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A novel perturbative technique for solving quantum field theory is proposed. In this paper we ex-
plore this scheme in the context of self-interacting scalar field theory. For a p'r theory the method
consists of expanding a 4}i"+ ' theory in powers of 5. A diagrammatic procedure for computing the
terms in this series is given. We believe that for any Green's function the radius of convergence of
this series is finite and is, in fact, 1. Moreover, while the terms in the unrenormalized series are in-

dividually divergent, they are considerably less so than in the standard weak-coupling perturbation
series. In simple, low-dimensional quantum-field-theory models, the 5 expansion gives excellent nu-

merical results. We hope this new technique will ultimately shed some light on the question of
whether a {P )4 theory is free.

I. INTRODUCTION

This paper is an elaboration of a recent note' in which
we introduced a new perturbative approach to quantum
field theory. Throughout this paper we consider only
self-interacting scalar field theory, although we believe
that the method is fully applicable to fields of arbitrary
spin. The fundamental idea described in this paper is
very simple: given a self-interaction term of the form
A,P ~ we rewrite it as P

"+ ' and consider 5 to be a small
positive perturbation parameter. We find that the
Green's functions are forrnal power series in 5.
Specifically, if G'"'(x„. . . , x„;5) is the n-point Green's
function then it has an expansion of the form

G'"'(x, , . . . , x„;5)= g 5"gt',"'(x, , . . . , x„) . (1.1)
Ic =0

We will describe diagrammatic rules for calculating gk"'
in any dimension d of spacetime.

We will see that the coefficients gz"' possess a number
of advantageous properties. They are complicated and
nontrivial functions of the Lagrangian parameters such
as coupling constants and masses. Thus, the perturbation
expansion in 5 achieves what nonperturbative computa-
tional schemes in quantum field theory attempt. Further-
more, in a theory with divergences (space-time dimension
d )2) the coefficients gk"' are much less divergent than
the coefficients of a conventional weak-coupling perturba-
tion expansion in powers of the coupling constant A, . Fi-

3

+—ln (P )+z

3f
(1.2)

The method proposed in this paper is based on the obser-
vation that derivatives of exponents produce logarithms:

X Xa =a lna.
8x

(1.3)

The computational scheme for obtaining the coefficients
gk"' in (1.1) is an elaborate combinatorial generalization

nally, we present evidence that the series (1.1}has a finite
radius of convergence, in contrast with conventional
weak-coupling expansions, which are at best asymptotic
series (they have a zero radius of convergence}. We be-
lieve that for 0&d (4, for any n, and for all values of
x, , . . . , x„, G'"'(x„. . . , x„;5) in (1.1) has a radius of
convergence of 1. Thus, a A,P theory sits on the circle of
convergence. Moreover, we have numerical evidence
that Pade theory provides an accurate analytic continua-
tion to theories that are we11 outside the circle of conver-
gence.

It is apparent that the new perturbation theory we in-
troduce here is unconventional and potentially awkward.
This is because the interaction term A,P

"+ ', when ex-
panded in powers of 5, generates a formidable nonpoly-
nomial Lagrangian containing all powers of ln($~):

$2
AP

"+ '=A/ 1+5ln(4t} }+ ln (P )
2f.
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of (1.3). The coefficients g„'"' emerge as the result of ap-
plying a derivative operator D to the Green's functions of
a specially constructed polynomial Lagrangian I. which,
because it is a polynomial Lagrangian, can be solved by
ordinary, weak-coupling diagrammatic methods. Fur-
thermore, the coefficients of the polynomial interaction
terms are proportional to 6, so that only a finite number
of diagrams need bt: evaluated to compute gk"'.

We have organized this paper as follows. In Sec. II we
discuss perturbation theory and distinguish between two
different classes of perturbation expansion: natural and
artificial. We give illustrative examples of both classes of
perturbation expansion. We argue that artificial expan-
sions, such as the one used in this paper, can have many
inherent advantages. In Sec. III we develop the perturba-
tive machinery used to obtain the expansion (1.1). In par-
ticular, we give formulas for the Lagrangian L and the
differential operator D. We illustrate the properties of
the 5 expansion in Sec. IV by considering an extremely
simple model field theory in zero space-time dimension.
Because this theory can be solved exactly, it is easy to
identify the singularities in the complex-5 plane which
determine that the radius of convergence is 1. We show
how, using the diagrammatic method of Sec. III, to
reproduce the terms in the 5 expansion in (1.1) correct to
order 5 . We also show how Fade approximants can be
used to sum the 5 expansion outside its circle of conver-
gence. Field theory in one-dimensional space-time (quan-
tum mechanics) is treated in Sec. V. We compute the 5
expansion to order 5 in two ways. First, we use ordinary
Rayleigh-Schrodinger perturbation theory. Then we ver-
ify the resulting series using the method of Sec. III. In
Sec. VI we examine the 5 expansion within the context of
the well-known 1/N approximation. Here, the scalar
field P is replaced by an ¹omponent object P and the
interaction term is taken to be A(p p)(p. p/N)s. In the
limit N —+ oo this theory can be solved exactly. We then
expand the exact solution to third order as a series in
powers of 5. Alternatively, we use the diagrammatic
method described in Sec. III and keep only the leading
graphs ("cactus" graphs) in 1/N. We observe that for
the two-, four-, and six-point Green's functions, we get
the same 5 series as were obtained previously. This
shows that the 1/N approximation commutes with the 5
expansion. In Sec. VII the diagrammatic method of Sec.
III is applied to d-dimensional field theory through first
order in 5, to determine the pole of the two-point func-
tion, and to determine the four- and six-point functions.

