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Fourier acceleration is a useful technique which can be applied to many different numerical al-

gorithms in order to alleviate the problem of critical slowing down. Here we describe its applica-
tion to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a
configuration of link fields to the Landau gauge (B„A"=0). We find that a steepest-descents
method of gauge fixing link fields at P=5.8 on an 84 lattice can be made 5 times faster using

Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also dis-

cuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a
combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for
the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix
and the updating of gauge field configurations.

I. INTRODUCTION

Many types of numerical computation that involve
iterative algorithms suffer a severe problem from the
phenomenon of critical slowing down. It typically takes
the form that the number of iterations required to solve
the problem grows as some positive power of the number
of sites used in discretizing the system, the volume V.
Since the computer time required for one iteration also
(unavoidably) grows at least as fast as V, computations
on large systems, presumably the most relevant physical-
ly, become prohibitively time consuming.

Iterative algorithms become very slow when the
change of the system under one iteration of the algo-
rithm is governed by a matrix which has a large range of
eigenvalues. Critical slowing down occurs when this
range increases with V. The eigenvectors corresponding
to the small eigenvalues lag behind the others as the
computation progresses and control the speed of conver-
gence. The solution is to adjust the matrix ("precondi-
tion it") so that all of its eigenvalues become approxi-
mately equal to the largest one, but in such a way that

the final answer is not affected. The evolution of the sys-
tem with computer time is radically affected, ho~ever,
and should be speeded up by the ratio of the largest to
the smallest eigenvalues of the relevant matrix. Any
volume dependence in the number of iterations required
will also be removed.

This acceleration scheme will work well if the compu-
tational cost of preconditioning the matrix is small —if it
grows only as a single power of the volume, for example.
In physical systems it is often true that the matrix which
governs the evolution is, at least approximately, diagonal
in momentum space. Critical slowing down is a conse-
quence of new eigenvalues at low momentum (in lattice
units) appearing as the volume is increased. Precondi-
tioning by Fourier acceleration then involves multiplica-
tion by a diagonal matrix in momentum space' and has
a cost which grows as Vln( V), being the cost of a fast
Fourier transform (FFT).

In this and the following two papers ' we discuss the
application of Fourier acceleration to numerical algo-
rithms for optimization, matrix inversion, and generat-
ing lattice field configurations. %'e have found a consid-
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erable gain in the computational speed for the numerical
simulation of lattice gauge theories and we believe that
there are similar gains to be made in many other areas
(see, for example, Ref. 6).

This paper describes the use of Fourier acceleration in
an optimization algorithm, specifically that used for
fixing lattice gauge field configurations to the Landau
gauge. Section II introduces the method of Fourier ac-
celeration applied to a simple optimization problem and
then in Sec. III we discuss the algorithm for transform-
ing a lattice gauge field configuration to Landau gauge.
Finally we discuss the uses of gauge fixing in simulations
of lattice gauge theories. In particular we describe a
gauge in which it is possible to Fourier accelerate both
the algorithm which calculates fermion propagators and
that which generates an ensemble of gauge field
configurations. This gauge is a combination of axial and
Landau gauges and we have called it the "AL gauge. "

II. OPTIMIZATION AND FOURIKR ACCELERATION

As a simple example of an optimization problem, con-
sider the transformation of an electromagnetic vector
potential A„(x) to the Landau gauge, B„A"=0. This
can be considered as a minimization of

The decay rates of the different momentum components
of B„A" are controlled by the eigenvalues of the opera-
tor —8 . These eigenvalues will be called p . Since we
need a ( 1/p m,„ for stability, the eigenvector corre-
sponding to the lowest nonzero value of p, p;„, will
have a decay time

2I max
~min ~

I min

(2.8)

If we discretize spacetime into a hypercubic lattice of
points with L points on a side then p;„ac1/i. . The
computation time to reach B„A"=0 will then grow as
VI. or, in four dimensions, as V

Fourier acceleration enables the step taken at each
iteration by the eigenvectors which lag behind to be
made larger. The step size a becomes a diagonal matrix
in momentum space, a(p) with

Solving in momentum space and denoting the Fourier
transform by a tilde,

B.A '"'(p)=[8.A ' '(p)](1 —ap )"

=[i} A ' '(p)]exp( —ap n) for large n .

