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Short-range interactions in the effective theory for Wilson lines
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The effective theory for Wilson lines results from integrating over the variables of the finite-

temperature gauge theory while holding the values of the lines fixed. A quantity which measures
the range of interaction in the effective theory is introduced. It is approximated in a Monte Carlo
simulation at two points near the confinement-deconfinement phase transition. The results show an
interaction range of less than one lattice unit.

I. INTRODUCTION

The order parameter of the confinement-deconfinement
phase transition in pure gauge theory is the Wilson line.
An effective theory for the lines can be obtained by in-

tegrating out all other degrees of freedom in a finite-
temperature gauge theory. The line theory inherits a
global-symmetry group that is the center of the gauge
group of the parent theory. The phase transition is asso-
ciated with spontaneous breakdown of this global symme-
try. '

If the effective theory has short-range interactions and
the phase transition is second order, then it should lie in
the universality class that contains models of the same
symmetry and spatial dimension. If so, the critical ex-
ponents for the confinement-deconfinement phase transi-
tion will coincide with those of the other members of the
class.

SU(2) gauge theory at finite temperature in three spa-
tial dimensions is the subject of this paper. The effective
theory for the lines is three dimensional and has a global
Z(2) symmetry. The three-dimensional Ising model is a
simple representative of the same universality class. All
indications ' are that the gauge theory's phase transition
is second order. The critical exponents that have been
measured are consistent with those of the Ising model.

This paper addresses the range of interaction in the
effective theory. There are theoretical arguments' for
short-range interactions at both strong and weak cou-
pling. However, it is the intermediate region around the
critical point that is important. Lattice regularization
and numerical methods can be used to measure the range
of interaction near the phase transition. An operator
which yields this information is introduced in Sec. IE. It
is cast into a form that can be used in a Monte Carlo
simulation. The numerical methods and results are
present in Sec. III. The simulation was done at two
points close to the critical point in the confined phase.
The result is a range of interaction around 0.5 lattice
units. Earlier work measured line-line correlation
lengths of 4.5 and 6.25 lattice units at these points. Sec-
tion IV contains a brief conclusion.

The method provides a direct determination of a gen-
eral property (the interaction range) of the effective
theory. The operator that is used gives a measure of the

This section discusses the effective theory for the Wil-
son lines and its relation to the underlying gauge theory.
This relationship can be used to find correlation functions
in the finite-temperature gauge theory that measure the
range of interaction in the line theory.

Near the critical point, the gauge theory and necessari-
ly the derived line theory have some operators (for exam-
ple, the lines themselves) with diverging correlation
lengths. However, the range of interaction (as opposed to
the correlation length) of the line theory is expected' to
remain finite at the transition. Reliable analytic approxi-
mations to the line theory in the critical region are not
available unless Nz- is small enough that the transition
occurs at large g . A numerical approximation is possi-
ble if there are correlations that can be measured in the
gauge theory which give information on the structure of
the line theory.

To find these, begin with finite-temperature, SU(2) lat-
tice gauge theory. The lattice has three spatial directions
of infinite extent and one with Nz steps and periodic
boundary conditions. The Wilson line at I,

(2.1)

is one-half the trace of the product of the SU(2) matrices
on the Nz- links in the four-direction at spatial position I.

The action for the line theory s (Nr, g, l) is defined by
integrating all the link variables against the exponential
of the gauge theory action and a product of 6 functions
that fix the lines L (I) to have values l (I):

e '—=z=g JdUe g5(l(I) L(I)) . —(2.2)

interaction range that is independent of the form of the
effective theory. It is not necessary to postulate a specific
expression for the effective theory.

This work is the first step in a larger effort to study the
structure of the effective theory as a function of the gauge
theory parameters Nz and g . The goal is to identify
those changes in the effective theory that drive the phase
transition and to understand their origin in the underly-
ing gauge theory.

Related work on other models can be found in Ref. 4.