II. NATURAL VERSUS ARTIFICIAL
PERTURBATION EXPANSIONS

Perturbation theory involves three distinct steps. First,
one identifies or inserts a perturbation parameter e which
is treated as a smal}, positive number. Second, one seeks
a solution as a perturbation series involving powers in e
and computes, using iterative methods, as many terms as
possible in this series. Third, one attempts to extrapolate
to the sum of the series from the limited number of terms
that have been computed. (In cases where the series is
divergent, powerful summation procedures such as Pade

approximation must be used in this third step. )

In the initial step in this procedure one is faced with a
fundamental choice, whether to use a naturally occurring
parameter in the theory, such as a coupling constant, or
to insert an entirely new expansion parameter into the
theory. When a physical parameter is used to expand the
theory, we shall call such an expansion a natural pertur-
bation expansion. When a newly inserted parameter is
used we shall call the resulting series an artificial pertur-
bation expansion. In quantum field theory weak-coupling
expansions in powers of A, and semiclassical (loop) expan-
sions in powers of fi are examples of natural perturbation
expansions, while large N or d —4 expansions are
artificia1.

In this paper we advocate the position that natural ex-
pansions are inferior to artificial ones in several respects.
First, most natural perturbation expansions in quantum
field theory are divergent and some are so divergent that
summation procedures are useless. Even more impor-
tant, natural perturbation expansions reveal only limited
information about the dependence of the theory on the
physical parameters, because one of the physical parame-
ters is being used as an expansion parameter. Although
the exact solution of the theory depends on the perturb-
ing parameter in a complicated way, this dependence
may be inaccessible if the solution is forced to have the
form of a power series in the parameter. For example, if
a theory with an instanton is expanded in a weak-
coupling series, the instanton sector is invisible to all or-
ders in perturbation theory.

It is for this reason that deeper insights into quantum
field theory have been sought in the form of nonperturba-
tive numerical calculations, such as lattice simulations
and large-N expansion. The artificial expansion proposed
in this paper is nonperturbative in the sense that the ex-
pansion coefficients gk"' in (1.1) have a very complicated
functional dependence on the Lagrangian parameters of
the theory.

Perturbation theory is an art as well as a science; the
first step, inserting an artificial perturbation parameter,
requires insight and intuition. One can illustrate this
point by discussing a model with a poorly chosen pertur-
bation parameter. Consider, for example, the possibility
of solving a A,P

i' theory by expanding in powers of
a=1/p. This approach is interesting because the leading
term in the perturbation expansion (p = oo, a=0) corre-
sponds in the coordinate-space representation of the
theory to solving a free field theory in an infinite-
dimensional box

~ P ~

&1. That is to say, the range of
functional integration at each lattice site i is reduced
from —oo & P; & oo to —1 & P; & 1. However, this pertur-
bative method has several drawbacks. Although in most
perturbative schemes, once the leading-order approxima-
tion is computed, higher-order approximations are rou-
tine, here it is not at all clear how to compute higher-
order corrections. Furthermore, expanding about the
point p = oo corresponds to approaching the renormaliz-
able theory AP along a path of nonrenormalizable
theories with 2p & 4.

These difficulties are readily apparent in quantum
mechanics (dimension d =1). In Fig. 1 we have plotted
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where co=exp(2ni/3); for E =4,

P( ——5+ [—,
' + 6 (a, +a2+ a3+a4)

general form at E =3 and verify it at E =4. On the oth-
er hand, we have been unable to find a general form for
the polynomials Pk.

+ ,'(—a, —i a2 —a, +i a4)]5

+ —,'(4+ Sa, )5'+5',

2 =i5+ [——,
' —,'i (—a,+a2+a3+a~)

+—,'(ia f+a2 —ia, —a4)]5 ~

IV. ZERO-DIMENSIONAL FIELD THEORY

oo d+ ( 2) 1+5—8 (4.1)

To illustrate the structure of the 5 expansion and the
diagrammatic recipe given in Sec. III, we consider an ex-
tremely simple field theory in zero space-time dimension.
The partition function in this model field theory is

+—,'( 4i—+Saz)5 +5

P3 ——5+[—,
' ——,

' (a
&
+a& +a3+a4)

+ —,
'

( a(+—i a2+ a3 i a4—) ]5

+-,'( —4+ Sa, )5'+5',

P~ = i5+—[ , + ,—'i (—a,+—az+a3+a~)

+ —,'( i a', —a2+—i a, +a4) ]5

(3.7) A. Radius of convergence of 5 series

2 ~ 3+25
v'~ 2+25

(4.2)

Let us consider the free energy E(5 ) which is defined as

E(5)=—lnZ . (4.3)

The integral in (4.1) can be evaluated exactly in terms
of I functions because there is no mass term. The result
1s

+ ,'(4i +Sa4)—5+5

Observe that every polynomial Pk contains at least one
power of 5. Thus, in the Feynman rules for L every ver-
tex is proportional to 5. As a result, a calculation exact
to order 5 requires diagrams having at most E vertices,
and only a finite number of diagrams are required.

