Chiral-symmetry-breaking corrections in two-photon decays of pseudoscalar mesons

Riazuddin
Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Fayyazuddin
Department of Physics, Umal Qurah University, Makkah Al-Mukkarama, Saudi Arabia

(Received 10 February 1987)

Abstract

Chiral-symmetry-breaking corrections of order $m_{P}^{2 /} m_{V}^{2}$ to the main effect which arises from the axial-vector anomaly in π^{0}, η^{0}, and $\eta^{\prime 0} \rightarrow 2 \gamma$ decays are estimated by using gauge invariance and vector-meson dominance, which holds at about the 25% level. The inclusion of these corrections requires a large $\eta-\eta^{\prime}$ mixing angle $\approx-(25 \pm 4)^{\circ}$ and substantial violation of nonet symmetry for F_{8} and F_{0}, the axial-vector decay constants for η_{8} and η_{0}.

I. INTRODUCTION

If up-, down-, and strange-quark masses are set equal to zero, then the chiral $\operatorname{SU}(3) \times \operatorname{SU}(3)$ symmetry is a property of the QCD Lagrangian. The spontaneous breaking of this chiral symmetry (resulting in the appearance of eight massless pseudoscalar NambuGoldstone bosons) or equivalently PCAC (partial conservation of axial-vector current) plus the axial-vector anomaly fixes ${ }^{1}$ the two-photon decays of pseudoscalar mesons in terms of the matrix elements

$$
\begin{equation*}
\langle 0| A_{k \lambda}\left|P_{k}(q)\right\rangle=i F_{P} q_{\lambda} \tag{1}
\end{equation*}
$$

($k=3,8,0$ with the corresponding $P_{k}=\pi^{0}, \eta_{8}, \eta_{0}$, and we write for simplicity $F_{\eta_{8}}=F_{8}, F_{\eta_{0}}=F_{0}$). Unlike F_{π} (which is known experimentally, $F_{\pi}=93 \mathrm{MeV}$), F_{8} and F_{0} are not simply related to other well-known physical processes. With certain assumptions to be stated below for F_{8}, the recent measurements of η and η^{\prime} radiative widths ${ }^{2}$ have been interpreted ${ }^{3,4}$ as an indication of large mixing angle $\left(-\theta \approx 20^{\circ}\right)$ between η_{8} and η_{0}. This result, of course, depends on the value of F_{8} / F_{π} used. If one uses $F_{8} / F_{\pi}=1$, one obtains

$$
\begin{align*}
& -\theta=(17.5 \pm 4.5)^{\circ} \tag{2}\\
& F_{0} / F_{\pi}=1.08 \pm 0.11
\end{align*}
$$

Recently the value $F_{8} / F_{\pi}=1.25$, which has been obtained by the chiral one-loop renormalization ${ }^{5}$ of F_{8} and F_{π}, has been used. On the other hand, $\pi^{0} \rightarrow 2 \gamma$ and $\eta_{8} \rightarrow 2 \gamma$ amplitudes are not renormalized ${ }^{3}$ at the chiral one-loop level and have thus the standard expressions of current algebra; the use of these with $F_{8} / F_{\pi}=1.25$ and the experimental radiative widths of π^{0}, η, and η^{\prime} gives the solution ${ }^{3}$

$$
\begin{align*}
& -\theta=(23 \pm 3)^{\circ} \tag{3a}\\
& F_{0} / F_{\pi}=1.04 \pm 0.04 \tag{3b}
\end{align*}
$$

As is well known, the current-algebra calculation for the radiative widths crucially involves the extrapolation
of the matrix elements of the divergence of the axialvector current,

$$
\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| \frac{\partial A_{k \lambda}}{\partial x_{\lambda}}|0\rangle
$$

from $\quad q^{2}=\left(k_{1}+k_{2}\right)^{2}=0 \quad$ to $\quad-q^{2}=+m_{P}^{2} \quad\left(m_{P}=m_{\pi}\right.$, $m_{\eta}, m_{\eta^{\prime}}$). Because m_{π} is small compared to a lighthadron mass (e.g., $m_{\rho} \approx 770 \mathrm{MeV}$), one may hope that the neglect of this extrapolation is justified, but for η and η^{\prime} mesons the extrapolation is potentially dangerous. The purpose of this paper is to study this question and to estimate the corrections due to explicit breaking of chiral symmetry when the pseudoscalar Goldstone bosons acquire their masses (or equivalently quark masses are not set equal to zero). We show that the gauge invariance and vector-meson dominance enable us to estimate $\left(q^{2} / m_{V}^{2}\right)$ corrections to the main effect, which arises from the axial-vector anomaly term. As will be discussed, these corrections are small (1.2%) for π^{0} decay but could be substantially large for η and η^{\prime} decays ($\sim 17 \%$ for η decay and 40% for decay in the amplitudes). However, these estimates may be off by about 25% since our use of vector-meson dominance may be off by this amount. When these corrections are included, we obtain

