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Chiral-symmetry-breaking corrections in two-photon decays of psendoscalar mesons
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Chiral-symmetry-breaking corrections of order mp m& to the main effect which arises from the
axial-vector anomaly in m, g, and g' ~2y decays are estimated by using gauge invariance and

vector-meson dominance, which holds at about the 25% level. The inclusion of these corrections
requires a large q-g' mixing angle= —(25+4)' and substantial violation of nonet symmetry for F,
and Fo, the axial-vector decay constants for g8 and go.

I. INTRODUCTION

—8=(17.5+4.5)',
Fo/F„= 1.08+0.11 .

(2)

Recently the value F, /F =1.25, which has been ob-
tained by the chiral one-loop renormalization of F8 and

F, has been used. On the other hand, ~ ~2@ and

g8~2y amplitudes are not renormalized at the chiral
one-loop level and have thus the standard expressions of
current algebra; the use of these with F8/F =1.25 and
the experimental radiative widths of ~, g, and g' gives
the solution

—8=(23+3)',

Fp /F = 1.04+0.04

(3a)

(3b)

As is well known, the current-algebra calculation for
the radiative widths crucially involves the extrapolation

If up-, down-, and strange-quark masses are set equal
to zero, then the chiral SU(3)XSU(3) symmetry is a
property of the QCD Lagrangian. The spontaneous
breaking of this chiral symmetry (resulting in the ap-
pearance of eight massless pseudoscalar Nambu-
Goldstone bosons) or equivalently PCAC (partial conser-
vation of axial-vector current) plus the axial-vector
anomaly fixes' the two-photon decays of pseudoscalar
mesons in terms of the matrix elements

&0
I Ak~ I Pk(q) & =tFt q~

(k=3,8,0 with the corresponding P„=m , o)„7l soand we
write for simplicity F„=Fs,F =Fo). Unlike F
(which is known experimentally, F„=93 MeV), Fs and

Fp are not simply related to other well-known physical
processes. With certain assumptions to be stated below
for F8, the recent measurements of g and q' radiative
widths have been interpreted ' as an indication of large
mixing angle ( —8=20') between gs and go. This result,
of course, depends on the value of F8/F used. If one
uses Fs/F =1, one obtains

of the matrix elements of the divergence of the axial-
vector current,

ki,

—8= (25+4)', (4a)

Fo /F =0.64+0.07, (4b)

substantially different from (2) and (3), particularly for
Fo which indicates large nonet-symmetry breaking for
Fp and F8. The result for the g-g' mixing angle is ob-
tained from the g8 sum rule only and is thus indepen-
dent of the pure-g1uon component which might be
present in g and g' in addition to qq states gs and gp.
The large mixing angle may be consistent with the one
used in the linear mass formula for pseudoscalar mesons.
The consistency of a large mixing angle with the quadra-
tic mass formula has been discussed in Ref. 4. Below we
give the details of our calculation.

from q =(k, +k2) =0 to —q =+mi (rrtt ——m„,
m„,m„). Because m„ is small compared to a light-

hadron mass (e.g. , m =770 MeV), one may hope that
the neglect of this extrapolation is justified, but for g and
g' mesons the extrapolation is potentially dangerous.
The purpose of this paper is to study this question and
to estimate the corrections due to explicit breaking of
chiral symmetry when the pseudoscalar Goldstone bo-
sons acquire their masses (or equivalently quark masses
are not set equal to zero). We show that the gauge in-

variance and vector-meson dominance enable us to esti-
mate (q /m s, ) corrections to the main effect, which

arises from the axial-vector anomaly term. As will be
discussed, these corrections are small (1.2%) for m de-

cay but could be substantially large for g and g' decays
( —17% for 71 decay and 40% for decay in the ampli-
tudes). However, these estimates may be off by about
25% since our use of vector-meson dominance may be
off by this amount. When these corrections are includ-
ed, we obtain

37 1988 The American Physical Society



150 RIAZUDDIN AND FAYYAZUDDIN 37

II. CHIRAL-SYMMETRY-BREAKING CORRECTIONS (y(k, )y(kz )
I
Jp(0)

I
0) =e„'(k, )e„'(k )(—I „"„), (Sb)

The S-matrix element for P ~2y is defined by

(y(k, )y(k, )
I
P(q)) =i (2m )'5'(q —k, —k, )

x (y(k i )y(kz }
I
Jp(0)

I
0),

where

k kI „=—le„„pk) k2pAP .