Having computed all diagrams contributing to 6'"',
we now regard the parameters ak as con&inuous, and we
define a derivative operator D which acts on ak. Unlike
L, D has a simple and general formula for all values of

1
x exp[2nij (1—k)/K]

K .j=l k =1 J.'r
J

Bak
(3.8)

After applying this derivative operator to 6 '"' we evalu-
ate the result at a, =a2 —— ——az ——0. This procedure
yields O'"'. Note that the Green's functions 6'"' of the
Lagrangian L are derivatives of the Green's functions
G '"' on L at the point where L is a free Lagrangian. %e
illustrate the use of the above recipe for field theories in
various dimensions in the next four sections of this paper.

We close this section with a few remarks on the deriva-
tion of L and D. One can verify the recipe given above in
the context of a functional integral representation of the
Green's functions O'"'. The computation is extremely
lengthy and we do not present it here. The structures of
L and D given in (3.3)—(3.8) were initially found by con-
sidering general forms and requiring that for all n,
DG '"'

~

0=6'"', correct to order 5 .
It is not clear whether the forms of D and L given

above are unique. However, we have tried to find other
forms and have failed. The form for the derivative opera-
tor D in (3.8) is so simple that we were able to guess its

E(5)=—f( —,
' )5'[ ——,

' f( —', ) ——,
' 0'(

~ ) ]

3s4&'"(r')]+ ' ' ' (4.4)

To determine the radius of convergence of this series it is
necessary to determine the singularities of E(5) in (4.2)
and (4.3). From (4.2) we see that branch-point singulari-
ties occur whenever (3+25)/(2+25) = —m, where
m =0, 1,2, 3, . . . . Thus the singularities of E(5) are lo-
cated at

2m +3
2m +2 (4.S)

which form a sequence lying between ——,
' and —1 on the

real 5 axis and having an accumulation point at 5= —1

(see Fig. 2). Thus, the radius of convergence of the Tay-
lor series in (4.4) is l.

B. Diagrammatic calculation (K = 1)

Next we show how to use the machinery described in
Sec. III to derive the series (4.4). The Lagrangian L for
this zero-dimensional theory is just (x )'+ . This corre-
sponds to the general Lagrangian (3.1) in zero space-time
dimensions, with bare mass @=0,A, = 1, and M P =x .

It is easy to expand the energy in (4.3) as a series in

powers of 5. The terms in this series involve the g func-
tion f(x)—:I"(x)/I (x) and its derivatives:
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COMPLEX 8 PLANE is 2 '/(a+ 1)!. Thus,

E(5)= 5(2a+ 2}!
2 + (a+1) (4.9)

BRANCH POINT
SINGULARITIES CN

Al /IT

We use the Legendre duplication formula to simplify (4.9)
slightly:

58=v 8--I
5 r(a+, }

2 I (-,') (4.10)

Having derived the expression (4.10) we no longer regard
a as an integer but rather as a continuous variable. From
(3.8) the derivative operator corresponding to K = 1 is

CONYEROENCE
OF POWER SERIES IN (4.4)
HAYINO RAOIUS 1 Dx=i=-

da
(4.11)

FIG. 2. The branch-point singularities of E(5) in (4.3) in the
complex-5 plane. Note that E (5) is analytic in a circle of radius
1 about the origin.

Following the recipe of Sec. III, we apply (4.11) to (4.10)
and evaluate the result at a =0 to obtain

E(5)=—1((-', )+0(5'), (4.12)

First we consider the case K =1. For this case (3.3) be-
comes

Lx =x +5(x )
+' (4.6)

where we have written a in place of a&. For this La-
grangian we determine the Feynman rules by writing the
vacuum amplitude Z in the presence of an external
source:

X —x2 —5(x2)rr+ I+Jx—e (4.7)

The vertex amplitude at the (Za+2)-point vertex is the
coefficient of x~ + /(2a+2)! in the exponent:

Vertex, —(2a+2)!5 . (4.8a)

To determine the line amplitude we set 5=0, evaluate the
resulting Gaussian integral, and obtain exp(J /4). From
this we read off the amplitude for a line which is the
coefficient ofJ /2:

Line, —,
' . (4.8b)

The energy E(5} is defined as the negative of the sum
of the connected vacuum graphs (the Green's function
with no external legs, n =0). Because we are calculating
E(5) to order 5(K =1},and because the vertex amplitude
in (4.8a) is of order 5, only one graph is required. This is
the one-vertex graph shown in Fig. 3. The amplitude for
this graph is the product of the vertex amplitude in
(4.8a), a factor of 2 ' (because there are a+1 lines in
the graph) and the symmetry number of the graph, which

which agrees with the first term in (4.4).