(2.7)

F = f d x A g (x)A g"(x) (2.1)

2

a(p) =a (2.9)

in the space of gauge-equivalent fields Ag(x). A„(x)
transforms under a gauge transformation g as

A„(x)-Ag(x)=A„(x)—a„Z(x) . (2.2)

At each step of the gauge-fixing algorithm we want to
select the field X(x) so that

f d'x A„(x)A "(x)

& f d x[A„(x)—a„X(x)][A "(x)—ai'r(x)] . (2.3)

This is achieved for small enough values of a by setting

X(x)= —aB„A"(x), (2.4)

since the integrand on the right-hand side of Eq. (2.3)
becomes

A„A"—2a(B„A") +a (B„B"A„B"8Ar) . (2.5)

i3 A"'"'(x)=Q A"'" 'i(x)+ac} ii A "&" 'i(x) .P P P (2.6)

The gauge-fixing procedure is then carried out as fol-
lows: at each step X(x) is calculated from Eq. (2.4) and
then the gauge transformation of Eq. (2.2) is applied to
the fields A„(x). As this step is repeated the function F
of Eq. (2.1) will converge monotonically to a minimum
value if a is small enough. The value of BzA" will be
zero at this minimum. This algorithm is a steepest-
descents or Jacobi method of optimization since at each
stage a step is taken along the direction of the local gra-
dient BFiBX(x), calculated at 7=0.

It is clear that this algorithm shows critical slowing
down if we examine the behavior under the iteration
scheme of B„A"(x). At the nth iteration

The nth iteration of the scheme with Fourier accelera-
tion is

2

A ~'"'(x)= A ~'" -"(x)+P-'a;"Pa~a, A '"-"(x),

(2.10)

where P represents an FFT. Now all momentum com-
ponents of B„A"converge to zero at the same rate since
the matrix controlling the convergence is proportional to
the unit matrix. In fact we can fix to Landau gauge in
one step in this (admittedly trivial) case.

The cost of an iteration of this algorithm will have a
part proportional to Vln( V) from the FFT and an addi-
tional part proportional to V from the rest of the calcu-
lation. Either of these parts may dominate at a given
value of V depending on program efficiency. The num-
ber of iterations is now independent of V, however, so ei-
ther dependence is to be preferred to the V growth in
the cost of the unaccelerated algorithm.

III. LANDAU GAUGE FIXING ON THE LATTICE

A lattice gauge theory is formulated in terms of ma-
trices U which are elements of the gauge group and
which sit on the links of the lattice. Our work has been
concerned inainly with gauge groups SU(Nc ) and partic-
ularly SU(3), relevant to QCD. The results we present
will be for this group with link matrices in the funda-
mental representation.

To fix a lattice version of the Landau gauge we max-
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imize the function FI which, by analogy with Eq. (2.1),
is given by

U„(x)=G(x)U„(x)G (x+p), (3.2)

FI =
Q Tr[Ug(x)+ Us„(x)]

2Nc 4V
(3.1)

in the space of gauge-equivalent fields Us(x). U„(x)
transforms under a gauge transformation as

where the matrices G (x) belong to the same representa-
tion of the gauge group as U„(x) and sit on the sites of
the lattice.

The naive steepest-descents method chooses G(x) at
each step of the iterative procedure to be

G(x)=exp, —g 6 „(U,(x)—U„(x))— Tr[b, „(U„(x)—U„(x))]
V C

(3.3)

where

„(U„(x))=U„(x—v) —U„(x) . (3.4)

This follows from differentiating Fr with respect to w~(x) where G(x) =exp(iw~ T ). An expansion of the exponential
in Eq. (3.3) to leading order in a followed by reunitarization of G (x) is sufficient for numerical purposes.

