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For antisymmetric tensor gauge fields of rank 2n —1 coupled to gravity in 4n dimensions it is
shown that the symmetry under duality rotations is broken by quantum effects. The anomaly is
related to a local version of the signature index theorem. The {-function technique, Fujikawa’s
method, and the stochastic regularization scheme are discussed.

I. INTRODUCTION

As was first pointed out by Alvarez-Gaumé and Wit-
ten,! (anti-)self-dual antisymmetric tensor fields in 4n —2
dimensions have anomalies in their coupling to gravity.
Similar to the case of fermions, these gravitational
anomalies are related to chiral anomalies in 4n dimen-
sions.?2 For the antisymmetric tensor fields these chiral
transformations are realized as duality rotations of a ten-
sor field of rank 2n. On the other hand, considering this
field

Fl‘[ g, EZHB[MIA#Z...#“]
as being the field strength of a gauge potential
A p, " Han—ODE is led to study the “‘duality anomaly”

of a U(1) gauge theory where the gauge fields are an-
tisymmetric tensor fields of rank 2n —1. For n =1, say,
this means that there is an anomaly associated with du-
ality transformations of the field strength F,, belonging
to the photon 4,,.

Along a different line of investigation, Dolgov, Khri-
plovich, and Zakharov?, recently used dispersion-relation
techniques to show that if the photon field is quantized
in a four-dimensional curved space-time (with Min-
kowski signature) for which the pseudoscalar
€uvpoR " R @hre does not vanish, the vacuum expecta-
tion value of the Pauli-Ljubanski vector

Kt=g~1%""7 4.3 4, (1.1)

is not conserved. This means that the pseudoscalar
F,,*F" acquires a vacuum expectation value:

V,(K*)=1(F, *F®)

_ 1
19272

87 2€,upa R* ogR PP7 . (1.2)

As we shall see below, this equation expresses the fact
that quantum effects spoil the invariance of the classical
theory under duality transformations. For a free elec-
tromagnetic field this symmetry causes the difference of
the numbers of right and left circularly polarized pho-
tons to be conserved.* Hence, if the right-hand side
(RHS) of (1.2) is nonzero, the gravitational field continu-
ously produces (chiral) photons from the vacuum. This
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is analogous to the anomalous fermion pair creation by
Yang-Mills fields as expressed by the famous relation

AQ5=E:T—2 [ d*x te(F, *F®) (1.3)
where AQ; is the change of the chiral charge. In the
present case the chiral charge density d/Ty s¥ is replaced
by K° whose space integral is +1 (—1) for right- (left-)
handed photons.

The purpose of this paper is to show how the result of
Dolgov, Khriplvich, and Zakharov, is related to an
anomalous breaking of the duality symmetry. Further-
more, we shall see that a similar effect exists in all 4n-
dimensional theories containing antisymmetric tensor
gauge fields of rank 2n —1 coupled to gravity. Working
in Euclidean space, we will relate the generalization of
(1.2) to a local version of the signature index theorem so
that for all n the anomaly can be expressed by the Hir-
zebruch L polynomial.>® In Sec. II this result is derived
using the {-function method for regularizing infinite-
dimensional determinants. Then, in Sec. III, we show
that, similar to the fermionic case, the chiral anomaly of
antisymmetric tensor fields is associated with a nontrivi-
al Jacobian of the path-integral measure.” Finally, in
Sec. IV it is briefly described how the anomaly is ob-
tained in the framework of stochastic quantization.?

II. {-FUNCTION REGULARIZATION

We are considering a 4n-dimensional oriented
Riemannian manifold M of Euclidean signature which
has no boundary: M =2. We define totally antisym-

metric tensor fields A#l oy ‘I(x) on J, which we fre-

quently will write as differential forms:

1

(R Han 1
(2n—1)!A"1"'”2"—1 dx .

