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The mass gap in the Schwinger model is calculated directly using a method which involves expan-
sion in the lattice spacing. On the lattice the mass in the model is given by p =e'/M sin(m/M),
where M is the number of spatial lattice sites. Current correlation functions and matrix elements

are also examined.

I. INTRQDUCTION

In a series of papers' ' a new procedure for imple-
menting quantum field theory on a Minkowski space-time
lattice has been developed. This procedure, called the
finite-element method, consists in defining operator fields
at lattice sites, with interpolating values given by
operator-valued polynomials in the space-time coordi-
nates. Continuity only is demanded at the lattice sites;
the operator equations of motion are imposed at the
Gauss points. This results in a lattice theory that is ex-
actly unitary in that the canonical commutation relations
are preserved at each lattice site. ' Moreover, when the
procedure is applied to fermions, there is no species dou-
bling.

%e have applied the linear finite-element method to
two two-dimensional field theory models —to the
Schwinger model (massless, two-dimensional quantum
electrodynamics) and to the sine-Gordon model. " The
accuracy of the method is very good; the relative error of
the mass gap in the Schwinger model, for example, is
0(1/M ), where M is the number of spatial-lattice
points. Here, we wish to treat the Schwinger model more
fully in this context, and, in particular, to apply the
expansion-in-the-lattice-spacing method developed in

Refs. 4 and 11. Our goal, of course, is to gain more ex-
perience in exploiting this new lattice technique, which
will ultimately be applied to realistic four-dimensional
non-Abelian theories such as quantum chromodynamics.

The plan of this paper is as follows. In Sec. II we will

remind the reader of the lattice equations of motion and
introduce the Fock-space decomposition of the fermion
fields. Using the latter, in Sec. III we extract the disper-
sion relation for the physical boson state in the model by
examining matrix elements of the Maxwell equations. In
Sec. IV we evaluate current correlation functions which
reveal the boson mass in a different context. Finally, we
see in Sec. V how, in an external field, the vector current
acquires a vacuum expectation value proportional to the
lattice mass-gap parameter p .

II. THE EQUATIONS OF MOTION

In paper I we showed how to formulate the Maxwell
and Dirac equations on a (1+ 1)-dimensional lattice,
which equations are exactly invariant under Abelian
gauge transformations. For zero bare mass, and with h

being the lattice spacing, the equations are (here the first
index stands for the spatial coordinate, and the second
for the time coordinate}
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Bm, .=-,'[(~0),.+(~0),. il

C „=—,'[(A, ) „~(A,),„],
(2.5)

and the Dirac fields are

where E „ is the electric field, the corresponding scalar
and vector potentials are

~(+) '
m n (+)

Y'm, n+1 e 0m —1n,

~( )
—EehC

( )
V m —1,n +1 e ((m, n

(2.11)

where the superscripts denote the chirality, the eigenval-
ues of y5=y y'. We took P'+—„' to be the canonical fer-
mion variables, which for free fields had the Fock-space
expansion

4m, n 2(0m, n+4m+l, n) &

~m, n p(4m, n +Pmn+, 1) '

(2.6)
M i mh —i nbpk hl 'pknh (+) (+) 'pknh ( ) ( —)

k=1

(2.12}

where the angular brackets stand for vacuum expectation
value and the quotation marks for lattice derivative,
while the dual current possesses the axial anomaly,

2

E
7T

M sin

(2.9)

which we took as evidence for the mass gap
2

M sin-
m

(2.10)

This result was derived by using the gauge' Ho=0, in
which case the Dirac equation (2.4} could be solved by

Here M is the number of spatial lattice points which we
take to be even so that g „ is antiperiodic in m. We take
the gauge-invariant electric current to be

J"=e,'(0,.+-0 .,&)~r'r" ,'(4-,.+0,.+i)

=e—,'(& „+& +) „)y y"—,'(& „+& +) „) (2.7)

In paper I we showed that J" is conserved in the sense
that

(2.8)

[ak ak' ] =
M~

~kk'
(e)t (2.13)

the other anticommutators being zero. The physical in-
terpretation of ak

—', ak
—+' as creation and annihilation

operators is as follows:

for 0&k & —1, ak+'
i
0) =ak' '

i
0) =0,

2

for — &k &0, ak+' ~0)=ak '~0) =0;M t
2

(2.14)

this construction then implies the correct lattice fermion
Green's function.

III. THE DISPERSION RELATION

The only physical particle in the Schwinger model is a
boson, which we denote by 8, of mass p. We can obtain
the dispersion relation for this particle in a manner analo-
gous to that employed in Ref. 11 by taking matrix ele-
ments of the equations of motion between the vacuum
and a B state of momentum qi

——2~1/Mh (Ref. 14). Us-
ing (2.1) and (2.2) we find

where pk
——(2k+1)~/(Mh), U' ' are the eigenvectors of

y&, and

„[—(e ' +1)(e ' —1)+(e ' —1)(e ' +1)](B,I
~

E „~0)