The function FL will increase monotonically as the algorithm proceeds and at its maximum G(x) will be propor-
tional to the unit matrix. Then the matrix

b, = g [U„(x —v) —U„(x ) —H. c. —trace]

will be zero. This means that

8(x)=Tr[b(x)h (x)]=0
and

(3.5)

8= g 8(x)=0,1

C x

the lattice version of B„A"=0.
This algorithm suffers from critical slowing-down in the same way as the one described in Sec. II. The number of

iterations required to fix the gauge grows with the number of sites on the lattice.
The Fourier accelerated algorithm replaces Eq. (3.3) by

2 2

G (x) =exp P ' —
2 2

F g 6 „(U„(x) U, (x)) tra—ce—
P 0

(3.6)

I

a simulation of SU(3) on an 8 lattice with the Wilson
action and no fermions. In both cases u should be
chosen so as to give the minimum number of iterations
without destabilizing the algorithm and causing FL to
fall. We found that a value of a of 0.1 was suitable for
the unaccelerated algorithm and 0.08 with acceleration.
It is also possible to change the value of a as the algo-
rithm proceeds but we did not find this to be
worthwhile. We monitor the value of FL [Eq. (3.1)] and
of 8 [Eq. (3.5)].

In Figs. 1 and 2 we show the results of gauge fixing a
given configuration, which had been obtained by
thermalization at P=5.8 using an updating algorithm
which did not include gauge fixing. The results are typi-
cal of the six different configurations that we tested. The
value of Fz rose from 0.0 to about 0.83 and the value of
0 dropped from around 14 to 0.0 within machine pre-
cision. [The value of 8 expected for a configuration
without gauge fixing is calculated to be 16(1—1/Nc)
=14.2 for Nc =3.] It is clear from the figures that the
Fourier-accelerated algorithm achieves a gauge-fixing to

where p are the eigenvalues of the lattice version of the
( —8 ) operator and a is the lattice spacing. We use
skew-periodic boundary conditions for the gauge field on
a hypercubic lattice. If the Fourier transform is defined

using exp(i2mn/L ) then the values of p are given by

where L" means L to the power p. The p2=0 (m =0)
eigenvalue is adjusted to some nonzero value in Eq. (3.6)
to prevent numerical problems. The corresponding
eigenvector is irrelevant since it gives no contribution to
G(x). This is because on the lattice

(3.8)( U„(x))=0
X V

corresponding to the continuum integral over a total
divergence.

We have tried both the accelerated and unaccelerated
algorithms on configurations of link fields obtained from

4

p a =4+ sin, m=O, . . . , L 1, (37)—
IP
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A g (x)= A„(x) D„—X,
where

(3.9)

The Fourier acceleration seems in fact to be more
effective than one might expect here. In the Abelian
case of Sec. II the critical slowing down was a purely
kinematical effect as is clear from Eq. (2.6). Complica-
tions arise in a non-Abelian theory because G(x) and
U„(x) do not commute. The analog of Eq. (2.2) for a
continuum non-Abelian theory is

10 1

l

1000

Number of Iterations

2000

D„X=B„X i [ A—„,X),
and that of Eq. (2.6):

8 A&'"'(x)=B A"'" "+a(BD)B A&'"
P P P

(3.10)

(3.11)

FIG. l. 8 [Eq. (3.5)] plotted as a function of iteration num-
ber for gauge fixing an 8 configuration of link fields at P=5.8,
with and without Fourier acceleration.

matching precision in about 7 times fewer iterations
than the unaccelerated algorithm. Each iteration takes
about 1.3 times longer when the FFT's are included but
this depends both on the volume of the lattice and the
machine being used.

It is evident that large gains are to be made by Fourier
acceleration. This will become even more obvious on
larger lattices since the number of iterations of the ac-
celerated algorithm is now approximately independent of
volume. This has been explicitly checked by going from
a 4 to an 8 lattice when the unaccelerated algorithm
required 3—4 times as many iterations. Figure 3 shows a
plot of the decay times of the different momentum
(p a ) components of 8(m ), the Fourier transform of
8(x). Without acceleration, it is clear that the com-
ponents of 8(m) with low values of p a converge slow-
ly and hold up the algorithm. As the volume is in-
creased, even smaller values of p a will appear and exa-
cerbate the situation. All components of lattice momen-
ta converge at the same rate when acceleration is includ-
ed.