A(x)= (x)dx" -

(2.1)

We associate to A4 a field-strength 2n-form in the usual

way:’

F=dA , (2.2a)
where
F#l'““‘Zn =2na[H1A#2...“2"] . (22b)
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Obviously F is invariant under gauge transformations
A— A+dX (2.3

for any (2n —2)-form X, so that for n =1 ordinary (Eu-
clidean) electrodynamics is recovered. For our purposes
it is convenient to introduce the scalar product

(a,B)=*[a %]
J: S (2.4)

for all p-forms a and 5. Here we used the Hodge opera-
tor * defined as

pl HTHp

B gt VB
*dx dx (an —p)' #p+1"'ﬂ4n

xdx! P+t gxten 2.5)

The action for A4 is the following generalization of the

Maxwell action (e denotes the volume form
Vigdx!': - dx*):
S=1 [(FFie=1 [ (4,6dA) . 2.6)

The second equality follows from the fact that the
coderivative 8 is the adjoint of d. We will perform all
calculations in a generalized Lorentz gauge defined by

64 =0. (2.7)

For n =1 this reduces to the ordinary Lorentz condition
V,‘A #=0, where V# is the covariant derivative con-
structed from the metric of M. For fields satisfying (2.7)
the action can be written as

S=1[(4,A4), (2.8)

where A=d8+6d is the Laplacian. In its original form
(2.6), S is invariant under global duality rotations (or
“chiral transformations”) of the form

F —>F cosa+ * F sina , (2.9)
or, infinitesimally,

8 F=axF . (2.10)

Now we turn to our main task: namely, the calcula-
tion of the vacuum expectation value of

V.KF=(F,*F)= 1 F

S Fn @.11)

tFFI"'i‘zn
n

for the prescribed background gravitational field given
by the metric g,,(x) of M. [The generalization of (1.1)
for arbitrary n can be read off from (F, * F)=8K, where
K =x(A4dA).] We define the generating functional

Z[n]l= f [DAlLexp [——% f(A,AA)e

+ f(dA,n*dA)] (2.12)

for any real, scalar function 7 because then the expecta-
tion value of (2.11) reads
(0| (F(x),*F(x))]|0)

(0]0)

((F(x),*F(x))) =

InZ[n] (2.13)

__ 6

81’]()() 7=0 ’
The subscript LG at the path-integral measure is to indi-
cate that the integration has to be performed only over
fields obeying the Lorentz gauge condition (2.7). We are
not going to exponentiate this constraint since it is much
simpler to explicitly take it into account in doing the
Gaussian integration (see below). In particular, any
complication due to the necessity of introducing ghosts
for the ghosts is avoided.!®

In the representation (2.13) we can evaluate {(F, xF))
using the same technique as developed in Ref. 11 for fer-
mionic chiral anomalies and subsequently used for the
evaluation of various other types of anomalies.!? Per-
forming the integral for Z one formally obtains

(Fx), s F)=—+-L _mdeta| , @14
2 &n(x) 7=0
where the operator (2 is given by
Q=A+p>+2x(dn)Ad . (2.15)

To control the usual IR divergences associated with
massless fields we have introduced a small mass parame-
ter u. For 7(x)=0 the operator () is positive and Her-
mitian. Because we may consider 7 infinitesimal, this is
sufficient for the {-function method to be applicable; i.e.,
we can define the determinant as exp[ —&'(Q | 0)], where
§(Q|s) is the & function associated with Q (Ref. 13).
Hence one has

((F(x), *F(x)))—~ 8

2 Snix )ds L)

(2.16)

To evaluate the RHS of (2.16) we introduce a complete

set of normalized eigenfunctions of the operator A+ pu?

acting on (2n — 1)-forms:
(A+uba;(x)=Aa;(x),

A,>0, 2.17)

[ (a;,0)e=5,; . (2.18)
It has been shown in Ref. 11, for instance, that in terms
of the a;’s the functional derivative of the & function can
be written as

8¢(Q
_§_ls___ EA—(H\—S)f l a;, (2.19)