$$
\begin{equation*}
-\theta=(25 \pm 4)^{\circ} \tag{4a}
\end{equation*}
$$

$$
\begin{equation*}
F_{0} / F_{\pi}=0.64 \pm 0.07 \tag{4b}
\end{equation*}
$$

substantially different from (2) and (3), particularly for F_{0} which indicates large nonet-symmetry breaking for F_{0} and F_{8}. The result for the $\eta-\eta^{\prime}$ mixing angle is obtained from the η_{8} sum rule only and is thus independent of the pure-gluon component which might be present in η and η^{\prime} in addition to $\bar{q} q$ states η_{8} and η_{0}. The large mixing angle may be consistent with the one used in the linear mass formula for pseudoscalar mesons. The consistency of a large mixing angle with the quadratic mass formula has been discussed in Ref. 4. Below we give the details of our calculation.

II. CHIRAL-SYMMETRY-BREAKING CORRECTIONS

The S-matrix element for $P \rightarrow 2 \gamma$ is defined by

$$
\begin{align*}
\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right) \mid P(q)\right\rangle= & i(2 \pi)^{4} \delta^{4}\left(q-k_{1}-k_{2}\right) \\
& \times\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| J_{P}(0)|0\rangle \tag{5a}
\end{align*}
$$

with

$$
\begin{equation*}
\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| J_{P}(0)|0\rangle=\epsilon_{\mu}^{*}\left(k_{1}\right) \epsilon_{v}^{*}\left(k_{2}\right)\left(-\Gamma_{\mu v}^{k}\right) \tag{5b}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\mu \nu}^{k}=-i \epsilon_{\mu \nu \alpha \beta} k_{1 \alpha} k_{2 \beta} A_{P}^{k} \tag{5c}
\end{equation*}
$$

Now we have the Ward identity

$$
\begin{equation*}
-i q_{\lambda} M_{\mu \nu \lambda}^{k}=M_{\mu \nu}^{k} \tag{6a}
\end{equation*}
$$

where separating out the pseudoscalar-meson P pole and possible pole P^{\prime} due to the radial excitation of P, we have

$$
\begin{align*}
M_{\mu \nu \lambda}^{k} & =\int \alpha^{4} x d^{4} y e^{-i k_{1} x} e^{-i k_{2} y}\langle 0| T\left(V_{\mu}^{\mathrm{em}}(x) V_{\nu}^{\mathrm{em}}(y) A_{k \lambda}(0)\right)|0\rangle \\
& =i \Gamma_{\mu \nu \lambda}^{k}-\sum_{P} \frac{F_{k P} i q_{\lambda}}{q^{2}+m_{P}^{2}} \Gamma_{\mu \nu}^{k, P}-\sum_{P^{\prime}} \frac{F_{k P^{\prime}} i q_{\lambda}}{q^{2}+m_{P^{\prime}}^{2}} \Gamma_{\mu \nu}^{k, P^{\prime}} \tag{6b}
\end{align*}
$$

where

$$
\begin{equation*}
\langle 0| A_{k \lambda}|P(q)\rangle=i F_{k P} q_{\lambda} \tag{6c}
\end{equation*}
$$

and for $k=3, P=\pi$ only with $F_{3 \pi}=F_{\pi}$ while for $k=8,0$, $P=\eta$ and η^{\prime}, and similarly for radial excitations P^{\prime}. In Eq. (6a),

$$
\begin{align*}
M_{\mu \nu}^{k}=\int & \alpha^{4} x d^{4} y e^{-i k_{1} x} e^{-i k_{2} y} \\
& \times\langle 0| T\left(V_{\mu}^{\mathrm{em}}(x) V_{v}^{\mathrm{em}}(y) \partial_{\lambda} A_{k \lambda}(0)\right)|0\rangle \tag{7}
\end{align*}
$$

