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Based on the diquark-cluster model, the mass spectrum of low-lying S = —1 strange dibaryons
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is predicted. In this scheme, two JP=0" states with / =1 and 3 are degenerate at the lowest-
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energy level, around 2.2 GeV c.m. energy. These states can be assigned to the strange-dibaryon
candidate at 2.14 GeV observed by Piekarz in the missing-mass spectrum for the d (K ~,77 )X re-
actions. A similar experiment using polarized deuterons is proposed for the purpose of testing the

validity of this assignment.

I. INTRODUCTION

In a previous paper! we showed that the predictions of
the diquark-cluster model® for the mass spectrum and
the partial decay widths of nonstrange dibaryons agree
well with the experimental evidence®~’ both for broad
and narrow resonances. It should be emphasized that
the group of narrow resonances observed by the Rice-
LAMPF group,’ the ETH group,* Siemiarczuk,
Stepaniak, and Zielinski,” and Tatisheff er al.® are all
well explained by the diquark-cluster model. Concern-
ing recent developments, we point out that the Bonn
group® observed a narrow resonance with I'~4 MeV at
2.017 GeV c.m. energy in the yd reaction and this can
be assigned to the lowest J®=0%* state C, in the
diquark-cluster model, of which the mass and width are
predicted to be 2.02 GeV and ~3 MeV, respectively.
The diquark-cluster model also predicts the existence of
several I =0 narrow nonstrange dibaryons with
JP=1%, 17, and 3~ (Ref. 9). Experimentally, polarized
neutron beams are now available at LAMPF (Ref. 10)
and SATURNE (Ref. 11) and the search for narrow
I =0 dibaryon resonances becomes possible.

Using a similar approach we can also apply the
diquark-cluster model to the analysis of the strange di-
baryon and baryonium. In this article, we present the
predictions of the diquark-cluster model for the mass
spectrum of low-lying S = —1 strange dibaryons and dis-
cuss a possible experimental test. (The calculation of the
decay width will be discussed in another paper.)

In Sec. II we review the analysis of the diquark-cluster
model. In Sec. III, the low-lying mass spectrum of the
S = —1 strange dibaryons are given together with the
spin, parity, isospin, and configuration. We propose in
Sec. IV an experimental test to verify this prediction.

II. DIQUARK-CLUSTER MODEL

The details of the diquark-cluster model for non-
strange dibaryons is given in Ref. 1. Here we summarize
the major assumptions and problems.
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(1) Multiquark systems can be described by the shell
model with the jj-coupling scheme as in the nuclear
shell model.

(2) A six-quark system consists of three diquarks as il-
lustrated in Fig. 1. When two quarks in a diquark are
both in the ls% shell, they form a diquark cluster with
positive energy.

The mass spectrum of the nonstrange (¢°) system is
given by a conventional mass formula in the shell model:

M=6m +M (plin(pi)+M(pin(p3)
+M(d3)n(d3)+832+834+8%°,

%)

(2.1

where M (lj) is the single-particle excitation energy from
a 1s4 shell to the shell with orbital and total angular mo-
menta / and j, respectively, n (/j) is the number of excit-
ed quarks in the shell, and 8’{ the two-particle correla-
tion energy between quarks i and j. The excitation for
the shell characterized by j > 3 is neglected. The excita-
tion energy M (lj) is a function of the quark mass m and
angular frequency w and they are taken to be 0.300 GeV
(Ref. 1).

1 6
FIG. 1. The color configuration of six quarks in the
diquark-cluster model. This system consists of three diquarks
(12), (34), and (56). Two quarks in a diquark are tightly bound
and make a diquark cluster only in the case where both of
them are in 1sJ shell.
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For the diquark cluster, the correlation energy 8Y is
given by

8{=a+bs;'s; , 2.2)

where s; is the spin of quark i/ and the parameters a and
b are taken to be 0.1865 and 0.1953 GeV, respectively.
Generally, the notation [7S] is used for the diquark with
isospin T and spin S. In this case, there are two possible
diquark clusters [00] and [11] and their respective corre-
lation energies 8; are 40 and 235 MeV. We use a nota-
tion Ay for the correlation energy of the [7'S] diquark
when one of the constituents is excited to the 1p4 shell.
They are given by!

A00=A11=0, A01=10 MeV >
Al(): -“60 Mev .

(2.3)

The fact that the [11] diquark cluster is much heavier
(~200 MeV) than the [00] is very important in the
diquark-cluster-model analysis. Since the states with
no-particle or only a single-particle excitation involve
necessarily some [11] diquark clusters, they cannot be
the lowest-energy state. The states with a two-particle
excitation that do not involve any [11] diquark clusters
become the lowest.

The problem in the diquark-cluster model is the mech-
anism that produces a positive energy for the diquark
cluster. Though we cannot answer this question at
present, we point out that an idea similar to this
diquark-cluster model was introduced recently by other
researchers'>~ 1% in the analysis of very high-energy phe-
nomena. They concluded that the nucleon is a compos-
ite system of a quark and a diquark with spin 0,'*!*
which behaves like an elementary particle in the reaction
(diquark fragmentation). The relation between the di-
quark cluster and diquark fragmentation is uncertain at
present. However, the deep insight into the mechanism
hidden behind them may be one of the most interesting
theoretical problems in high-energy physics.