5n(x) 8n( )

As was already mentioned, the path integration (2.12)
has to be performed only over fields satisfying § 4 =0.
Therefore, it is only their eigenvalues which contribute
to the determinant in (2.14). Consequently, in (2.19) the
sum runs only over eigenvectors a; satisfying 8a; =0.
Inserting (2.15) yields
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<(F(x),*F(x)))=§s— s 3 A7 Uda;(x), *da;(x)) .
0 i

(2.20)

At this point it is advantageous to change the normaliza-
tion of the basis fields; we introduce

a;(x)=A7"2a;(x) . (2.21)
For u—0 the a; are normalized according to
[(da;,da;)=5, . (2.22)
Exploiting the identity
= r(ls) f0°° dtt’~le ¥, x>0 (2.23)
we obtain

d s
((F(x),*F(x)))= @ [0T(s)

0 2
X dt s le—#1
I,

t

X ¥ (da;(x),*da;(x))e it

(2.24)

In this representation we can relate the expectation
value of (F,*F) to the index theorem for the signature
complex.>® Let us recall that the signature 7 of a 4n-
dimensional manifold M, i.e., the index of the signature
complex is defined by

T(M)=Tr (e ")—Tr_(e ') . (2.25)

The traces Tr. refer to the space of self-dual and anti-
self-dual 2n-forms, respectively. Note that because the
projectors on these spaces are P, =1(1t#) this also
could be written as

TM)=Tr(xe "), (2.26)

where the trace is over all 2n-forms now. [One even
could perform the trace with respect to the whole exteri-
or algebra; all additional contributions would cancel be-
tween the p- and the (2n —p)-forms.] A standard argu-
ment shows that only the zero modes of A contribute to
the signature. Hence 7(/M) is the difference of the num-
ber of self-dual and anti-self-dual zero modes of the La-
placian. The signature can be explicitly calculated from
the asymptotic expansion of the relevant heat ker-

nels:s’“’”

K (x;t)=tr(x le_Ai'|x )=

LS BE(k.
™" 2o

(2.27)

The trace tr refers to the tensor indices only and
A, =AP, is the Laplacian restricted to the space of
(anti)self-dual fields. One finds
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)= [ d*xVgB,,(x), (2.28)
where B,, =B}, —B;,. One possible strategy to evalu-
ate the coefficients B,; (x) is to use a method similar to
Fujikawa’s computation of spinorial chiral anomalies.’
This has recently been done by Endo and Takao.? They
add to the kernel (2.27) additional tensor fields (cf. the
remarks above) to form a Dirac-Kahler fermion;"!® the
computation is then similar to the evaluation of the
anomaly for the Rarita-Schwinger field.!” In accordance
with the mathematical literature their result can be
represented as

1/2
O/ 27

M= [ det T

(2.29)

The integrand is the Hirzebruch L polynomial for the
curvature two-forms,

Q*,=1R*  dxPdx” (2.30)

constructed from the metric of M. This notation means
that we have to expand the integrand in a power series
in Q and to keep only those terms which have the
correct 4n-dimensional volume form.

To make contact with Eq. (2.24) we consider the ker-
nel

K(x;t)=K _(x;t)—K _(x;t)

t

=S (fix)xfylx)e . 2.31)

The sum runs over a complete set of 2n-forms f; with

Af;=Mfi, A >0, (2.32)

and

[ (fif)e=8,; . 2.33)

According to the Hodge decomposition theorem, our
2n-forms f can be uniquely decomposed as a sum of an
exact form [the derivative of a (2n —1)-form al, a co-
exact form [the co-derivative of a (2n + 1)-form ], and
a harmonic form:

f=da+8B+¢, Ap=0. (2.34)

The three pieces are mutually orthogonal and satisfy the
eigenvalue equation (2.32) separately. This means that
we can divide the f;’s into three classes: f\!=da;,
fi¥=8B;, and f/¥=¢,. Hence (2.31) decomposes ac-
cording to
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K(x;0)= 3 (da;, *da;)e "'+ 3 (8B, %6B,)e "
a B