Using now PCAC with the axial-vector anomaly

$$
\begin{equation*}
\frac{\partial}{\partial x_{\lambda}} A_{k \lambda}(x)=F_{P} m_{P}^{2} P_{k}(x)-\frac{i}{16 \pi^{2}} S_{P}^{k} \epsilon_{\mu v \alpha \beta} F_{\mu \nu}(x) F_{\alpha \beta}(x), \tag{8}
\end{equation*}
$$

with $k=3,8,0$, i.e., separating out the pseudoscalarmeson P pole and other possible pole P^{\prime} due to its radial excitation and keeping the anomaly term, we obtain

$$
\begin{align*}
M_{\mu \nu}^{k}= & \sum_{P} \frac{F_{k P} m_{P}^{2}}{q^{2}+m_{P}^{2}} \Gamma_{\mu \nu}^{k, P}+\sum_{P^{\prime}} \frac{F_{k p^{\prime}} m_{P^{\prime}}^{2}}{q^{2}+m_{P^{\prime}}^{2}} \Gamma_{\mu \nu}^{\prime k, P^{\prime}} \\
& +\frac{i}{2 \pi^{2}} S_{P}^{k} \epsilon_{\mu v \alpha \beta} k_{1 \alpha} k_{2 \beta} . \tag{9}
\end{align*}
$$

Substituting in the Ward identity (6a) and using (6b), we obtain the sum rule

$$
\begin{align*}
-\sum_{P} F_{k P} \Gamma_{\mu \nu}^{k, P}-\sum_{P^{\prime}} F_{k P^{\prime}} \Gamma_{\mu \nu}^{\prime k, P^{\prime}}= & -q_{\lambda} \Gamma_{\mu \nu \lambda}^{k} \\
& +\frac{i}{2 \pi^{2}} S_{P}^{k} \epsilon_{\mu v_{\alpha} \beta} k_{1 \alpha} k_{2 \beta} \tag{10a}
\end{align*}
$$

For $k=8$ or 0 when $P=\eta$ and η^{\prime}, writing η and η^{\prime} in terms of η_{8} and η_{0} as

$$
\begin{align*}
& \eta=\cos \theta \eta_{8}-\sin \theta \eta_{0} \\
& \eta^{\prime}=\sin \theta \eta_{8}+\cos \theta \eta_{0} \tag{10b}
\end{align*}
$$

we get, from Eq. (6c) [cf. Eq. (1)],

$$
\begin{align*}
& F_{8 \eta}=\cos \theta F_{8}, \quad F_{8 \eta^{\prime}}=\sin \theta F_{8} \tag{10c}\\
& F_{0 \eta}=-\sin \theta F_{0}, \quad F_{0 \eta^{\prime}}=\cos \theta F_{0}
\end{align*}
$$

Then writing

$$
\Gamma_{\mu \nu}^{3, \pi} \equiv \Gamma_{\mu \nu}^{3}
$$

and

$$
\begin{aligned}
& \cos \theta \Gamma_{\mu \nu}^{8, \eta}+\sin \theta \Gamma_{\mu \nu}^{8, \eta^{\prime}}=\Gamma_{\mu \nu}^{8} \\
& -\sin \theta \Gamma_{\mu \nu}^{0, \eta}+\cos \theta \Gamma_{\mu \nu}^{0, \eta^{\prime}}=\Gamma_{\mu \nu}^{0}
\end{aligned}
$$

we can rewrite the sum rule (10a) as
$-F_{P}\left(\Gamma_{\mu \nu}^{k}+\frac{F_{P^{\prime}}}{F_{P}} \Gamma_{\mu \nu}^{\prime k}\right)=-q_{\lambda} \Gamma_{\mu \nu \lambda}^{k}+\frac{i}{2 \pi^{2}} S_{P}^{k} \epsilon_{\mu \nu \alpha \beta} k_{1 \alpha} k_{2 \beta}$,
where F_{P} is now defined as in Eq. (1). Chiral symmetry requires that $F_{P^{\prime}}$ vanishes in the chiral limit, so that

$$
\begin{equation*}
F_{P^{\prime}}=r_{P^{\prime}} \frac{m_{P}^{2}}{m_{P^{\prime}}^{2}} F_{P} \tag{11}
\end{equation*}
$$

where $r_{P^{\prime}}$ has been estimated ${ }^{6}$ to be $2 \sqrt{2}$.
Now to estimate $\Gamma_{\mu \nu}^{\prime k}$ relative to $\Gamma_{\mu \nu}^{k}$, i.e., $\boldsymbol{A}_{P^{\prime} \rightarrow 2 \gamma} / \boldsymbol{A}_{P \rightarrow 2 \gamma}$, we use the quark annihilation model ${ }^{7}$ which gives

$$
\begin{align*}
\Gamma_{\gamma \gamma}(P) & =\frac{4 \pi \alpha^{2}}{3}\left(\sum_{i} \frac{Q_{i}^{2}}{\sqrt{3}} \frac{m_{P}}{m_{i}^{2}+m_{P}^{2} / 4}\right)^{2}\left|\psi_{i}^{P}(0)\right|^{2} \\
& =4 \pi \alpha^{2}\left|A_{P \rightarrow 2 \gamma}\right|^{2} \frac{m_{P}^{3}}{16} \tag{12a}
\end{align*}
$$

giving
$\left|A_{P \rightarrow 2 \gamma}\right|=\frac{4}{\sqrt{3}} \sum_{i} \frac{Q_{i}^{2}}{\sqrt{3}} \frac{1}{\left(m_{i}^{2}+m_{P}^{2} / 4\right) m_{P}^{1 / 2}}\left|\psi_{i}^{P}(0)\right|$.