It is the eigenvalues of BD that are important to critical
slowing down, and these depend on the field itself. It ap-
pears, however, that the BD operator behaves very much
like 8 in momentum space but with a modified
coefficient. This is seen from Fig. 3 where the decay
times of

~

8(m)
~

to 10% of its original value do not
follow 1.15/(ap a ) predicted from the continuum
Abelian theory [Eq. (2.6)] but instead are 5—10 times
longer. When we gauge fix an SU(3) link field
configuration with all links close to the unit matrix, so
that A„ is small, then we recover the correlation times
of Eq. (2.6). The non-Abelian nature of the fields there-
fore does play a role in the gauge-fixing algorithm but
luckily does not destroy the efficacy of the Fouirer ac-
celeration technique. Indeed Fourier acceleration still
works for the gauge fixing of random SU(3) link fields
obtained from a hot start.

It is interesting to ask whether the gauge fixing ob-
tained by this algorithm is a complete one, i.e., have all
local gauge degrees of freedom been removed? In the
continuum there is a Gribov ambiguity associated with
Landau gauge which corresponds to zero eigenvalues of
the dD operator of Eq. (3.11). This means that it is pos-
sible to make a local gauge transformation from a
configuration satisfying the gauge condition to another
one which also satisfies that condition. The Gribov am-
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FIG. 2. FL [Eq. (3.1)t plotted as a function of iteration num-
ber for the same configuration as in Fig. 1, with and without
Fourier acceleration. Data for only the first 200 of 2000 itera-
tions are shown.
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components of
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plotted against p a, the eigenvalue of ( —a 8 ) for that value
of m.



37 FOURIER ACCELERATION IN LA I I'ICE. . . . I. 1S85

biguity is intimately related to the problem of defining
the same smooth gauge condition over all space-time.
There is no such topological obstruction on the lattice
since all gauge conditions are necessarily discontinuous.
Nevertheless, Fz is a very complicated function in a
space of many dimensions and it is hard to see why it
should not have many local maxima. The numerical re-
sults (Fig. 2) suggest that Fr can become quite flat in

some directions on the way to the maximum. We have
looked for Gribov copies on small (2 ) lattices by apply-
ing the gauge Axing algorithm to configurations related
by a random gauge transformation. In all cases we
found, by studying the trace of each link, that the final
configurations differed only by a global gauge transfor-
mation when 8 [Eq. (3.6)] was reduced to 0.0 within
machine precision. Since the different configurations
take a different route to the final one under the gauge
fixing algorithm, the gauge fixing cannot be complete if
8 is simply reduced to a small nonzero value. This point
makes Landau gauge on its own rather difficult to use
and will be discussed further in Sec. IV.

When studying lattice QCD above the deconfinement
phase transition with no fermions it may be necessary to
change Eqs. (3.1) and (3.6) to be Z3 invariant. This will

ensure that the gauge has similar properties in the three
different phases of the theory. A suitable choice for FL
might be

F~ = g Tr[U„(x)]Tr[U„(x)] .1 1

C p, x
(3.12)

IV. DISCUSSION OF LATTICE GAUGE FIXING

One of the pleasing aspects of the Wilson formulation
of gauge theories on a lattice is that the gauge fields take
values in a compact space so that the functional integral
over these fields is finite. The Feynman path integral
can then be calculated numerically without fixing the
gauge.

There are many situations, however, where it is help-
ful to have con6gurations of link fields with certain
properties that result from having fixed a particular
gauge. Measurements of gauge-invariant loop operators
become simple to implement numerically, for example,
when some of the links in the loop are gauge fixed to the
identity. It also becomes possible to measure gauge-
noninvariant quantities, such as the gluon propagator,
and give some meaning to them. If the spurious gauge
degrees of freedom are all removed then extended opera-
tors which cover more than one site become well defined
without the numerical difficulty of putting a string of
link fields between the sites. This would apply to prod-
ucts of fermian fields on different sites that are used to
measure hadron wave functions. ' In a suitable gauge,
such as Landau gauge, the wave functions would be well
behaved and easy to measure. These are all examples of
the use of gauge fixing to cut the computational cost of

Even when this quantity is maximized, the gauge is fixed
only up to a local transformation by elements of Z3.
This will usually be sufficient, however, since elements of
Z3 commute with all the link fields.

making certain measurements in a numerical simulation.
We have been primarily concerned, on the other hand,
with the use of gauge fixing in algorithms that modify
the usual time evolution of the numerical simulation.