+ 3 (b, %¢,) . (2.35)

It is important to note that the first two sums in (2.35)
are equal. This follows from the identity

1459

(8B;, *8B;)=(d [*B;], *d [*B;])

and the fact that the Hodge operator provides an iso-
morphism between the space of the a’s and the B’s.
Furthermore, this sum coincides with the one appearing
in Eq. (2.24), since for A=£0 the spectrum of A, acting on
a and da coincides and the normalization (2.22) is the
same as in (2.33).

Returning to (2.24) we may write

_ld | s e so1,-uk ) — ) .
((FG),#Fx)) =5 —- | == fo de t5=le 1" (K(x;1) §(¢,(x),*¢,<x)) . (2.36)
Inserting the expansion (2.27) one easily finds the p-independent relation
V#(K“)=((F(x),*F(x)))=%B4,,(x)—%2(¢,»(x),*¢,-(x)) . (2.37)

This is the desired result. It states that apart from the 2n-form zero modes of the Laplacian the vacuum expectation
value is given by the well-known Seeley coefficients B,,(x) (Refs. 5, 6 and 14). For n =1 and 2 they are explicitly

given by
Blxi= 961172 8 €pa R ogR 7
Bg(x)= 460181r“ g 12" MR vlvz,,lﬂz vzvl,,stp'pzusﬂé P2p1”7l‘8
1 1 572017-4 g 2t R Vlvzf‘l"zR vz”sl‘st VJ"d-‘s“sR V4V|#7I‘3 : (2.38)

If we integrate (2.37) over a manifold which has no
boundary so that the V,(K*) term does not contribute,

we recover the signature index theorem
n,—n_= [d*xVgB,(x), (2.39)

where n, and n_ denote the number of self-dual and
anti-self-dual zero modes. For n =1 we have found

V.(K#)=1(F,,*F*)
19272

_';' - (¢i!*¢i) .

—1/2 pv afpo
epvpoR aﬁR

(2.40)

This differs from the result (1.2) for Minkowski space by
the zero-mode term. The situation is similar to the case
of the fermionic anomaly. In Euclidean space the com-
plete form of the axial-vector divergence reads'®

—1/26

Vuligr=— 384m s Cwee

R l”aﬁ R afpo

1
+37 tr(F,*F*) 42 3 Yoy st » (.41
i

where the 1,;’s are the zero modes of the Dirac operator
D. Integrating equation (2.41) over a manifold with

M =D one reproduces the index theorem for the spin
complex. In analogy we therefore expect that in Min-
kowski space V,,(K*) is given by +B,,(x) for all n.

III. THE ANOMALOUS JACOBIAN

In this section we show that the anomaly (2.40) can be
understood as arising from a nontrivial Jacobian of the
path-integral measure. The problem one encounters in
this approach is that the relevant transformations, the
dual rotations (2.9) or (2.10), are defined in terms of F
rather than in terms of the integration variable 4. One
possibility to avoid this complication is to use the first-
order formalism.!” Here we use a different approach.
We define a chiral transformation of 4 by the require-
ment

d(8,4)=axdA . (3.1)

This transformation law guarantees that (2.10) is satisfied
by F=dA. As we shall see below, for our purposes it is
not necessary to solve this equation for §,4. Following
Fujikawa,’ the derivation of the anomaly proceeds as fol-
lows. Consider the path integral

Z= [ [DAlgexp [—% f(dA,dA)e] :

and change the integration variable from A to
A'=A +8,A4, where the parameter « is allowed to de-
pend on the space-time point x. Then the classical ac-
tion changes by | a(F,*F)e. For the Jacobian we make

(3.2)
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the ansatz

[DAlig=exp | [ d¥"x Vg al(x)A,,(x) |[DA]g . (3.3)

Because Z is independent of a, one finds the “Ward
identity”