II. THEORY
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It follows that

Z, =pfdle '=gfdUe
and that

(2.3)

1
s)z —— g J dl e 's)z(1)

Z.

g fdU e s&z(L) .1

S
(2.9)

(1(I) . ) = g J dl e '1(I)1

ZS

1 g f dUe L(I)
ZS

=(L(I)

The standard Wilson action

(2.4)
—Sl =—

and that

as
al(I, ) z

Now s, 2 must be expressed in terms of gauge theory
correlations that can be approximated analytically or nu-
merically. From (2.2) it follows that

S = — g —,'Tr[U(P)]4
(2.5)

1 1 1Z" Z'Z' (2.10}

s( —l)=s(1) . (2.6}

A theory with nearest-neighbor couplings includes
terms of the form

P—,
' g [1(I}—l(I')]z .

links

(2.7)

The interactions between /'s at different sites and their
strength can be detected by computing

8 s'"= al(I, )al(I, )

will be used.
The line action s is a function of the line configuration.

It has parametric dependence on XT and g . The global
Z(2) symmetry is VL—5(l L)= —— V5(l L) . —

al (vL)z

The operator in (2.11) is

V=V(I)=V„~ (I)

(2.11)

c}=(T„)ik Ukj(I, I4, 4)
ij & 4&

(2.12)

The T„are three matrices that generate the fundamental
representation of SU(2). Dot products in (2.11) are sums
on A and I4. Invariance of the integration measure im-
plies

Subscripts refer to corresponding derivatives as indicated
in (2.8).

The derivatives of z can be computed by using the
identity

=P if I& and Iz are neighbors . (2.8) J dU Vf (U)=0, (2.13)

Local potential terms do not contribute when I,+Iz.
The line action contains couplings between lines at

diff'erent sites that are far more complicated than (2.7).
The example is very simple in that the interaction be-
tween 1 (I, ) and 1 (Iz ) as measured by s, z depends only on
the positions I, and Iz and not upon the value of 1 (I~ ) or
1 (Iz) or any other I. In a general case, s~z(I&, Iz, l) mea-
sures the strength of the interaction between l(I, ) and
1 (Iz ), but it may depend upon the configuration of 1's in a
very complicated manner.

The range of interaction in the line theory is revealed
in the behavior of s,z as Il and I2 separate. It could be
configuration dependent. In some configurations, s l2
might decay rapidly as the separation increases while in
others it might not. The numerical work was done on
two kinds of configurations: simple and typical. The
simple configurations have all l's equal. The typical
configurations have l values taken from gauge theory
configurations that were drawn from a distribution gen-
erated with e . Results for the two cases are surprising-
ly similar.

It is appropriate to select l values for typical
configurations from the gauge field distribution because
averages with weight e ' are simply related to averages
with e-S:

=g fdUe 5'[1(I, ) L(I, )] g 5(—l L)—(2.14)

and then integrate by parts to obtain

z, =g fd U e B (I, ) P 5(l L)—
I

(2.15)

with

B =V VL VL
VS

(VL} (VL)

Thus

(2.16)

—Sl= Zl=
Z

'
g f dUe B(I,)+5

nfdU

—= (B(I,) }, . (2.17)

A similar calculation gives

and therefore no surface terms in partial integrations.
Use (2.11) in the expression

a"=al(I, )'
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z,2=+ JdUe [8(I,)8(Ii)—C(I~,I2)]+5
with

VL2
C (I„I2 ) = — V28 (I, ) .

(VL2)

(2.18)

(2.19)

The first term on the right-hand side of (2.21) is the con-
nected correlation function.

Since the configuration of the L's is fixed by 5 func-
tions, the first term in (2.16) is a constant that does not
contribute to the connected correlation in (2.21). 8 can
be replaced by

Thus

(2.20)

Bo——— VS
VL

(VL)
(2.22)

and

(2.21)

in (2.21) and also in (2.19) if I,&I2. C is zero unless I,
and I2 coincide or are nearest neighbors.

It is straightforward to work out the derivatives in 80
and C.

80(I)= — g g [b, (I,I~,p) —b2(I, I~,p)],4 1 1

1 —III) &r J, „=+],+2, +i

4 1 1 1C(I, I+P)= — g [c~(I,I4,p) cz(I, I4—,p) ci(l,I—4,p, )+c4(I,I4,p, )] .
g Nr 1 —l(I) 1 —/(I+@)

(2.23)

(2.24)

The b's and c's are best expressed in pictures. Please
refer to Figs. 1 and 2. Paths in the four-direction are
closed by the periodic boundary conditions. Closed paths
in the figures are to be understood as one-half the trace of
the product of the indicated link matrices. When there
are multiple closed paths the half traces are to be multi-
plied together.