C. Diagrammatic calculation (E =2)

Now we derive the first two terms in the series (4.4).
From (3.3) and (3.5) we have

L =x +(5+52)(x ) +'+( —5+5 )(x )~+

(4.13)

The Feynman rules for this Lagrangian are determined
from the vacuum amplitude in the presence of an external
source just as before:

(2a+2)-point vertex, —(5+5 )(2a+2)!;
(2P+2)-point vertex, —( —5+5 )(2P+2)!; (4.14)

Line,

There are five connected vacuum graphs which con-
tribute to E(5) to order 5 . These are shown in Fig. 4.
We have already seen how to evaluate graphs (a) and (b);
the only change from the result in (4.10) comes from the
vertex factor. The contribution of these two graphs to
E(5}is

(5+52) r(a+ —', ) ( 5+52} r(p+ —,')
2 r(-', ) 2 I (-,') (4.15)

Next we consider graph (c). This graph is actually not
one graph but a large class of graphs parametrized by the
integer 1, 1=1,2, . . . , a+1, where 21 is the number of
lines connecting the two vertices. For each graph of type
(c) the symmetry number is

4& 1, u+1 self loops

FIG. 3. The only vacuum graph in a P' +' theory having ont
vertex. This graph has a+ 1 self-loops. It is of order 5.

1

2(2 +' ')2(2l)![(a+1—I)!]~

the contribution from the vertices is

5 [(2a+2)!]

(4.16a)

(4.16b)
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, a+ se 0
I

-'a vertex

(4.19) by replacing a with P:
$2

[r(2P+,')~~ —r'(P+ ', }]. (4.20)

(b)
P vertex

P+l self loops
Graph (e) represents a class of graphs again parame-

trized by an integer I, I =1,2, . . . , min(a+I, @+I),
where 2/ is the number of lines connecting the two ver-
tices. For each graph of type (e), the symmetry number is

(c)

a vertex

I

1

\

P vertex

0 vertex
ajar lines

1

(2 +' ')(2~+' ')(21)!(a+1—I}!(f3+1—t)!

the vertex factor is

—5 (2a+2)!(2P+2)!,

and the line contribution is

1

2a+P+ 2

(4.21a)

(4.21b)

(4.21c)

pt lines
Multiplying the factors (4.21) together, changing the sign,
and summing on 1 using the identity (4.18), we find the
contribution from graphs (e) to be

(e)
I

1

a
t lines

P vertex

$2 [I'{a+P+—', )&7r—I (a+ —', )I {P+—,')] . (4.22)

FIG. 4. The five types of connected vacuum graphs which
have one or two vertices. Graphs of type (c), (d), and (e) are ac-
tually large classes of graphs parametrized by the integer 21, the
number of lines joining the two vertices.

The final expression for E(5}is obtained by adding the
partial answers in (4. 15), (4.19), (4.20), and (4.22). Having
derived this expression, we now regard a and P as con-
tinuous variables. From (3.8) the derivative operator for
E=2 is

1
D~ 2 2

8 8 1 3 8
Ba Bp 4 g~2 ()p

(4.23)

where we have dropped terms of order 6', and the contri-
bution from the lines is Applying (4.23) to E(5) and setting a=P=O, we obtain

the energy E(5) correct to order 5:
1

22&+ 2
(4.16c)

E(5)=—g( —,
'

) ——,'5'[1((—', )+ —,'1('( —,
' )]+0(5'), (4.24)

a+1 5 [(2a+2)!]
( 2 +' '(21)~[(a+1—I)!]

(4.17)

To evaluate the sum on l, we use the following identity:

min(a+ 1,P+ 1) 41

(2I)!(a+1 —&)!(I3+1—I)!

r(~+p+-', }~~ —1(a+ 1)!(P+I )! I (a+-,' }I{P+—', )
(4. 18)

Specializing this identity to the case P=a, we evaluate
{4.17) to be

$2
[I (2~+ —,

' )&~—I'(a+ —,')] . (4.19)

The contribution from the graphs (d) is obtained from

To find the contribution of all graphs of type (c), we mul-
tiply together the expressions in (4.16), multiply by —1,
and sum on /:

which agrees with the first two terms in (4.4).
The calculations that were done in Secs. IV B and IV C

play an important role in establishing confidence in the
recipe given in Sec. III. The one nonrigorous step is the
generalization of aI, from an integer variable to a con-
tinuous variable, which subsequently is di6'erentiated. In
general, analytic continuation off the integers is a unique
process only if one has precise information about the
asymptotic behavior of the function, which we have not
supplied. The calculations of this section, together with
those presented in Secs. V and VI, where the 6 expansion
is already known using an independent method, lend
strong support to the procedure described in Sec. III.

D. Summation of the 5 series

We have already demonstrated that the series calculat-
ed in this section has a radius of convergence of 1. How-
ever, many interesting field theories correspond to values
of 6 lying on or outside the circle of convergence. There-
fore, it is important to be able to extract information
about such theories from the 5 series in (4.4). The
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coefficients in (4.4) can be shown to alternate in sign.
This suggests that Pade summation is a natural way to
analytically continue the series outside of its circle of
convergence. In Table I we compare the exact values of
E(5} with the [3,2] and [5,4] Pade approximants con-
structed from the 5 series for several values of 5. We find
that the numerical accuracy of the Pade approximants is
extremely good.