JIDALGI(F (x), £ F (x)) = A 4 (x)]e ~5=0 (3.4a)

or

((F(x),*F(x))) =Ag,(x) . (3.4b)

From (3.4) we learn that ((F,*F))s0 is equivalent to
A4, #0, ie., to a quantum-mechanical breaking of the
symmetry (2.10). To compute A,,, we first expand the
gauge field as

Ax)= 3 ca;(x), (3.5)

where the (2n —1)-forms a; are a complete set of basis
vectors which are orthonormalized as in (2.18). For con-
venience we choose them as eigenvectors of the Lapla-
cian. Furthermore, because the integral (3.2) is only
over fields satisfying the Lorentz gauge condition, they
are constrained to satisfy 8a; =0. Thus one has

Under 4 — A’ the coefficients ¢; change according to

o= f(a,-,[1+8a]aj)ecj
J

J

i.e., the Jacobian for an infinitesimal transformation is
given by
detM = exp[Trin(1+M)]

= exp Zf(a,-,&aa,-)e (3.8)

To be able to apply (3.1), we exploit the fact that the a;’s
are eigenfunctions of A (with eigenvalues A;) and satisfy
8a; =0 to write

a, =\ d8+8d)a; =\ '8da; .

Inserting this in (3.8), integrating by parts, and using
(3.1) one obtains

ZI(ai,'Saaik:Zki’lf(ﬁdai,Saai)e
=3 A7 [(da;,d8.a;)e
=3 f (da;,ax*da;)e . (3.9)

B

S Van 1

<1’#| T Mg -I(X’T)ﬂrlvl

(Jc’,T’)>,7=2g‘1/2(x)gg;“lg:22 .- 'g:fz::"]ﬁ(x —x")a(r—7') .
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Again introducing the differently normalized function a;
of (2.21), we find, by comparison with (3.3),

Ay (x)= 3 (da;(x), *da;(x)) . (3.10)

Because of the completeness of the a;’s this is an ill-
defined quantity of the form 0X . (This is analogous
to the sum Zitp:-'ysfpi for the fermionic case.) We regu-
larize it by introducing a Gaussian cutoff:

-2, /M?

Ay, (x)= lim 3 (da;,*e da;) . (3.11)

—w
According to the discussion which led to (2.36) this is
the same as

Agp(x)= lim 3 K (x;1/M*)— 3 (¢;(x), x,(x))

= 1By (x)—1 3 ($,(x), #;(x)) . (3.12)

This shows that, contrary to the claims in Ref. 2,
Fujikawa’s method is very well applicable even in a
first-order formulation. The result coincides with that of
the ¢-function method and the calculation clearly
displays the analogy with the fermionic anomaly.

IV. STOCHASTIC QUANTIZATION

Recently stochastic quantization® received much at-
tention as an alternative to the usual canonical or path-
integral quantization. One of the reasons might have
been that this scheme provides a new type of invariant
regularization which was hoped to respect simultaneous-
ly all symmetries of the field-theory model under con-
sideration. Later on it turned out, however, that the
anomalies associated with continuous symmetries also
appear within stochastic quantization.?%?! It is only in
the case of the parity-violating anomaly in 2n + 1 dimen-
sions that an ambiguity has been observed.?” In this sec-
tion we are going to explicitly show that the (continuous)
duality anomalies, too, are unambiguously reproduced in
the framework of stochastic quantization. Our essential
tool will be the stochastic regulator function introduced
by Breit, Gupta, and Zaks.?

The basic ingredients to start with are the Langevin
equation derived from the action (2.6),

d
3 A(x,7)=—8d A (x,7)+n(x,7),

and the correlation function for the random source
n(x,7):

4.1)

(4.2)
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Being a source for A4(x,7), the noise 7(x,7) is a
(2n —1)-form, also. In (4.2) we introduced the Breit-
Gupta-Zaks regulator a,(7—7') defined by the proper-
ties?

lim a (r—7")=8(7—7"),

A—>

az(r—=1)=a,(r'—7), (4.3)

f dr'a,(r—7')=1.