Now it is evident that the expression for s, 2 in (2.9) is a
bit more involved than it appears. The evaluation of s&2

for each configuration is an average of the type (
The evaluation of these averages can be simplified a lit-

tle by the following observation. An arbitrary gauge field
configuration includes a specification of the group ele-
ments on the four-direction links. These yield values for
the lines L. Consider another set of four-direction ma-
trices that gives the same values for the lines. It is not
dimcult to show that the first configuration is gauge
equivalent to one with the second set of four-direction
matrices. Thus the ( &, averages may be computed by
fixing the four-direction matrices to values that give the
desired L's and then integrating over the spatial link ma-
trices only.

The quantity s]2 is a suitable measure of the range of
interaction in the line theory. It has been expressed in a
form that can be used in a Monte Carlo simulation.

III. NUMERICAL EXPERIMENT

This section describes a numerical approximation of
s&2. The results indicate that the range of interaction is
very short.

s, 2 depends upon the configuration of lines, Nz, and

g . For each value of these arguments, it is an average
( &, . As indicated in (2.17), these averages are computed
as conventional integrations over spatial links with four-
direction links fixed to give the desired L s. The integra-
tions over the group elements on spatial links are done

ci(IiI„~JJ)

I, I4

b, ( I, I, , p& b,( I, I, , LA)
C3

FIG. 1. The products of links for Eq. (2.23). FIG. 2. The products of links for Eq. (2.24).
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s"(J)=
&

gsiz(I, I+J)
Ns i

(3.1)

which are more easily measured will be reported.
Results are presented in the figures. Figure 3 is a semi-

logarithmic plot of s" for cases 1-4. The plotted values
are an average of all the data from J's with the same lat-

with a conventional heat-bath Monte Carlo simulation.
The techniques are similar to those described in Ref. 3.

s&2 was computed for nine configurations of lines.
Since the universality arguments apply to the critical re-
gion, it is most interesting to look at s,2 in this region.
At the value NT ——4 that is used, the critical coupling
4/g, is about 2.296 (Ref. 2). Earlier work indicates that
the couplings 2.275 and 2.285 are within the critical re-
gion and have associated line-line correlation lengths of
4.5 and 6.25, respectively. From configurations produced
in that work, seven were selected. Configurations 1, 2,
and 3 were taken from the sample at 4/g =2.275 and
Nq XNz = 11 X4. They are at iterations 5000, 7000, and
9000. Number 4 is iteration 4000 in a sample at 2.275
and 15 X4. Numbers 5, 6, and 7 are iterations 10000,
15000, and 22000 from the collection at 2.285 and
15 X4. These configurations were not inspected or
screened for any characteristics before selection. In the
eighth starting configuration, all spatial links on a 15 X4
lattice are equal to 1 and all four-direction links are equal
to exp(io3n/8). This gives L(I)=0. The ninth is simi-
larly arranged to give L=0.1. The last two are useful as
reference examples.

Monte Carlo runs began with these nine configurations
and updated the spatial links without altering the four-
direction links. For cases 1-4, 4/g2=2. 275, and for 5-9,
2.285. Cases 1-7 received 5000 sweeps each while cases
8 and 9 got 3000 each. After each sweep, data for a cal-
culation of s&2 were computed and saved. The measured
quantities stabilized rapidly, and just 200 sweeps were
dropped for equilibration.

Since the first seven configurations of lines are not
homogeneous, s&2 will depend separately on I, and I2.
Impractically long runs would be needed to beat down
the fluctuations on these quantities. The spatial averages
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FIG. 4. The average of cases 1-4 (solid line) compared with

D (J,g =0.5) (dashed line) and D (J,g = 1.0) (dotted line).

tice distance
I
J

~

. On the horizontal axes of the figures,I=
I
J

I
. Figure 4 is an average of the same data com-

pared with the scalar lattice propagator:

D(I,Z, ()= g e'1 Z
Ns x g (1 cosI('.„)+—g

(3.2)

This function is convenient for purposes of comparison
because it has a roughly exponential decay with scale g
and correctly includes finite-size and finite-spacing lattice
effects. The two cases that are used for illustration are
(=1.0 and 0.5 with arbitrary normalization Z. (The ir-
regular behavior of D is a lattice effect that arises when g
is small. It is associated with the lack of rotational in-
variance for small g and I. ) Figures 5 and 6 display data
from cases 5-7 while Figs. 7 and 8 present cases 8 and 9.