(q, +co, )(B,l
~

E—„~0), (3.1)

as h ~0. On the other hand, we evaluate the current matrix element using the solution of the Dirac equation (2.11) and
the Fock-space expansion at the initial time n =0. That is, since

r=0
(3.2}

and

M
~(+) ~ 'Pk (+)P= Z e Qk

k=1
(3.3)

we have
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i( — )(m —n)h ( — )h
'

h

k, k'=1 r=0

n

r=0
(3.4)

We now assume that the B states are not created by fermion operators, that is, for all m /2 —1 & k & 0,

&B,l ia,'+'=O, (3.5)

and that the commutator of a&+' and C „ is negligible as h ~0 (Ref. 15). Then, using the canonical relation (2.13) to-
gether with the vacuum definition (2.14), we find the matrix element of (3.4) is

(B,l i
J~+„'io)=— ieh g (e " e—" ) B,l C, „+g(C „„„—C „, , „) ()

k = —M/2 r=0
(3.6)

where an expansion in h has been carried out. The sum on k in (3.6) is immediately evaluated as 2i/sin(m. /M), while
the remaining matrix element is

(B,l i
C „ i

0) e ' +iqIh g e (B,l iC „ io),
N I

—qIr=0

(~(—
&, )

where in the last summation on r we have deleted a rapidly oscillating term -e ~0 (nh ~00 ). Finally, from
(2.3) we learn, as h ~0, that

ical(B, l
i C. „ i

o&=(B,l
i E.„ i

o& .

When we put (3.1), (3.6), (3.7), and (3.8) together, we obtain the desired dispersion relation,

&B,l iz. „ io&= —. (B,l i J."„'io&2 1

i ~, +e,

(3.8)

(B,l iC „ io)
i a)1+qi 4M sin(m/M) ai( —qi

(B,r iz. „io&,
qi2Msinm M

(3.9)

or

2 2t=qI +p (3.10)

where the mass p is

2=
2

M sin(n/M)

just as found in paper I.

(3.11)

IV. CURRENT CORRELATION FUNCTION

The current correlation function provides another unambiguous signal of the dynamical mass generation mechanism
in the Schwinger model. It is best to start with the equal-time current commutator, since that can be evaluated using
the free-field commutation relations. Doing so, we find, first of all,

e

(4.1)

The vacuum expectation value of this is worked out using (2.14):
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which in turn is evaluated as

ip~(m' —m )h
e

k = —M/2

(4.2)

k = —M/2

M/2, m'= m,
ipk&m' —m )h

e ' = 0, m' —m even, +0,
[i sinn(m' —m )/M] ', m' m—odd .

(4.3}

The unequal-time field products in (4.1) do not contribute, according to the free-field version of (2.11), and we find for
the vacuum expectation value

~ 2

4Mh~ sinn/M

where we have given the result for the similar calculation involving J' '. Equivalently, we have

2

&0~ [J „,J'. „]~0)=i . (5,+i —5 +i . ) .
M sinn. M 2h2

This is the lattice equivalent of the continuum result'

(4.4)

(4.5)

&0 [J (r, t),J'(r', t)]
~

0) = ip —5(r r') . —
Br

(4.6)

Next, we consider the general correlation function. For this we use the normal-ordered current, and assume, as
above, that the fermion operators ak are independent of the boson operators. A short calculation then gives the form

2

&o ~:J.'+„'::J.'~„', :
~

o) = — '. . . &o
~
(2+x.„z.', „,+z. „z." „)

~
o),

16M h sin nN/M

where N =(m —m') —(n n') is as—sumed to be odd, and

(4.7)

n

X „=exp ieh g (C „+„„—C „+,+„„)+iehC +i „
r=0

(4.8)

Consider the short-distance limit, in which m —m' and
n —n' are small compared to M and n. Then X „X' „.
may be replaced by 1 in (4.7}and

(4.9)

current which has a nonzero vacuum expectation value in

the presence of a spatially constant external field C. In-
stead of the current defined by (2.7), this current- is given

by the commutator

in terms of light-cone variables

(4.10)

This may be compared with the continuum result'

(p =e /n).
& J"'(x)J'+'(O) ) = —,a2,„2a~.i(x,„i)

4X ' 0',"( pQx, x ), —

a construction which agrees with normal ordering in the
continuum. If we compare with (3.4) and use the
definitions (2.14) we find

M/2 —1 —1

k =0 k= —M/2

X+ =X +X, X =X —X0 1 0 1 (4.11) (5.2)

The limit x+x ~0 of (4.10) is e l(4' x ), which—
precisely agrees with (4.9).

where we have used the symbols defined in (4.8). When
we use (4.3), we find

V. VACUUM CURRENT IN EXTERNAL FIELD
8Mb sinn/M

(5.3)

The vacuum expectation value of the normal-ordered
current considered in the previous section is, of course,
zero. However, there is another definition of the lattice

If we regard C „ in (4.8) as a constant in space, (5.3) be-
comes
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2M sinn /M
e

M sinn lM
(5.6)

2

C„,2M sinn lM (5.4)

ES'ectively, then, we see the appearance of a mass p in the
corresponding continuum equation,

3 A)+p A( ——0; (5.7)

where we have included the result for a similar calcula-
tion for Jm, n.

Thus, although the vacuum charge density is zero,

the lattice value of p is again (2.10). According to (2.3),
(5.6) implies the axial anomaly (2.9), as it must.
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