V. ONK-DIMENSIONAL FIELD THEORY

In the previous section we illustrated and verified in
the context of a trivial zero-dimensional field theory the
diagrammatic recipe given in Sec. III for calculating the
5 series. We consider in this section a much less trivial
field theory model in one-dimensional space-time (quan-
tum mechanics). We choose to work in quantum
mechanics because, once again, we are able to calculate
several terms in the 5 expansion using an independent
method (here, Rayleigh-Schrodinger perturbation theory)
and to compare the results with a direct diagrammatic
calculation of the 5 series.

Specifically, we consider the Lagrangian (3.1) with
@=0 and A, = —,

' in d =1 space-time dimensions. In the
coordinate-space representation the ground-state energy
is determined by the time-independent Schrodinger equa-
tion

Next we seek a solution to (5.1} in the form of a series
in powers of 5:

tP(x)=(()o(x) g Fk(x)5", E= g Ekfi" .
k=0 k=0

(5.4)

This equation is easy to solve using the integrating factor
Po. It is best to take as boundary conditions

F„(0)=0, n ) 1, F„'(0)=0, n ) 1 . (5.6)

F«m (5.5) and (5.6) we obtain an expression which deter-
mines the expansion coefBcients Ek of the energy:

0= dx e
—M~ ln Mx

0
1 J.

—2E Fk ~(x) . (5.7)

We substitute (5.4) into (5.1) and identify the coefficient
of5 as

k

Fk'(x) 2xM—F/, (x)—M x g, [ln(Mx ~)] F& (x)
j=1

k

+2 g E Fk,.(x)=0 . (5.5)

1 1 1+ M'+sx—"'+s) Eg(x)—=0 .
dx

(5.1)
Computing E, and E2 from the above formula requires
the evaluation of very complicated triple integrals. We
do not present the details of the calculation here, but
merely give the results:

A. Rayleigh-Schrodinger perturbation theory Ei = lt( —,),M
(5.8)

In this subsection we show how to compute the
ground-state energy E(5) through order 5 using conven-
tional techniques. To obtain the leading-order result, we
simply set 5=0 in (5.1). This gives the differential equa-
tion for the harmonic oscillator

F((x)= f dt e ' f ds e ' [M s ln(Ms2) —2Ei],
0 0

(5.9)

E,= [—
—,', 1("(-', ) ——,

' g'(-,')In2+ -,'it (-', )'

1 d 1 2 2+—M'x' —Eo No(x)=0.
2 dx' (5.2) ——,'P( —', }+1—ln2] . (5.10)

The lowest-energy solution to this equation is

M ~ M~2iq

2
(5.3)

We note a provocative similarity between the series for E
given by (5.4), (5.8), and (5.10) and zero-dimensional
series given in (4.4); both involve the f function and its
derivative evaluated at —,'.

TABLE I. Comparison between the 10-term power series (p,o), 20-term power series (pro), [3,2] Pade approximant (pd[3 p] ), [5,4]
Pade approximant (pd&5 4], and the exact energy E (5) in (4.3) for the zero-dimensional Beld theory given by (4.1).

—2.0
—0.5

0.5
1.0
2.0
5.0

pro(&)

—1266.99
—0.120055
—0.007 817 11
—0.367 106

—465.831
—5.5 && 10'

p2o(~)

—2.0X10'
—0.120 781
—0.007 590 89
—0.517 356
—6.9X 10'
—7.8 x 10'

pd(3 2)(5)

—0.651 268
—0.120 831
—0.007 590 95
—0.022 5166
—0.045 8144
—0.078 666 8

pdiq 4)(6)

—0.693 111
—0.120 782
—0.007 590 58
—0.022 510 3
—0.045 756 1

—0.078 172 7

E(6)
—0.693 147
—0.120 782
—0.007 590 60
—0.022 5104
—0.045 756 2
—0.078 172 9
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B. Diagrammatic derivation

Because we are calculating the ground-state energy, we
follow exactly the calculations that were done for zero
space-time dimensions in Secs. IV B and IV C and
reevaluate the graphs in Figs. 3 and 4. The only change
in the calculation concerns the Feynman amplitude for a
line, which was 1/2 in zero dimensions and in the inser-
tion of a factor of M + in the (2a+2)-point vertex am-
plitude. In one-dimensional Euclidean momentum space
it is (p +M ) ', or h(x —y)=exp( —

~

x —y ~

M)/(2M)
in one-dimensional Euclidean coordinate space. There-
fore, each closed self-loop (or petal) in the graph in Figs.
3 and 4 gives a factor of 6(0)=1/(2M) instead of —,'.
Also, in the graphs (c)—(e) in Fig. 4 the 21 lines connect-
ing the vertices at x and y give a factor of

J dx [h(x —y)]"=
oo (2M) ' &M

(5.11)

We now continue to follow the procedure in Sec. IV; we
again apply the differential operator Dk 2 in (4.23) to the
sum of the amplitudes for the graphs in Fig. 4 now evalu-
ated in one-dimensional space-time. The results (5.8) and
(5.10) for the expansion of the ground-state energy are
reproduced exactly.