There are several notable features of these results. In
all cases, s" falls rapidly with separation. The rate is
comparable to D(I,(=0.5) and certainly faster than
D (I,/=1.0). This indicates that the range of interaction
is short.

Cases 1-4 behave similarly as do cases 5-7. Although
the samples are small, this indicates that the results are
probably representative of a larger sample and therefore
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FIG. 3. s"(J) for cases 1-4. 4/g =2.275. FIG. 5. s "(J) for cases 5 —7. 4/g =2.285.
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FIG. 6. The average of cases 5-7 (solid line) compared with
D (J f=0 5) (dashed line) and D (J,g= 1 0) (dotted line).

FIG. 8. The average of cases 8 and 9 (solid line) compared
with D (J,/=0. 5) (dashed line) and D (J,g= 1.0) (dotted line).

light on this issue. In these cases, s,2 depends on the sep-
aration so that there will not be cancellations in the suin
in (3.1). Again there is a rapid decay with separation.
Also s&2 is even in L~ —L. These two facts indicate
that if there are cancellations in (3.1) that allow slow de-
cays of s,2(I,I +J) but give rapid decays for s "(J), then
it would have to be arranged in a fairly tricky manner.
Although this possibility has not been excluded, it seems
unlikely and there is nothing to support it at this point.

It is also possible that in addition to the rapidly decay-
ing interaction that is observed, there could also be a
weak long-range interaction that is hidden in the noise.

Since the data have been given without error bars a
brief remark is in order. The quantity of interest is not
the value of s"(J) but rather the rate of decay with in-
creasing J. Point-by-point error bars could be given.
However, on a given line, they are highly correlated and
greatly overestimate the uncertainty in the decay rate.
The technique of splitting a run of 5000 sweeps into 5
runs of 1000 sweeps and measuring the decay of s" on
each of these would be more meaningful. However, it is
just as enlightening to observe that the different cases are
uncorrelated so that the uncertainty in the decay rate for
each case is no larger than the amount by which the cases
differ in decay rate.001A I I I I

I

I I I I 1 I I I

I

I I I I

I

I I I I

of the physics in this region.
The 4/g2=2. 285 cases do not noticeably differ from

those at 4/g2=2. 275. This indicates that the nature of
the line-line interaction is not changing rapidly as the
critical point is approached.

Surprisingly, the constant L data for cases 8 and 9 do
not differ much from that for the typical L cases. The
typical L cases are in the con6ned phase and thus from
an ensemble with (L ) =0. The values for (L ) and
(L —(L )), in Table I show that L's are very nearly
uniformally distributed relative to the weight (1 L)'~—
that is passed along from the SU(2) group measure. The
constant L cases have L =0 or L =0.1 and no variation
over the lattice. So while the typical and constant cases
have similar (L ) 's, they are very different configurations.
Nevertheless the range of interaction of the lines is about
the same for the two kinds of configurations.

It is possible that siz(I, I+J) could be large and posi-
tive at some I's, large and negative at others, with cancel-
lations in (3.1) leading to a misleadingly small value for
s"(J). The configurations with constant L shed some

10—1

10—2
TABLE I. Values of (L ) and (L —(L ) )„,for the nine line

configurations.

10

10-4
0

I I I I I I I I I i I I I I I I I l I I j

1 2 3 4

FIG. 7. s" for cases 8 (solid line) and 9 (dashed line}.
4/g =2.285.

0.0431
—0.0726

0.1332
—0.0791
—0.0139
—0.0064

0.0428
0.0000
0.1000

0.4967
0.4911
0.4832
0.4970
0.4938
0.5108
0.4969
0.0000
0.0000
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IV. CONCLUSION
Section II gave the theoretical basis for the numerical

work. It introduced the quantity s,2 which gives a mea-
sure of the range of interaction in the effective line
theory. The numerical results in Sec. III provide strong
support for the claim that the effective line theory has
short-range interactions. The range is less than one when
the correlation length is 6.25. Further studies of the
structure of the effective line theory can build on this
basic property.
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