III. THE MASS SPECTRUM OF STRANGE DIBARYONS

Hereafter, we denote the quantities with S = —1 by at-
taching a ‘“prime.” For example, the notation m’
represents the mass of the s quark. The number of s
quarks in a multiquark system is denoted by n,. Then
the strangeness of the system is given by —n,.

The mass formula for the strange dibaryons is given
by a simple modification of formulas (2.1) and (2.2):

M=m(6—n;)+m'n,+M(pi)n(p3)+M(p3)n(p3)
FM(d2)n(d)+M (pLin'(pL)+ M (pin'(pd)

+M'(d3)n'(d3)+81+83+83°, 3.1

where the excitation for the shell characterized by j > 2
is neglected. When a diquark cluster involves an s quark
J» the two-particle correlation energy is modified as

8Y=a'+b's;"s) . (3.2)

Since the parameters b and b’ are the expectation value
of the color-magnetic interaction between two quarks,
there is a relationship

m

b'= b. (3.3)

’

m

The validity of this formula can be examined by the
analysis of the masses of the A and = particles. Since A
and X are considered to be a composite system of a di-
quark (1 and 2) and an s quark (3) their masses are given
by

M, s=2m+m'+(a+bs;s,)+b'(s;+s,)s], (3.4)

where the diquark cluster in A and X should be [00] and
[11], respectively. Taking m'=0.476 GeV, formulas
(3.3) and (3.2) give M, =1.116 GeV and M;=1.188
GeV, which agree well with the experimental values
1.116 and 1.193 GeV.

It is also possible to regard A and = as a composite
system of a strange diquark (1 and 3) and a u or d quark
(2). In this picture, formula (3.4) becomes

MA,Z —_-2m +ml+(al+blsl'sg)+b32'sl+bISZ'S'3 . (3.5)

Since (3.4) and (3.5) should give the same mass spectrum,
one obtains a relationship

a=a’. (3.6)

The parameters M'(lj) are obtained from the expres-
sions of M (lj) (Ref. 16) by substituting m’ and
V'm/m'e for m and o, respectively. For example,

2

Mph=o—52
3.7)
M'(p)y=Vm/mo—L1-"= .

2 le
There are two possible two-particle correlation energies

A}, and A}, for the excited strange diquark. Using
the method given in Ref. 1, they are estimated to be

M(GeV) P [TS] combination

227 T [001C1/20IC01
17 172,312 [00IC1/207C11]

2.26 <

298 12 [00IL1/207C00]
Nt 12,302 (10112070101

220 —— 0 12,312 00112 QX1 0]

FIG. 2. The mass spectrum of strange dibaryon (S = —1).
The configurations of negative- and positive-parity states are

[(1s35)2 (s [(pD)(1sHH]
and
[(1pDUsHI[(1s1)PT[(p s,

respectively.
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—19 and 0 in MeV, respectively.

The S =—1 low-lying states'’ below ~2.3 GeV are
given in Fig. 2, together with the configurations and the
[TS] combinations of diquarks. As in the nonstrange di-
baryons, the states without particle excitation are not
the lowest state as they involve at least one [11] diquark
cluster. The lowest state is of a single-particle excitation
that does not involve a [11] diquark cluster and this is
the reason why the lowest state is of negative parity.

The lowest state, which appears at 2.204 GeV, is a
JP=0" doublet with I'=1 and 2, and this state should
be assigned to the candidate of the strange dibaryon ob-
served recently at 2.14 GeV by Piekarz.!® This seems to
be reasonable in the usual sense, but the discrepancy of
~60 MeV between the theoretical and the observed
values is not small. Though it is very doubtful this
discrepancy has a serious physical interpretation, we
present one possible speculation. We use the relation
(3.6) by reason that the two configurations (diquark)-
(strange quark) and (strange diquark)-(quark) are equally
weighted. However, as we pointed out in Sec. I, the
mechanism of the diquark-cluster formation is still un-
known. Thus, it is possible to assume that the former
configuration has the strong priority. In such a case, the
latter configuration does not exist in A and = and, there-
fore, a’ becomes a free parameter. If a' is smaller by
about 60 MeV than a, then one obtains an agreement be-
tween theory and experiment.

We emphasize that the most important result of the
diquark-cluster model is that the strange-dibaryon candi-
date at 2.14 GeV is of J*=0". This is different from
the conclusion based on the bag model,' in which this
candidate consists of three states with JF=0", 1~, and
27 degenerate at a level.