This gives, for example, for the pion case,

$$
\begin{equation*}
\left|\frac{\boldsymbol{A}_{\pi^{\prime} \rightarrow 2 \gamma}}{\boldsymbol{A}_{\pi \rightarrow 2 \gamma}}\right|=\left|\frac{m_{\pi}}{m_{\pi^{\prime}}}\right|^{1 / 2} \frac{1+\left(m_{\pi} / 2 m_{\mathrm{NS}}\right)^{2}}{1+\left(m_{\pi^{\prime}} / 2 m_{\mathrm{NS}}\right)^{2}}\left|\frac{\psi^{\pi^{\prime}(0)}}{\psi^{\pi}(0)}\right| \tag{13a}
\end{equation*}
$$

where m_{NS} is the average of nonstrange-quark masses ($\simeq 300 \mathrm{MeV}$). Potential models, which give good fit to masses of heavy-quarkonium states, would give ${ }^{8}$

$$
\begin{equation*}
\left|\frac{\psi^{\pi^{\prime}(0)}}{\psi^{\pi}(0)}\right|=\left|\frac{\psi_{2}(0)}{\psi_{1}(0)}\right| \simeq \sqrt{3 / 7} \tag{13b}
\end{equation*}
$$

Setting $m_{\pi^{\prime}} \simeq 1300 \mathrm{MeV}$, we see that

$$
\begin{equation*}
\left|\frac{A_{\pi^{\prime} \rightarrow 2 \gamma}}{A_{\pi \rightarrow 2 \gamma}}\right| \simeq \frac{1}{20} . \tag{13c}
\end{equation*}
$$

This together with (11) is too small. In any case, together with (11), we see that

$$
\begin{equation*}
\frac{F_{P^{\prime}}}{F_{P}}\left|\frac{A_{P^{\prime} \rightarrow 2 \gamma}}{A_{P \rightarrow 2 \gamma}}\right|=\boldsymbol{O}\left(m_{P} / m_{P^{\prime}}\right)^{5 / 2} \tag{14}
\end{equation*}
$$

at least while we are interested in terms of $O\left(m_{P}^{2} / m_{P^{\prime}}^{2}\right)$. In view of the above and also due to lack of data on radial excitations for η_{8} and η_{0} we shall neglect the contributions from the radial excitations in the sum rule to obtain

$$
\begin{equation*}
-F_{P} \Gamma_{\mu \nu}^{k}=-q_{\lambda} \Gamma_{\mu \nu \lambda}^{k}+\frac{i}{2 \pi^{2}} S_{P}^{k} \epsilon_{\mu \nu \alpha \beta} k_{1 \alpha} k_{2 \beta} . \tag{15}
\end{equation*}
$$

We now estimate the term $q_{\lambda} \Gamma_{\mu \nu \lambda}^{k}$ which on dimensional grounds will be $O\left(q^{2} / m_{V}^{2}\right)$ where m_{V} is a typical vector-boson or axial-vector-boson mass. What we need is the matrix element

$$
i \Gamma_{\mu \nu \lambda}^{k}=-\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| \tilde{A}_{k}(0)|0\rangle
$$

where a tilde denotes that $\widetilde{A}_{k \lambda}$ does not contain any pseudoscalar-meson pole. This we calculate in the vector-meson-dominance model for which we first calculate $\left\langle V_{i}\left(k_{1}\right) V_{j}\left(k_{2}\right)\right| \boldsymbol{A}_{k \lambda}|0\rangle$ to be dominated by the axial-vector-meson A_{k} pole. The gauge-invariant axial-vector-meson coupling with two vector mesons (here i, j are indices corresponding to vector mesons ρ, ω, and ϕ) is defined as

$$
\begin{align*}
-i\left\langle V_{i}\left(k_{1}\right) V_{j}\left(k_{2}\right) \mid A_{k}(q)\right\rangle= & \epsilon_{\mu}^{*}\left(k_{1}\right) \epsilon_{v}^{*}\left(k_{2}\right) \epsilon_{\lambda}(q) \\
& \times\left\{\left[q^{2}-\left(k_{1}^{2}+k_{2}^{2}\right)\right] \frac{1}{2} \epsilon_{v \mu \alpha \lambda}\left(k_{1}-k_{2}\right)_{\alpha}+\left(\epsilon_{v \lambda \alpha \beta} k_{2 \mu}-\epsilon_{\mu \lambda \alpha \beta} k_{1 v}\right) k_{1 \alpha} k_{2 \beta}\right\} b^{i j k} . \tag{16}
\end{align*}
$$