One of the best frameworks for discussing the way in
which a numerical simulation of a field theory evolves in
computer time is one in which the consecutive members
of the ensemble of field configurations are generated us-
ing a discretized Langevin equation. The link fields at
Langevin step n +1 are calculated from those at step n

according to

U(n+1)(x) e'fj U(n)(x)
P (4 1)

For each link, the force term of the Langevin equation
takes the form

f, =eB,S [U]+ &Erl, , (4.2)

where 3 S is a derivative of the action along the group
manifold with respect to that link, e is the Langevin
time step and q is a noise term drawn independently
from a Gaussian distribution for each link.

The updating algorithm for the gauge 6elds is rather
like an optimization algorithm with noise. It suffers
from critical slowing down as we take the continuum
limit (a —+0) on a lattice of fixed physical volume. This
critical slowing down will be present for all local updat-
ing schemes such as the Metropolis algorithm, heat bath,
etc. The Langevin algorithm has the useful feature that,
by making a nonlocal update, Fourier acceleration can
alleviate the problem and enable decorrelated measure-
ments ta be made with less computer time. This will be
discussed more fully in a forthcoming paper. Here we
simply note that it is necessary to fix to a suitable gauge
for Fourier acceleration of a non-Abelian gauge theory.

Another algorithm useful in lattice gauge theory simu-
lations is that of matrix inversion. This is another prob-
lem with critical slowing down and we shall describe
elsewhere the application of Fourier acceleration to the
conjugate-gradient algorithm for Wilson fermions.
Again we require that the link fields be in a suitable
gauge.

Both the algorithm for the inversion of the fermion
matrix and that for the updating of the gauge fields are
controlled by matrices which are not gauge invariant.
We therefore have to fix to a gauge in which their form
has the best momentum-space structure for Fourier ac-
celeration. This seems to be a gauge in which the aver-
age trace link [FI of Eq. (3.1)] is close to 1 and 8 is close
to 0. Then the magnitude of the high-momentum com-
ponents of the gauge field will be small, as will interac-
tion terms which couple fields of widely different mo-
menta in the fermion matrix ar the updating farce term.
We have tested various gauges for their compatibility
with Fourier acceleration. We shall describe below the
gauge which we have found to work best and which we
call the "AL gauge. " It is a combination of an axial-
type gauge and a Landau-type gauge.

First let us describe how to generate an ensemble of
gauge-fixed configurations in a simulation of a lattice
gauge theory. There are two alternatives. The first is to
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update the link fields in such a way as to maintain the
gauge condition (or at least to break the gauge invari-
ance). The second is to extend the updating process to
include two steps, an update of all the link fields in the
usual manner followed by a step in which the fields are
gauge transformed into the appropriate gauge.

The first alternative has been studied in the case of ax-
ial gauges" ' (see the Appendix). Here it is easy to
maintain the gauge condition by simply not updating the
links on the maximal tree. Unfortunately it was found
that, even though some time was saved on each updating
step, the simulation was slowed down and decorrelation
times became very long. The basic reason for this is that
when only some links are allowed to fluctuate the phase
space is explored less eSciently. This is a case where the
use of gauge fixing has affected the time evolution of the
numerical simulation adversely.

The second method, and the one that we use, involves
gauge fixing the fields in between the usual updating
steps. In this way the configurations obtained are gauge
transformations of those that would have been obtained
without gauge fixing, and the time evolution of the nu-
rnerical simulation will not be affected by this method of
gauge fixing.