VI. VERIFICATION OF THE 5-EXPANSION
METHOD IN THE I.ARGE-N APPROXIMATION

The large-N method provides a technique for obtaining
an approximation to a quantum field theory of N in-
teracting scalar fields with an O(N) symmetry. ' For a
theory whose interaction has the form (P P), where P
has N components, one can readily obtain for each of the
Green's functions a closed-form expression to leading or-
der in powers of 1/N. These leading-order large-N
Green's functions provide an excellent testing ground for
verifying the 5-expansion diagrammatic method.

There is a well-defined procedure for calculating the
leading-order large-N Green's functions. It consists of
selecting from the set of all weak-coupling graphs only
those graphs (called cactus graphs) that contribute in the
limit as N ~ oo. In this section we find exact expressions
for the large-N limit of the two-, four-, and six-point
Green's functions in a (P )'+ theory using these cactus
graphs. Then, we expand each of these Green's functions
as series in powers of 5. We show that the radius of con-
vergence of each of these series in the complex-5 plane is
1. Next, we recalculate these 6 series using the 6-
expansion diagrammatic rules for the Lagrangian L given
in Sec. III together with the restriction that we retain

Thus, for example, the overall contribution from the lines
in graph (a) of Fig. 4 is (2M) ' mstead of 2 '. In
graph (c) the lines contribute (2M) /(IM) instead of
2 " and in graph (e) the lines give (2M} P /(IM)
instead of 2 ~ . Therefore, for example, the zero-
dimensional amplitude (4.17) corresponding to all graphs
of type (c) is replaced, in one dimension, by

a+1 52[(2~+ 2))]2M2a+4
(5.12}

/ 2 + (2M) + (IM)(21)![(a+1—I)&]

only those graphs (the cactus graphs) that dominate the
1/N expansion for large N. We calculate these Green's
functions to third order in powers of 5. The results agree
completely with the expansions of the exact large-N
Green's functions. This indicates that the process of ex-
panding in 6 commutes with the large-N limit and further
confirms the validity of the recipe given in Sec. III.

A. The graphical rules for the large-N expansion

The large-N approximation applies to the d-
dimensional Euclidean Lagrangian

(6.1)

In the limit N —+ 00 with p, A, , and M fixed, a variational
calculation, employing a Gaussian ground-state wave
functional, gives the exact solution to the theory. This
solution can also be obtained by a set of graphical rules
(summing only cactus graphs) that can be derived from a
saddle-point expansion of the functional-integral repre-
sentation of the vacuum amplitude.

The large-N graphical rules for the Lagrangian (6.1)
are the usual Feynman rules augmented as follows.

(1} Only "cactus" graphs are selected. These are
graphs in which any pair of internal loops cannot have
more than one vertex in common. For example, in Fig. 4,
the only cactus graphs of type (c), (d), or (e) are those
with I =1.

(2) The vertex factor is

gM2M~~& "~2~+~(5+1)! (6.2)

where we have set N =1. The crucial point here is that
the factor (25+2)!,which would occur in ordinary Feyn-
man rules, is replaced by 2s+'(5+1)!. This is a combina-
toric device whose purpose is to exclude graphs whose
loops contain propagators belonging to different com-
ponents of P. The excluded graphs are suppressed by a
factor of at least 1/N.

B. Two-point function

Consider first the calculation of the two-point function.
The simplest one-particle-irreducible (OPI) graph con-
tributing to the two-point function is shown in Fig. 5(a).
From the Lagrangian in (6.1) it follows that in momen-
turn space each line is represented by (p +p )

' and
each petal by

d

1(p,') =
(2n )" p +p

(6.3)

To evaluate the graph in Fig. 5(a) we multiply together
the vertex factor (6.2), the symmetry number 2 /5! for
the graph, and the value of the Feynman integral, which
is [I(p ) ] . The result is

—2AM [M I(p )] (5+1) . (6.4)

The effect of including all higher-order diagrams, such as
those in Figs. 5(b) and 5(c) is to replace p in (6.4) by the
renormalized mass mz. That is, the sum of all one-
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(b)

+ ~ ~ ~

FIG. 6. Classes of "cactus" graphs contributing to the four-
point Green's function.

(c)

FIG. 5. One-particle-irreducible "cactus" graphs contribut-
ing to the two-point Green's function.

where

2g M2(M 2 d)55(5+—1)J()n 2 )[I(17l 2 )]5—)

(6.9b)

D. Six-point function

particle-irreducible graphs is

A11 graphs contributing to the six-point function lie in
two topologically distinct classes shown in Figs. 7(a) and
7(c). A more complicated member of class (a) is shown in

OPI= —2AM [M2 dI(m)t )]s(5+1) . (6 5)

Thus, the exact result for the leading 1/N approximation
to the two-point function 6' ' is

G(2)(p)
p +p —OPI

(6.6)

We identify the renormalized mass squared as p —OPI.
Thus, the renormalized mass satisfies the implicit gap
equation

m =p +2AM [M I(m )] (5+1)

C. Four-point function

(6.7)

(c)

We turn next to the calculation of the four-point
Green's function. The four-point function is the sum of
the amplitudes corresponding to the graphs in Fig. 6,
where it is understood that internal lines carry the renor-
malized mass mR, and are represented by the amplitude
(p +m)t ) '. We define

(e)

2 2 2

l d"
(2~)d I (p2+~ 2 }2

(6.8)