Then defining the matrix elements of the axial-vector current $A_{k \lambda}$ in a gauge-invariant way as

$$
\begin{align*}
\left\langle V_{i}\left(k_{1}\right) V_{j}\left(k_{2}\right)\right| A_{k \lambda}|0\rangle= & \epsilon_{\mu}^{*}\left(k_{1}\right) \epsilon_{v}^{*}\left(k_{2}\right) \\
\times & \times\left[f_{A}^{i j k}\left(q^{2}\right) \epsilon_{v \mu \alpha \lambda}\left(k_{1}-k_{2}\right)_{\alpha}+h^{i j k}\left(q^{2}\right) \epsilon_{\mu v \alpha \beta} k_{1 \alpha} k_{2 \beta} q_{\lambda}\right. \\
& \left.+g_{1}^{i j k}\left(q^{2}\right)\left(\epsilon_{v \lambda \alpha \beta} k_{2 \mu}-\epsilon_{\mu \lambda \alpha \beta} k_{1 v}\right) k_{1 \alpha} k_{2 \beta}+g_{2}^{i j k}\left(q^{2}\right)\left(\epsilon_{v \lambda \alpha \beta} k_{1 \mu}-\epsilon_{\mu \lambda \alpha \beta} k_{2 v}\right) k_{1 \alpha} k_{2 \beta}\right], \tag{17}
\end{align*}
$$

we see that pseudoscalar-meson pole contributions to the above matrix elements are

$$
\begin{equation*}
\sum_{P} \frac{F_{k P} q_{\lambda}}{q^{2}+m_{P}^{2}} \epsilon_{\mu v \alpha \beta} k_{1 \alpha} k_{2 \beta} \gamma_{V_{i} V_{j} P}^{(k)}, \tag{18a}
\end{equation*}
$$

where $k=3,8,0$ and for $k=3, P=\pi$ only while for $k=8$ or $0, P=\eta$ and η^{\prime} [here $\gamma_{V V P}$ is the coupling strength for $V \rightarrow V^{\prime} P$ and $F_{k P}$ are defined in Eq. (6c)]. Thus,

$$
\begin{equation*}
h_{P}^{i j k}\left(q^{2}\right)=\sum_{P} \frac{F_{k P} \gamma_{V_{i} V_{j} P}^{(k)}}{q^{2}+m_{P}^{2}} \tag{18b}
\end{equation*}
$$

and one has the Goldberger-Treiman relation

$$
\begin{equation*}
2 f_{A}^{i j k}(0)=\sum_{P} F_{k P} \gamma_{V_{i} V_{j} P}^{(k)} \tag{18c}
\end{equation*}
$$

Now if we use Eqs. (10c) and write

$$
\begin{align*}
& \cos \theta \gamma_{V_{i} V_{j} \eta}^{(8)}+\sin \theta \gamma_{V_{i} V_{j} \eta^{\prime}}^{(8)}=\gamma_{V_{i} V_{j} \eta_{8}}^{(8)}, \\
& -\sin \theta \gamma_{V_{i} V_{j} \eta}^{(0)}+\cos \theta \gamma_{V_{i} V_{j} \eta^{\prime}}^{(0)}=\gamma_{V_{i} V_{j} \eta_{0}}^{(0)}, \tag{18d}
\end{align*}
$$

we can rewrite Eq. (18c) as

$$
\begin{equation*}
2 f_{A}^{i j k}(0)=F_{P} \gamma_{V_{i} V_{j} P}^{(k)} \tag{18e}
\end{equation*}
$$

where F_{P} is now defined as in Eq. (1).
The axial-vector-meson pole contribution to Eq. (17) is

$$
\begin{align*}
& f_{A}^{i j k}\left(q^{2}\right)=\sum_{A} \frac{F_{k A} b^{i j k}\left[q^{2}-\left(k_{1}^{2}+k_{2}^{2}\right)\right]}{2\left(q^{2}+m_{A}^{2}\right)} \tag{19a}\\
& h_{A}^{i j k}\left(q^{2}\right)=-\sum_{A} \frac{F_{k A} b^{i j k}\left[q^{2}-\left(k_{1}^{2}+k_{2}^{2}\right)\right]}{m_{A}^{2}\left(q^{2}+m_{A}^{2}\right)} \tag{19b}
\end{align*}
$$