Now we have the Ward identity

k k—lq&M„„&——M„

(sc)

(6a)

with

(Sa) where separating out the pseudoscalar-meson P pole and
possible pole P' due to the radial excitation of P, we
have

M"„k ——f a x d y e ' e (0
I T(V& (x)V'„(y)Akk(0))

I
0)

kP qk r + kp' qAr, k P.
P q2+~ 2 q2+~ 2 (6b)

where

(0I Akk I P(q) &=iFkPqk (6c)

Using now PCAC with the axial-vector anomaly

A kk(x ) =FpmpPk (x ) — s Spep pFp, (x )F p(x )
BXk 16m

and for k=3, P =~ only with F3 ——F while for k=8,0,
P =g and g', and similarly for radial excitations P'. In
Eq. (6a),

M" = faxdye 'e

x (0
I
T( v' (x)v'„(y)BkA„k(0))

I
0) . (7)

g =cos8 g8 —sin8 go,
g'=sin8 ps+ cos8 go

we get, from Eq. (6c) [cf. Eq. (1)],

F» ——cosO F8, F»' =sin8 F8,
Foq

———sing Fo, Fo„——cos8 Fo .

Then writing

p3, 7T p3

and

cose res„9+sine res
n'= res

—sinO I ' +cos6I I ' = I

( lob)

(10c)

with k =3,8,0, i.e., separating out the pseudoscalar-
meson P pole and other possible pole P' due to its radial
excitation and keeping the anomaly term, we obtain

F m F m ~

Mk y kP P rk, P+ y
kp' P' r~k, P'

P
q

2 +~ 2 P
q

2 +~ 2 P

l k+ 2 Spa„~~pk, ~k2
2m.

Substituting in the Ward identity (6a) and using (6b), we
obtain the sum rule

—g Fkp I „"' QFkp. I „'"' = ——qkI „"
p p'

l k+ ~ Spe„~~k,~k~p .2'
(loa)

we can rewrite the sum rule (10a) as

k
P'

pk k l k—F I „,+ I „'„=—q I „„+ S 6'
pk& k2p

P 277

(lod)

where Fz is now defined as in Eq. (1). Chiral symmetry
requires that Fp. vanishes in the chiral limit, so that

2
mp

Fp. ——rp Fp,2
mp

where rz. has been estimated to be 2v'2.
Now to estimate I „' relative to I „, i.e.,

Ap z /Ap zr, we use the quark annihilation model
which gives

4m a i mp
2

For k=8 or 0 when P=g and g', writing g and g' in
terms of g8 and go as

3

=4~a'I Ap z, I'
16

(12a)
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giving
2

'(0)P~2rl =
~3 X ~3 (

2 2/4) ]/2 I&i

Fp Ap

Fp A
=0 (mp/mp. ) (14)

A

A

This gives, for example, for the pion case,

m 1+(m„/2mNs)
m ~ 1+(m ~ /2mNs)

f"(0)
P"(0)

(12b)

(13a)

at least while we are interested in terms of 0 (mp/mp ).
In view of the above and also due to lack of data on ra-
dial excitations for g8 and go we shall neglect the contri-
butions from the radial excitations in the sum rule to ob-
tain

k k l k—Fp P+ = —qgP@ g+ & Spf&&&pk ~&k2p
2m'

y '(0)

y (0)

Setting m+-1300 MeV, we see that

(13b)