IV. PROPOSAL OF AN EXPERIMENTAL TEST

In this section we propose an experimental test to ex-
amine the validity of the conclusions in the previous sec-
tion. Piekarz'® found a strange-dibaryon candidate as a
peak or shoulder in a missing-mass spectrum of
d(K 7, 77)X. We examine what will happen if the ex-
periment used a polarized deuteron target d(K ~,7 7 )X.
The Feynman diagram for the major process is illustrat-
ed in Fig. 3. Except trivial kinematic factors, the matrix
element for this Feynman diagram is given by

m= [ Wh(hm,(p,q k¥, (k)d% , (4.1)
where p and q represent the momenta of the incoming
K~ meson and the outgoing pion, k and h the relative
momenta between the neutron and the proton in deute-
ron and between two baryons in a strange dibaryon, and

A=q-p, h=l(—A .

) 4.2)

The terms W, (k) and Wy (h) represent the deuteron and
dibaryon wave function using momentum representation,
and m,, is the matrix element for the K ~+p—n~ + =+
or K~ +n—m"+A, 30 reactions.

Neglecting the D-wave component, the deuteron wave
function can be written as

B

K

FIG. 3. The Feynman diagram for the K ~4+d—7~ +B? re-
action.

¥, (k)=(n-d)¢(k) , 4.3)

where d represents the spin state using vector represen-
tation and 7; (i=1,2,3) are the three bases. The di-
baryon wave function is P wave and can be written as

Wy (h)=p;h@(h) (i,j =1,2,3) 4.4)

The bases p; of spin states and the relative momentum h
do not couple in the bag model while, in the diquark-
cluster model, they are combined in a scalar product p-h
corresponding to the condition J =0 imposed in the
state.

The general form of the matrix element m; is given by

m,=f+io-'ng , (4.5)

where n is a unit vector that is orthogonal to the wave
vectors of the incident and scattered waves. The ampli-
tudes f and g are the usual nonflip and spin-flip ampli-
tudes.’® In the first approximation, they are independent
of k and the vector n is given by n=pXq/|pXq]|.
Then the matrix element (4.1) can be written as

m~[fd,-—g(n><d),-]AjF(A) (4.6)
for the bag model, and
m~[f(A-d)—gA-(nXd)]F(A) 4.7)

for the diquark-cluster model, where the function F(A)
is defined by the formula
F(A)=—2 [ (h-8)g* (h)p(k)dk “.8)
=Az @ ¢ . .
The probability R of the production of strange dibaryons

is proportional to |m |2 By a straightforward calcula-
tion using (4.6) and (4.7), one obtains

R |f+igny|?+1|g|X1=n}) (4.9)
for the bag model, and
R |(f +igny) (A +iA)—igAyn, +in,) |2 (4.10)

for the diquark-cluster model, where the z axis (3 axis) is
taken in the direction P of the deuteron polarization.
Formula (4.9) indicated that in the bag model, R de-
pends on the angle X between n and P alone, i.e.,

R« | f+igcos(X)|?+1|g |%sin®(X) (bag model) .
4.11)

Unlike in the bag model, R depends on the direction of
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A in the diquark-cluster model. To simplify the analysis,
we take a special case where P is orthogonal to n. Then
(4.10) can be written as

R « | fsin(£)4+g cos(§) | ? (diquark-cluster model) ,
(4.12)

where & is the angle between A and P (Fig. 4). In this
formula, except for a very special case

£ _+i,
f

R depends on £. We remark that, if condition (4.13) is
satisfied, (4.9) and (4.10) can be written as

(4.13)

R o< [1F cos(X)]*+ Lsin®(X) (bag model)
and (4.14)
R «<[1Fcos(X)]* (diquark-cluster model) .

We summarize the results here: (1) If the £ depen-
dence of R is observed in the geometry shown in Fig. 4,
then the diquark-cluster model is favored; (2) when no §
dependence is observed, the bag model is favored, but
the diquark-cluster model cannot be excluded. The
reason why the diquark-cluster model is not excluded in
the second case is that the following two cases can occur
accidentally: (a) Condition (4.13) is satisfied; (b) since
two states with 7 =1 and 2 are degenerate at this level
in the diquark-cluster model, the contributions from
these two states cancel the § dependence of each other.
We note that possibility (a) can be examined experimen-
tally by testing the X dependence of R given in (4.14).

V. CONCLUDING REMARKS

From the observed A dependence of the production
ratio of strange dibaryons, it is inferred that the

= 1)

—E

FIG. 4. The definition of angle &.

strange-dibaryon candidate found by Piekarz is of nega-
tive parity. The diquark-cluster model predicts negative
parity for it, as does the bag model. The difference be-
tween these two models appears in the prediction of the
spin state, which was the major subject in this article.
The investigation of high-lying states may provide
another test for these models. The analysis?"??* of the
lowest strange dibaryon with S = —2 (H particle) may be
also important in this sense.

Unlike the bag model, the diquark-cluster model is
only a semiphenomenological model and, in fact, no ex-
planation has been given for the mechanism of the di-
quark cluster. In this sense, many strict tests are re-
quired to establish its validity. If the experimental evi-
dence supports the diquark-cluster model, the concept of
the diquark cluster will play an important role in the
construction of a more complete theory.
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