$$
\begin{align*}
& g_{1}^{i j k}\left(q^{2}\right)=\sum_{A} \frac{b^{i j k} F_{k A}}{q^{2}+m_{A}^{2}}, \tag{19c}\\
& g_{2}^{i j k}\left(q^{2}\right)=0, \tag{19d}
\end{align*}
$$

where F_{A} and F_{V} are defined by

$$
\begin{align*}
& \langle 0| A_{k \lambda}(0)|A(q)\rangle=F_{k A} \epsilon_{\lambda}(q), \tag{20a}\\
& \langle 0| V_{i \mu}\left|V_{i}\left(k_{1}\right)\right\rangle=F_{V_{i}} \epsilon_{\mu}\left(k_{1}\right) . \tag{20b}
\end{align*}
$$

For the vector mesons on their mass shell ($k_{1}^{2}=-m_{V_{i}}^{2}$, $k_{2}^{2}=-m_{V_{j}}^{2}$), Eqs. (18e) and (19a) give, for $q^{2}=0$,

$$
\begin{equation*}
\sum_{A} 2 F_{k A} b^{i j k} \frac{m_{V_{i}}^{2}+m_{V_{j}}^{2}}{2 m_{A}^{2}}=F_{P} \gamma_{V_{i} V_{j} P}^{(k)} \tag{21}
\end{equation*}
$$

Thus, finally using Eqs. (17) and (19), vector-meson dominance for $\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| \tilde{A}_{k \lambda}|0\rangle$ gives ($k_{1}^{2}=0=k_{2}^{2}$)

$$
\begin{align*}
&-i \Gamma_{\mu \nu \lambda}^{k}=\left\langle\gamma\left(k_{1}\right) \gamma\left(k_{2}\right)\right| \tilde{A}_{k \lambda}|0\rangle \\
&=\sum_{i, j} \sum_{A} \frac{F_{k A}}{q^{2}+m_{A}^{2}} \frac{F_{V_{i}} F_{V_{j}}}{m_{V_{i}}^{2} m_{V_{j}}^{2}} {\left[\frac{q^{2}}{2} b^{i j k} \epsilon_{v \mu \alpha \lambda}\left(k_{1}-k_{2}\right)_{\alpha}-\frac{2}{m_{A}^{2}} \frac{q^{2}}{2} b^{i j k} \epsilon_{\mu \nu \alpha \beta} k_{1 \alpha} k_{2 \beta} q_{\lambda}\right.} \\
&+b^{i j k}\left(\epsilon_{v \lambda \alpha \beta} k_{2 \mu}-\epsilon_{\mu \lambda \alpha \beta} k_{1 v}\right) k_{1 \alpha} k_{2 \beta} \\
&\left.+\left[-\frac{q^{2}}{2} b^{i j k}\right]\left[\frac{1}{m_{V_{i}}^{2}} \epsilon_{v \lambda \alpha \beta} k_{1 \mu}-\frac{1}{m_{V_{j}}^{2}} \epsilon_{\mu \lambda \alpha \beta} k_{2 v}\right] k_{1 \alpha} k_{2 \beta}\right], \tag{22}
\end{align*}
$$

which is explicitly gauge invariant. Substituting Eq. (22) in the sum rule (15) and using Eqs. (5c) and (21), we obtain (with $q^{2}=-m_{P}^{2}$)

$$
\begin{equation*}
A_{P}^{k}=\frac{1}{F_{P}}\left[\frac{1}{2 \pi^{2}} S_{P}^{k}-\sum_{i, j} \frac{m_{P}^{2}}{m_{V_{i}}^{2}+m_{V_{j}}^{2}} \frac{F_{V_{i}} F_{V_{j}}}{m_{V_{i}}^{2} m_{V_{j}}^{2}} F_{P} \gamma_{V_{i} V_{j} P}^{(k)}\right] \tag{23}
\end{equation*}
$$