The sum of the geometric series represented by Fig. 6 is
straightforward and gives the four-point function at zero
momentum for all external legs:

G(4)(o) 2A 1

J(m~2) 1 —A
(6.9a)

FIG. 7. "Cactus" graphs contributing to the six-point
Green's function.
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Fig. 7(b) and more complicated members of class (c) are
shown in Figs. 7(d) —7(fl. The sum of all such graphs can
be evaluated in closed form. We define the functions

G' '(0)=
3 8+K(m~)

(1 —A) J(m„)

3

(6.11)

K(mR)= 1 d "p

(2m)" (p +m„)
8 = —SAM (M ) 5(5 —1)[I(m )]

(6.10)

in terms of which the six-point function for all external
momenta equal to zero is

E. Expansion in 5

The implicit formula for m„ in (6.7) and the expres-
sion for G' '(0) and G' '(0) in (6.9) and (6.11) can be ex-
panded in powers of 5 with coefficients expressed in terms
of the parameters p, A, , and M . The results are

J p, +2AM
mq ——p +2AM +5[2AM (1+L)]+5 kM L(L+2)—4A, M (1+L)

I(p +2AM )

+5 A.M L ( ,'L+1—)—2A. M (3L +6L+2) J '+2AM'
I(p +2k.M )

+Sk M (L+1) K(p +2AM } 4AM—(L, —1) J(p, +2AM )

I(p +2AM ) I(p +2AM )

+5 M L (L+4)—A. M ( "L +14L—+SL)+SA, M (2L +6L +5L+1)12

—4A, M (2L 7L —4) ——SA, M ( 'L L —2L ——
—,')—I(p +2AM ) I(p +2AM )

—16k, M (L+1) +16k, M (L 3L —2)—
I(p +2)) M ) [I(p +2AM ) ]

(6.12)

where

L =ln[M "I(p +2AM )] (6.13)

and

1 dd

(2m) (I) +mz )

2

G (4)(0) 4AM
I (p +2AM).4&M (L+1) SA, M"LJ(p +2AM )

I(p +2AM ) [I(p +2AM )]

A,M 2L (L +2)
I(p +2AM )

4~ M (3L 4)J(p +2AM —) 16K, M (L —1—)K(p~+2AM2)

[I(p +2k.M )]

16k, M (L —L —1)[J(p +2XM2)]2

[I(p, +2k,M~)]3
(6.14)

and

G(6)(()) 5
SAM 5q SAM L 16k, M J(p, +2AM )

[I(p +2AM )] [I(p +2AM )] [I(p, +DM2)]3

3 SAM L L 2AM J(p +2AM ) 2 8$3M4K (p2+2&M2)
[I(p +2AM )) 2 I(p +2AM ) I(p +2&II3)

4A, M [J(p +2AM )]
[I(p +2k,M }]

(6.15)
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I (1 —d/2).n(41r ) mR

I (2 —d/2)
(4 )d/2 4 —d

mg

(6.16a)

(6.16b)

We can now solve (6.7}explicitly for mR:

1n[2A, (1+5)I (1—d/2) (4n. )
~ ]

m& ——M exp 2+5 2—d)

Let us examine the circles of convergence of these
series. We set p=O and use the method of dimensional
regularization to evaluate the momentum integrals:

Applying D =()/()a to (6.20) and evaluating at a=0, we
find, to order 5,

OPI= —25K,M (L +1}, (6.21)

where L is given by (6.13). This reproduces the order-5
term in the expansion of MR in (6.12).

To compute the one-particle-irreducible graphs to or-
der 6 we must include the graphs shown in Fig. 8; these
are all the graphs with up to three vertices. The Feyn-
man rules for this calculation are as follows. The ampli-
tude for a line is just the same as in (6.19a); however,
from (3.6), we obtain the following three vertex ampli-
tudes:

(6.17)

From (6.7) we see that, as a function of complex 5, mR is
singular at 5 = —1 and at 5 =2/(d —2). Thus, in the
range 0&d &4, mR is analytic in a circle of radius 1

about the origin in the 5 plane.
When we examine G (0}and 6' '(0) in (6.9) and (6.11)

we see that they are singular when A = 1. From (6.7) we
see that this singularity occurs when 5= I(1)/J—(1).
Using (6.16), we can simplify this condition to read
5=2/(d —2), which is located at the same point in the 5
plane as the dimension-dependent singularity in m~. Ap-
parently, for all the Green's functions, when p=O and
0 & d & 4, the radius of convergence of the 5 expansion is
1. When the bare mass p is not zero, the functional-
integral representation for any Green's function has the
additional convergence factor exp( ——,

' I dx tu, ()I) ). Thus,
the region of analyticity in the 5 plane is at least as large
as in the p=O case.