A ~. 2y

A. ,y

1

20
(13c)

This together with (11) is too small. In any case, togeth-
er with (11),we see that

where mNs is the average of nonstrange-quark masses
(=300 MeV). Potential models, which give good fit to
masses of heavy-quarkonium states, would give

We now estimate the term q&I „" & which on dimen-
sional grounds will be 0(q /mv) where mv is a typical
vector-boson or axial-vector-boson mass. What we need
is the matrix element

iI „"„=—(y(k, )y(k )
~

A„(0) 0),
where a tilde denotes that Ak& does not contain any
pseudo scalar-meson pole. This we calculate in the
vector-meson-dominance model for which we first calcu-
late ( V, (k, )V~(k2)

~
Ak2

~

0) to be dominated by the
axial-vector-meson Ak pole. The gauge-invariant axial-
vector-meson coupling with two vector mesons (here i,j
are indices corresponding to vector mesons p, co, and P)
is defined as

i & V—(k, ) V (k2)
~

Ak(q) ) =e„'(k& )e„'(k2)&2(q)

X [[q (kt+k2)]——,'e„„„(k, k2), +(6 2
—pkp„—E„2 pk„)k~~k2p]b"" .

Then defining the matrix elements of the axial-vector current Ak& in a gauge-invariant way as

( V (k, ) v/(k2)
~

Ai 2 0) =e„'(k, )E'„(k2)

X [fg~"(q')e„„ i(k, —k, ),+h ""(q')e„„pk, k2pqi,

+g'("(q )(e„z pk» P-„z pk, „)k& —k2p+g$" (q )(e„z pk» e„z pk2, )ki —k2p],

(16)

we see that pseudoscalar-meson pole contributions to the
above matrix elements are

cosg f v v ~+ sln6 p v v ~' —f v
(8) (8) (8)

I J i j~ i J 18

(18d)
Fkpq (k)

pvapk 1&t 2p1 v,. Vp.
p q+mp

(18a)
—sint9yv. v. +cosOyv. v. '=yv. v.

(0) (0) (0)
t J~ i j I i j 10

where k=3,8,0 and for k=3, P =m only while for k=8
or 0, P =g and q' [here yvvp is the coupling strength
for V~ V'P and Fkp are defined in Eq. (6c)]. Thus,

we can rewrite Eq. (18c) as

2f ~v "(0)=Fpy vvp.
2 J

(18e)

(k)
FkPXv, vjP

hpi"(q )= g
p q +mp

(18b)
where Fp is now defined as in Eq. (1).

The axial-vector-meson pole contribution to Eq. (17) is

and one has the Goldberger-Treiman relation

rfFkpyv, v p
P J

Now if we use Eqs. (10c) and write

(18c)

F„,b' "[q' (k', +k', )]—
2(q +m„)

Fk„b'"[q (k, +k2)]-
h„""(q )= —g

m„(q +m„)

(19a)

(19b)
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b'kF „ijk(q2)
q +m„

(19c)
For the vector mesons on their mass shell (k, = —mi, ,

I

k 2
—— —Iv ), Eqs. (18e) and (19a) give, for q =0,

&)k( 2) 0

where F„and Fv are defined by

(19d)
mv. +mv2 2

ijk ' J (k)+2Fkgb 2 =Fry v, v, p .
A 2m A

(21)

(0
~

A„(0)
~

A (q) ) =F„„e(q),

(0
~

V,„~ V(k, )) =Fv e„(k, ) .