We replace $m_{V_{i}}^{2}+m_{V_{j}}^{2}$ by the average vector-meson mass $\bar{m}_{V}^{2}=\frac{1}{2}\left(m_{V_{i}}^{2}+m_{V_{j}}^{2}\right)$ and can then eliminate $F_{P} \gamma_{V V P}^{(k)}$, by assuming vector dominance of $P \rightarrow \gamma \gamma$ matrix elements, which succeeds at $\leqslant 25 \%$. The vector-dominance model gives

$$
\begin{equation*}
A_{P}^{k}=\sum_{i, j} \frac{F_{V_{i}} F_{V_{j}}}{m_{V_{i}}^{2} m_{V_{j}}^{2}} \gamma_{V_{i} V_{j} P}^{(k)}, \tag{24}
\end{equation*}
$$

so that we can write the sum rule (23) as

$$
\begin{equation*}
A_{P}^{k}=\frac{1}{F_{P}} \frac{1}{2 \pi^{2}} S_{P}^{k}\left(1+\frac{m_{P}^{2}}{2 \bar{m}_{V}^{2}}\right)^{-1} \tag{25}
\end{equation*}
$$

Note that in this sum rule $k=3,8$, and 0 and correspondingly $P=\pi^{0}, \eta_{8}$, and η_{0}.

III. NUMERICAL RESULTS

We have

$$
\begin{equation*}
S_{\pi}=\frac{1}{2}, \quad S_{\eta_{8}}=\frac{1}{2 \sqrt{3}}, \quad S_{\eta_{0}}=\sqrt{2 / 3} \tag{26}
\end{equation*}
$$

and for vector bosons which are coupled to γ 's,

$$
\begin{equation*}
\bar{m}_{V}^{2}=\frac{m_{\rho}^{2}+m_{\omega_{8}}^{2}}{2} \approx 1.23 m_{\rho}^{2} \tag{27}
\end{equation*}
$$

using $m_{\rho} \simeq 770 \mathrm{MeV}, m_{\omega_{8}} \simeq 930 \mathrm{MeV}$. Define

$$
\begin{equation*}
A(P \rightarrow 2 \gamma)=\frac{1}{4 \pi^{2}} \tilde{A}(P \rightarrow 2 \gamma) \tag{28}
\end{equation*}
$$

so that

$$
\begin{equation*}
\Gamma(P \rightarrow 2 \gamma)=\frac{m_{P}^{3} \alpha^{2}}{64 \pi^{3}}|\tilde{A}(P \rightarrow 2 \gamma)|^{2} \tag{29}
\end{equation*}
$$

where $P=\pi^{0}, \eta$, or η^{\prime}. Now from Eqs. (25) and (26) we have

$$
\begin{align*}
& \tilde{A}_{\pi^{0}}=4 \pi^{2} A_{\pi^{0}}=\frac{1}{F_{\pi}}(1-0.012) \tag{30a}\\
& \widetilde{A}_{\eta_{8}}=4 \pi^{2} A_{\eta_{8}}=\frac{1}{F_{8}}(1-0.18) \tag{30b}\\
& \tilde{A}_{\eta_{0}}=4 \pi^{2} A_{\eta_{0}}=\frac{1}{F_{0}}(1-0.38) \tag{30c}
\end{align*}
$$

where we have used $m_{\pi}=135 \mathrm{MeV}, m_{\eta_{8}}=560 \mathrm{MeV}$, and $m_{\eta_{0}}=948 \mathrm{MeV}$. The value of $m_{\eta_{8}}$ is that which one gets from Gell-Mann-Okubo mass formula. Once the value of $m_{\eta_{8}}$ is fixed as above one gets $m_{\eta_{0}}$ from the relation

$$
m_{\eta_{0}}^{2}+m_{\eta_{8}}^{2}=m_{\eta}^{2}+m_{\eta^{\prime}}^{2}
$$

and the experimental values of m_{η} and $m_{\eta^{\prime}}$. It may be noted that the sum rule (25) is not sensitive to small variations in $m_{\eta_{8}}$. The Gell-Mann-Okubo formula is at least valid to the same accuracy as vector-meson dominance.

Equation (30a) gives

$$
\begin{equation*}
\Gamma_{\pi^{0}}=7.45 \mathrm{eV} \tag{31}
\end{equation*}
$$

to be compared with 7.64 eV without the chiral-symmetry-breaking correction and with its experimental value ${ }^{9}$

$$
\begin{equation*}
\Gamma_{\pi^{0}}^{\operatorname{expt}}=7.57 \pm 0.32 \mathrm{eV} \tag{32}
\end{equation*}
$$

Thus we see that with an increased accuracy of the experimental measurement of $\Gamma_{\pi^{0}}$, the chiral-symmetrybreaking correction calculated here is testable.