5+5' +5' 2 +'(a+1) AM'M"
2

~2+ A
5m+5' "+5' 2 +'(P+ l))))M'M"

2

5' +5 +5 2r+'(y+1)QM M'
2

(6.22)

where co =e ' . Note that, in each of these graphs, each
vertex can be of a, P, or y type [see (3.3) and (3.6)] and
one must sum over a11 possible choices of vertices. This

F. Recalculation of the renormalized mass
using the 5 expansion

We begin by calculating the one-particle-irreducible
contribution to the two-point function to order 5, using
the 5-expansion diagrammatic procedure given in Sec.
III, as modified for large N. The provisional Lagrangian
L appropriate to calculating to order 5 is

L =—'(()P) +—'(p +2AM )((} +AM (M "$ )
+' (c)

(6.18)

The Feynman rules appropriate for calculating Green's
functions in the large-N limit are, in momentum space, as
follows:

1
Line,

p +p +2AM

Qertex, —5AMd+(2 —d)(a+1)2a+1(~+ 1 }1

(6.19a)

(6.19b)

—25(a+ 1 )AM [I(p +2AM )M ] (6.20}

There is just one diagram in the one-particle-irreducible
contribution to the two-point function. It is given by the
graph in Fig. 5(a}, where now there are a petals. The to-
tal amplitude for this graph is

(e)

FIG. 8. One-particle-irreducible "cactus" graphs to order 5
contributing to the two-point Green's function.
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means that there are 3 graphs of type (a), 9 graphs of type
(b), 27 graphs of type (c), 18 graphs of type (d), and 18
graphs of type (e) in Fig. 8. After computing the sum of
these graphs, one must apply the derivative operator
Dx 3 in (3.8):

D =1 a+- a+- a
3 Ba BP By

B' B' , B'
B~2 BP2 By

2

(c)

(e)

(4)

3k + (f)

1 B B B

Ba' BP' By'
(6.23)

The result reproduces (6.12) exactly. The full calculation
is tedious but very simple, and we do not give it here.

G. Recalculation of the four- and six-point functions

using 5 expansion

To calculate G' '(0) and G' '(0) we calculate G' '(0)
and G '6'(0) from the graphs in Figs. 9 and 10 using the
Feynman rules (6.19a) and (6.22). We then apply the
differential operator Dx 3 in (6.23) and evaluate at
a =P=y =0. The results are precisely (6.14) and (6.15).

VII. CALCULATION OF THE GREEN'S FUNCTIONS
TO LEADING ORDER IN POWERS OF 5

FIG. 10. "Cactus" graphs to order 5' contributing to the
six-point Green's function.

In the previous section we showed how to calculate the
diagrams contributing to the 5 expansion of the Green's
functions in the limit of large ¹ In this section we calcu-
late the first term in the 5 expansion of the Green's func-
tions, but without making the large-N approximation.
We postpone to a paper reserved for a discussion of re-
normalization the more difficult calculation of the

(a)

(c)

(e) + $( $!% (()

(g)

higher-order terms.
The Feynman rules for this calculation are obtained

from the provisional Lagrangian L correct to order 5:

L = —'(B()()) +—'((u +2AM )P +AM (M ") +'(())) )
+' .

(7.1)

From this Lagrangian the amplitudes for a line and a ver-
tex are the following:

1
line,

p +p +2AM

(2a+2)-point vertex, —5AM +' " + "(2a+2)! .

(7.2a)

(7.2b)

We emphasize again the difference between the exact ver-
tex amplitude (7.2b) and the large-N vertex amplitude
(6.19b); in the later the factor (2a+2)! is replaced by
2lx+ i(~+ 1 )i

Only one graph contributes to the one-particle-
irreducible connected 2n-point Green's function; this

2n
externai
lines 0+1—n self loops

vertex

FIG. 9. "Cactus" graphs to order 5' contributing to the
four-point Green's function.

FIG. 11. The graph contributing to the one-particle-
irreducible connected 2n-point Green s function to leading or-
der in 5.
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X
(2a+2)![I(p +2AM )) +'

2 +' "(a+1—n)!
(7.3)

Next, we apply the derivative operator Dit, ——t}lt)a to
6 ' "' and evaluate the result at a =0 to obtain

I }n + 1g5M d + n (2 —d)2»( n

[M I( +2' )]»
(7.4)

As a special case of this formula, we let n = 1. The renor-
malized mass mz is obtained by summing all powers of
the one-particle-irreducible graphs contributing to G' ' as
a geometric series and finding the pole of this sum. The
result is

mtt ——p +2k,M +25r(,M I I+tP( —', )

+in[2M I(p, +2AM )]I .

(7.5)

This formula is remarkable because it is far less diver-
gent than the corresponding formula in the weak-

graph is shown in Fig. 11. There are a+1—n self loops
(petals) in this graph. Therefore, the symmetry number is
(a+1 n—)!2 +' ". Each petal contributes I(p +2AM ).
Thus, to leading order in 5,

G (2n) gg~d +(2—d)(a+ 1)

coupling perturbation series. In weak-coupling perturba-
tion theory the corresponding formula for mz reads

mit =p, +AM '[M I(p )] +O(A, ) ., (25+2)!
25gt

(7.6)

Note that, when d =2, the integral I is logarithmically
divergent but only lnI appears in (7.5). Thus, if A is a
momentum cutoff (7.6) diverges like (lnA) while (7.5}
diverges like ln(lnA). When d =4,I is quadratically
divergent, so (7.6} diverges like A while (7.5) diverges
like lnA. The expressions for the higher Green's func-
tions to order 5 are not even divergent.
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