It is also important to ensure the gauge covariance of
the algorithm. This requires that gauge-equivalent
configurations be updated by the algorithm so that their
gauge equivalence is maintained. Physical quantities
measured on the two configurations will then remain
identical, step by step, as they must. For a local updat-
ing process, such as that in the Metropolis algorithm or
the Langevin algorithm with no Fourier acceleration,
gauge transformations commute with updating steps and
gauge covariance is easy to show. In the local Langevin
algorithm it follows because

i[f.TJ]~ iG(x)f. TJG (x)
e ' Us(x)=e ' G(x)U„(x)Gt(x +(M)

G(x) G [UL(n —1)] ' ' G [UL(I)]

X L())[U ] +&(&)[U] (4.4)

This gauge will have similar properties to Landau gauge
and yet will be much simpler and faster to implement.
It will have a value for 8 [Eq. (3.5)] which is small, al-
though not zero (in fact it will fiuctuate from
configuration to configuration). We find, when working
on an 8 lattice at b =5.8, that 5 hits of the Landau
gauge-mixing algorithm is su5cient to give Fourier ac-
celeration of the fermion matrix inversion when the axial
gauge that is used is the blocked one discussed in the
Appendix. If the axial gauge used is the lattice temporal
gauge (A =0) then 10 hits of the Landau gauge-fixing
algorithm are required. This corresponds to a value for
8 of about 0.5 (the value without gauge fixing is 14) and
a value for FL of about 0.77.

An axial gauge on its own did not produce good re-
sults in a Fourier accelerated updating algorithm. For
the A =0 gauge this appears to be because there are
large fluctuations in the field for small values of k even
when k is large, directly related to Il(k ) singularities
in the continuum axial gauge propagator. On the lattice
this translates into the fact that the length of string
along the maximal tree joining two sites which are
nearest neighbors in a direction perpendicular to the t
axis is of order L, the length of the lattice. This was the
motivation for trying the blocked axial gauge where the
length of the longest string along the tree grows only as
ln(L). This gauge performed considerably better than
the temporal gauge on an 8 lattice but still did not al-
low for Fourier acceleration. It had a value for FI of
0.43 compared to 0.31 for the A =0 gauge. Perhaps
the blocked axial gauge will be useful on its own on
larger lattices but in the meantime we use it as a good
first step in fixing to AL gauge.

if. T&
=G(x)e ' U„(x)G (x+P) . (4.3)

V. CONCLUSIONS

When Fourier acceleration is applied, with its nonlo-
cal force term, gauge covariance can still be maintained
if the updating process includes a complete gauge fixing.
Then all gauge-equivalent configurations become the
same under the gauge fixing and will automatically be
updated identically. As discussed in previous sections
and in the Appendix, a complete gauge fixing is provided
by an axial gauge or (probably, given enough iterations)
by Landau gauge on its own. It will also be true of an
axial gauge fixing followed by gauge transformations
which would not on their own provide a complete gauge
fixing. We use this fact to define the AL gauge which is
an axial gauge fixing followed by a given number of hits
of the algorithm described in Sec. III for fixing to Lan-
dau gauge. This is a well-defined gauge in the sense that
the gauge-fixing condition can be written as a relation
between links on the lattice. The relation involves the
gauge transformation matrices on the sites and these are
simply an ordered product of those for the axial gauge
followed by each hit of the Landau gauge-fixing algo-
rithm:

We have described the technique of Fourier accelera-
tion and its application to problems in numerical optimi-
zation. One particular application that we have dis-
cussed is the gauge fixing to Landau gauge of link fields
on a lattice. Landau gauge has the useful properties that
it is translationally invariant and "smooth, " in the sense
that high-momentum fluctuations in the field are small.
This makes it the gauge of choice where one is needed
for measurements.

Unfortunately, algorithms to achieve this gauge fixing
suffer from critical slowing down, so they become very
costly on large lattices. We have demonstrated that crit-
ical slowing down can be virtually eliminated from this

problem by the use of Fourier acceleration. The number
of iterations of the algorithm required becomes indepen-
dent of the volume. Our tests with the steepest descents
algorithm on an 8 lattice of SU(3) links at P=5.8 show
that the computer time required is reduced by a factor
of 5 when Fourier acceleration is used. As the volume is
increased this gain will improve.

