boundary and the interior of
the domain D as being all configurations with o. ~0, it is
clear that the mass gap is strictly zero at weak coupling.
This corresponds to the diagonalization of the Markov
transition matrix

Denoting by I e; ) the unit vectors in R, the matrix

Mp is diagonalized in a basis of vectors

es= +sin(k8)er, ,
k

where H=nm/(N —1), n =1,2, . . . , N —2. The eigen-
values of Mp are po

——1 and

APPENDIX: EIGKNVALUKS OF ELLIPTIC
OPERATORS AND STOCHASTIC PROCESSES

I.et L, be a second-order elliptic operator with the
highest coeScient multiplied by a parameter E':

a2
L, =—,'e g a'J(x), . + g b'{x)

Bx 'Bx~; Bx ' (A 1)

L, is defined in a bounded domain 0 in I" and one as-
sumes the following.

(Bl) The boundary BQ of Q is C~.
(82) a'J(x) and b'(x) are real and continuously

differentiable in Q=QUBQ. a (x) is positive definite,
symmetric for any x EQ and there is a matrix o {x)such
that

a(x)=sr(x)o (x),

where now I'~ oo at fixed g &0.
A stochastic model that at weak coupling has a strict-

ly vanishing mass gap, must have crossed a phase transi-
tion line at some finite g. At that point, depending on
the nature of the transition, a consistent continuum limit
of the U(1) model may or may not be obtained. This
question however is out of the reach of weak noise tech-
niques.

In conclusion, having established the existence of two
classes of models which, although associated with the
same Hamiltonian in the a ~0 limit, have clearly
different quantum behavior, this fact has several conse-
quences. First, there is clear evidence that the
specification of a Hamiltonian {or an action} is a rather
incomplete way to define a quantum field theory. Fur-
thermore, the question of whether QCD is a single-phase
theory consistent with asymptotic freedom at weak cou-
pling becomes an ill-defined question. Instead one might
ask whether it is possible to define QCD in such a way
that it has these properties. Defining QCD as a stochas-
tic model of type II with the f(rr) specification in the
drift definition the answer seems to be in the affirmative.

—r ; —re 1 —e
o (x}being bounded and with bounded first derivatives.

Consider the eigenvalue problem
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—L,u =Au in D,
u=0 on BD .

(A2)
paths that go from x to the boundary BD in time smaller
or equal to s:

I(s, «, BD)= inf Io, (X),
From the theory of positive operators there is, at least,
one positive eigenvalue, the eigenfunction space of the
smallest positive eigenvalue A,

&
being one dimensional.

k& is called the principal eigenvalue.
To the operator L, one associates the system of sto-

chastic differential equations (SDE's)

P, = [XECo „:X(0)=x; min d(X(s'), BD ) =0j .
0&s'(s

It is clear from (A4) —(A6) that the e~O asymptotic be-
havior of the principal eigenvalue A,

&
is controlled by the

nature of the deterministic dynamical system

dx'=b'(x)ds+e'i(x)d Wi(s), (A3)
dg =b'(x) . (A7)

where 8'is a n-dimensional Wiener process.
There is a probabilistic characterization of the princi-

pal eigenvalue k& in terms of the exit time ~ from D of
the process defined by the SDE (A3): namely,

(A8)

Several different situations have been studied.
(1) All trajectories of the dynamical system (A7) leave

D UBD. Then A, ,(e)~ao as e~O, the rate of conver-
gence being given by

A i(e) =(c +0 (1)]e
A, , =sup[A&0; supE„e '& ao j,xES

(A4) with

exp
I(s,x, dD) —h-

(~x T (s
2E'

where E„denotes the statistical expectation with start-
ing point at x.

Provided (Bl) and (B2) are satisfied Eq. (A4) is valid
for any value of the parameter E and may be readily used
to compute k, from numerical simulation of the pro-
cess.

Analytical results exist for the asymptotic behavior of
A, , when e~O. Most of them follow from the first and
second Wentzell-Freidlin estimates (theorems 2. 1 and
3.1 in Ref. 8, for example) which imply for the distribu-
tion function for exit times from D starting from x,
P„ tv'& t j, the following bounds. For any h &0,

c =limr „T 'min[Io r(X):X,CD UBD, 0&s & T j.
(2) There are co-limit sets of (A7) in D
(2a) The following conditions are satisfied.

(B3) There is a finite number of disjoint compact sub-

sets K; (1&i &1) of 0 such that, for every
x E [Qg U, K; j, the co-limit set of the solution of (A7) is

contained in one and only one of the sets E, . Further-
more, each set E, consists of equivalent points, i.e.,
V(x,y) = V(y, x) =0 for any x FK, , y CK, , where

V(x,y) =infI, , (X):X(si ) =«,X(s2) =y .

(B4) b v&0 on BQ, v being the inward normal to BQ.
The condition (B4) implies that the solutions of (A7)

with X(0) in II remain in 0 for all s & 0. Let
V, = inf I (x,y ) for x EK; and y G BD and

( exp
—I(s,x, aD)+h

2E
(A5)

V" =max( V„.. . , VI ),
V, =min( Vi, . . . , Vi) .

(A9a)

(A9b)

2

r (X)=-,' I — —&(X(s)) ds,dX
I

(A6a)

where

—b(X(s))
ds

—b(X(s))
ds

Xa '(X(s)) —b(X(s))
ds

(A6b)

and the functional 1(s,x, dD) is the infimum of Io, for

provided E is sufficiently small.
The functional I that appears in the exponential is

defined as follows. Let X(s), Ti &s & T2, be an element
in the space Cz z of all continuous paths in the n-

l' 2

dimensional configuration space of the process. Then

Then under conditions (Bl)—(B4) one has the following
estimates, due to Friedman:

lim [ —e ink, ,(e)] & V',
e~O

(A10a)

lim [—e in', ,(e)]& V, .
e~O

(2b) To obtain estimates for the eigenvalues Wentzell
considers that under the same assumptions (Bl)—(B4) the
process at small diffusion (small e) can be approximated
by a Markov chain with l + 1 states corresponding to the
compact sets E,. and the boundary BD, having transition
probabilities of order

(A10b)

exp[ eV (K, ,K, )—],
exp[ eV (K;,BD ) ] . — (A 1 1)

The transition probabilities from BD to E, are assumed
to equal 0 and the diagonal elements of the matrix of
transition probabilities are such that the sums in rows
are equal to 1. The results are then formulated in terms
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& c&2(v—))/(v+ I) (c & 0)

~&2(v —()/(v+ ) )
)

(A12a)

(A12b)

where the second estimate assumes that the fixed point
at xo is globally repulsive.

of graphs on the states of the Markov chain. I refer to
Ref. 7 for details of the results.

(2c) Some results have also been derived for situations
where, inside the domain D, there are fixed points which
are not globally attractive.

In the case where the drift vanishes to oder v (v & 0)
at some point xo of 0, Devinatz, Ellis, and Friedman'
have obtained

When there are hyperbolic fixed points in D, Lifer"
obtains for the principal eigenvalue

~,~ min Aj as e~o
j&j(v

{A13)

where

1&k &C.

k
7Tj {A14)

~', . . . , mj' being the real parts of the eigenvalues of the
fixed point that have positive real parts. In the sum of
(A14) each eigenvalue (with positive real part) appears as
many times as its multiplicity.
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The identification of the chromoelectric (canonical momen-
tum) operator with —iB/88& is, however, perfectly con-
sistent, provided the Hamiltonian (3.22) and the correspond-
ing stochastic differential equation (3.23) are used instead of
(2.5).