(20a)

(20b)
Thus, finally using Eqs. (17) and (19},vector-meson dom-
inance for (y(k, )y(k2 )

~
Ak&

~

0) gives (k f =0=k 2 )

—ir„"„,=(y(k )r«2)
~

Akk
~

0)

Fv Fv. 2
kA i J q ;k iJk2 2 2 2 2 2 2 vga'. ( I 2 )a 2

b epvapk lak2pqA.
] j A q +mA mvmv mA 2

t J

+b'~"(e„k~Pkq„e„k P—k(„)k)~k2P

2

b )Jk

2

1 1
~vgaPk 1P

—
2 eP~~Pk 2v k 1~k 2

mv, . mv.
J

(22)

which is explicitly gauge invariant. Substituting Eq. (22) in the sum rule (15) and using Eqs. (5c) and (21), we obtain
(with q = —mp)

r

Fv Fv.
k 1 1 k (k)

2 2 2271 ',j mv. +mv. mv. mv.
J & J

(23)

We replace m v +m v by the average vector-meson mass2 2

I J
m f, =—,'(mv +mv ) and can then eliminate Fpy'k".~z, by

assuming vector dominance of P~yy matrix elements,
which succeeds at &25%. The vector-dominance model
gives

using m =770 MeV, m „=930 MeV. Define
8

A (P 2y )= A(P~2y),1

4~

so that

(28)

FvFv
k (k)

2 rv v,
J m v m vJ

(24)
m a

I (P 2y)=
~

A(P 2y)
~

64m
(29)

so that we can write the sum rule (23) as
where P =n, rl, or 2)'. Now from Eqs. (25) and (26) we
have

Ap = 2Sp 1+k

p 27T

2
' —1

mp

2m v
A 0 ——4~ A 0

—— (1—0.012), (30a)

Note that in this sum rule k=3, 8, and 0 and corre-
spondingly P =m gs and go

A „=4m A „= (1—0. 18),
8

(30b)

iii. NUMERiCAL RESULTS A„=4m A„= (1—0.38),
0

(30c}

We have

—2mv=
m +m„

2
= 1.23m

and for vector bosons which are coupled to y's,

(26)

(27)

where we have used m =135 MeV, m„=560 MeV, and

m„=948 MeV. The value of m„ is that which one
0 18

gets from Gell-Mann —Okubo mass formula. Once the
value of m „ is fixed as above one gets m „ from the re-

I8 0

lation

m„+m„=m„+m&
IO I8
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and the experimental values of m„and m„. It may be
noted that the sum rule (25) is not sensitive to small
variations in m . The Gell-Mann —Okubo formula is at

I8

least valid to the same accuracy as vector-meson domi-
nance.

Equation (30a) gives

I p ——7.45 eV (3 1)

to be compared with 7.64 eV without the chiral-
symmetry-breaking correction and with its experimental
value

I'p '=7.57+0.32 eV . (32)

Thus we see that with an increased accuracy of the ex-
perimental measurement of I p, the chiral-symmetry-

breaking correction calculated here is testable.
The experimental result I (rI —+2y) =0.53+0.08 keV

and the average value (as quoted in Ref. 2) of
I (r)'~2y) =4.42+0.34 keV together with (29b) and
F =93 MeV, give

F /F
Finally if g and g' have pure gluonium component Go

so that Eqs. (10b) are replaced by'

r) =cos8|r)s —sin8, (cos8zgp —
sin8zGp ),

r)' =sin8, r)s+ cos8, (cos8zrjp —sin8zGp },
G =sin82qo+ cos82GD,

(34)

1
7/p= ( sln8&rl+ cos8&ri'+sin8zGp )

cos82

so that the rjs sum rule (30b) gives then

—8i ——(25+4)'

(35)

(36a)

and the z)p sum rule (30c) gives (as Gp has no couPling to
photons)

where Go has no coupling to photons and we have
neglected the very small g8 component in G. Then

g8 =cos8,g+ sinO&g',

A „=(1.01+0.08)F

A„.=(1.27+0.05)F

where

A =cosO A —sin8 A
Yl 18 7/ p

(33)

or

Fp /cos82 =0.64+0.07F

Fo

F
= (0.64+0.07)cos8z, (36b)

and

A„=sin8 A„+cosg A„. .
IS

so that (4b) is then upper limit for Fp/F in this case.
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