The experimental result ${ }^{2} \Gamma(\eta \rightarrow 2 \gamma)=0.53 \pm 0.08 \mathrm{keV}$ and the average value (as quoted in Ref. 2) of $\Gamma\left(\eta^{\prime} \rightarrow 2 \gamma\right)=4.42 \pm 0.34 \mathrm{keV}$ together with (29b) and $F_{\pi}=93 \mathrm{MeV}$, give

$$
\begin{align*}
& \tilde{A}_{\eta}=(1.01 \pm 0.08) F_{\pi}^{-1}, \tag{33}\\
& \widetilde{A}_{\eta^{\prime}}=(1.27 \pm 0.05) F_{\pi}^{-1}
\end{align*}
$$

where

$$
\widetilde{A}_{\eta}=\cos \theta \widetilde{A}_{\eta_{8}}-\sin \theta \widetilde{A}_{\eta_{0}}
$$

and

$$
\widetilde{A}_{\eta^{\prime}}=\sin \theta \tilde{A}_{\eta_{8}}+\cos \theta \widetilde{A}_{\eta^{\prime}}
$$

Using the experimental values (33), the η_{8} sum rule (30b) gives the value of θ quoted in Eq. (4a). Using this value of θ in the η_{0} sum rule (30c) then gives the result (4b) for
F_{0} / F_{π}.
Finally if η and η^{\prime} have pure gluonium component G_{0} so that Eqs. (10b) are replaced by ${ }^{10}$

$$
\begin{align*}
& \eta=\cos \theta_{1} \eta_{8}-\sin \theta_{1}\left(\cos \theta_{2} \eta_{0}-\sin \theta_{2} G_{0}\right) \\
& \eta^{\prime}=\sin \theta_{1} \eta_{8}+\cos \theta_{1}\left(\cos \theta_{2} \eta_{0}-\sin \theta_{2} G_{0}\right) \tag{34}\\
& G=\sin \theta_{2} \eta_{0}+\cos \theta_{2} G_{0}
\end{align*}
$$

where G_{0} has no coupling to photons and we have neglected the very small η_{8} component in G. Then

$$
\begin{align*}
& \eta_{8}=\cos \theta_{1} \eta+\sin \theta_{1} \eta^{\prime} \\
& \eta_{0}=\frac{1}{\cos \theta_{2}}\left(-\sin \theta_{1} \eta+\cos \theta_{1} \eta^{\prime}+\sin \theta_{2} G_{0}\right) \tag{35}
\end{align*}
$$

so that the η_{8} sum rule (30b) gives then

$$
\begin{equation*}
-\theta_{1}=(25 \pm 4)^{\circ} \tag{36a}
\end{equation*}
$$

and the η_{0} sum rule (30c) gives (as G_{0} has no coupling to photons)

$$
\frac{F_{0} / \cos \theta_{2}}{F_{\pi}}=0.64 \pm 0.07
$$

or

$$
\begin{equation*}
\frac{F_{0}}{F_{\pi}}=(0.64 \pm 0.07) \cos \theta_{2} \tag{36b}
\end{equation*}
$$

so that (4b) is then upper limit for F_{0} / F_{π} in this case.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the King Abdulaziz City of Science and Technology under Grant No. AR7-162.
${ }^{1}$ S. L. Adler, Phys. Rev. 117, 2426 (1969); J. S. Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969).
${ }^{2}$ JADE Collaboration, W. Bartel et al., Phys. Lett. 160B, 421 (1985); A. Weinstein et al., Phys. Rev. D 28, 2896 (1984).
${ }^{3}$ J. F. Donoghue, B. R. Holstein, and Y. C. R. Lin, Phys. Rev. Lett. 55, 2766 (1985).
${ }^{4}$ G. Grunberg, Phys. Lett. 168B, 141 (1986).
${ }^{5}$ J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
${ }^{6}$ N. V. Krasnikow and A. A. Pivovarov, Phys. Lett. 112B, 397 (1982); S. G. Gorishny, A. L. Katev, and S. A. Larin, ibid. 135B, 457 (1984).
${ }^{7}$ N. Isgur, Phys. Rev. D 13, 129 (1976); 23, 817(E) (1981); M. Budnev and A. E. Kaloshin, Phys. Lett. 86B, 351 (1979); J. E. Paschalis and G. J. Gounaris, Nucl. Phys. B222, 473 (1983). For a review, see J. H. Field, Report No. DESY 85110, 1985 (unpublished).
${ }^{8}$ C. Quigg and J. L. Rosner, Phys. Rep. 56C, 167 (1979).
${ }^{9}$ Particle Data Group, M. Aguilar-Benitez et al., Phys. Lett. 170B, 1 (1986).
${ }^{10}$ See, for example, M. S. Chanowitz, Phys. Rev. Lett. 44, 59 (1980).