Of course, the naive steepest-descents algorithm is not
very efFicient and better optimization methods, such as



37 FOURIER ACCELERATION IN LAT IICE. . . . I. 1587

ACKNOWLEDGMENTS

This research was supported by the NSF. Numerical
work was performed on the NSF supercomputer facility
at Cornell University. G.P.L. was partially supported by
the Alfred P. Sloan Foundation. B.S. thanks the IBM
Corporation for financial support.

APPENDIX: AXIAL GAUGE FIXING ON THE LATTICE

In axial gauges ( V —1) links are gauge transformed to
the unit matrix. These links form a maximal tree on the
lattice which has no closed loops and many shapes of
this tree are possible.

The lattice temporal gauge, A =0, has the comblike
structure illustrated for a 2 lattice in Fig. 4(a). The
gauge transformation matrices which will fix to this

gauge in one step are made up of products of links join-
ing the site that they sit on, x, to the origin along the
tree:

G (x,y, z, t) = U„(0,0,0,0) . U (x,0,0,0)

X U, (x,y, 0,0) . U, (x,y, z, t —1) . (A 1)

This is clearly a complete gauge fixing —all local gauge
degrees of freedom having been removed. Notice that
G(x) transforms under a gauge transformation on the
original U fields, such as

conjugate gradient, can be considered. These will suffer

from critical slowing down, however, and will need the
application of Fourier acceleration to make them viable

algorithms on large lattices. This means that the algo-
rithm must be capable of translation into momentum

space; i.e., it must calculate G(x) everywhere simultane-
ously. It is hard to see how Fourier acceleration could
be used with algorithms which optimize at a single site
and then move on, such as the Gauss-Seidel algorithm.
We have not investigated more sophisticated optimiza-
tion techniques for Landau gauge fixing because we
need, for our purposes, only a few hits of the accelerated
steepest-descents algorithm and that is very fast.

Our interest in gauge fixing has arisen because it is a
prequisite for the Fourier acceleration of other algo-
rithms necessary for simulations of lattice gauge
theories. These are matrix inversion and the generation
of an appropriate ensemble of gauge fields. We find that
these algorithms can be accelerated successfully when
the link fields are in AL gauge, defined as axial gauge
folio~ed by 5—10 hits of the accelerated Landau gauge-
fixing algorithm. This is a fast gauge to implement,
gives a complete gauge fixing and produces link fields
with an acceptable structure in momentum space to en-
able greatly improved eSciency in realistic simulations
of lattice QCD.

a)

FIG. 4. (a) The maximal tree for the A =0 gauge, dragon
for a 2' lattice. (b) The maximal tree for the A '=0 gauge on a
4 lattice with skew-periodic boundary conditions on the gauge
field. (c) The maximal tree for the blocked axial gauge, illus-
trated for a 4 lattice.

G(x)~g(0)G(x)g (x)

when U„(x)~g(x)U„(x)g (x+p)

so that G (x ) U& (x )G (x +p ) is invariant up to a global
gauge transformation.

Other shapes for the maximal tree can be imagined.
The 3 ' =0 gauge on a lattice with skew-periodic bound-
ary conditions has a snakelike structure illustrated in

Fig. 4(b). Both this and the A =0 gauge have the
disadvantage of breaking translational invariance of the
lattice in a particular direction so that momentum is not
conserved in interactions between particles and the
gauge field. For the snake gauge it is a very small effect
since only one site in the x direction looks different from
the rest.

A numerical problem with fixing axial gauges on large
lattices is that any roundoff error in the U matrices that
makes them nonunitary will be amplified by the process
of multiplying long strings of them together. The U ma-
trices should be reunitarized before axial gauge fixing.

There exist other axial gauges where the maximal tree
is distributed throughout the lattice, for example, the
random axial gauge. ' We use a gauge which we call the
blocked axial gauge in which the maximal tree is built
up from smaller 2 units in an iterative way. It is most
simple to visualize for lattices whose sides have length a
power of 2 and is illustrated for a two-dimensional lat-
tice in Fig. 4(c).
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