The limit A— o will be performed after all calculations
have been done. As is well known, the stochastic quant-
ization of gauge theorles does not necessarily require the
fixing of a gauge,?* but, nevertheless, it can be computa-
tionally advantageous to fix a gauge. In our case we
would like to do this in a way so that the Langevin equa-
tion contains the complete Laplacian rather than the 6d
operator only. To achieve this we perform a gauge
transformation which depends on the stochastic time 7:

A'(x,7)=A(x,7)+dX(x,7) . 4.4)

This transformation changes the form of the Langevin

equation, but it does not change any gauge-invariant ex-
4 .

pectation value calculated from it. Choosing X to

satisfy
%dX+d8(A +dX)=0 4.5)
|
(4,(x")4,(x))= lim lim {(A47(x',7)A4](x,7)),

A>T

the new Langevin equation has the desired form

%A "(x,7)= — A A" (x,7) +7(x,7) . (4.6)
A possible solution of (4.5) is
Xx,7)=— [Tdr'e 878 4 (x,7) . @.7)

For notational simplicity we do the following calcula-
tions for n =1; the generalization will be obvious. To

solve Eq. (4.6), we define
=(u,x|e ™ |vx'). (4.8)

The solution of (4.6)
A (x,0)=0 then reads

Ajx,1)= fOTdT' f d*x'VgG,,(x,x s T—1 M (x’,7) .

G, (x,x";7)

with the initial condition

(4.9)

(We omit the prime from A again.) Employing this

solution, we can compute

((F(x),*F(x))):%g—l/Zevaa

X lim 9__9_
x'—>x 9x'* OxP

X{A,(x")A4,(x)) (4.10)

by straightforwardly evaluating the expectation value:

= lim lim f df,f dry, [ d% Ve [ d%,V8(11)G o(x",p1;7—7)G 1p(x,p,57—75)

A—>w T—w

= lim lim f dTlf d72a\ (1) —75)G (X', X ;27 —T| —T;) .

A> o T—w

Inserting into (4.11) yields

((F(x),#F()))= lim lim [7dr, [d7y2a,(ri—7, )3 (da(x

A—> o T

XAy, mn” J’2,72)>n
(4.11)

—AQ2r—7—7,)

), *da;(x))e (4.12)

Here the heat kernel (4.8) has been represented in terms of a complete set of orthonormalized eigenfunctions of the

Laplacian:

S af(x)a}(x")e "

i

G*(x,x";7)=

(4.13)

Equation (4.12) holds for all values of n > 1 again. The following steps parallel Tzani’s?! treatment of the fermionic

case. Introducing
t=Tl‘—T2, Tz%(fl+T2) N

we have

((FaF)= lim lim | [7%a1 [**ar+ J7 ar [T ”dt]zaA(t)z(da,,*da) Th@rmnmn)

A> o T
The properties (4.3) imply, for the regulator functions,

r__L

A2 +0

[T dtayin=e
-2T —2r

A2

, f+2(‘r Tdt A(t)—

(4.14)

(4.15)

1
7T——F—=T
2A?
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Inserting this into (4.15) and performing the 7 integration yields

A (21—1/A%)

((F,*F))= lim lim 3 A7 '(da;, *da;)(e -

—> 0 T—> i

At this point the 7 limit may be performed:

A /A2

((F,*F)):AIim 3 A7 'da;,*da)e 4.17)

(To obtain strictly positive eigenvalues A; one could in-
troduce a small “photon” mass as in Sec. II.) Finally,
we can change the normalization of the a;’s according to
(2.21) and (2.22). What we find is

AL 2
((F,*F)):Aﬁm > (da;,*e hi/A da;) , (4.18)
—o

i.e., the same expression as in Fujikawa’s approach, cf.
Eq. (3.11). Obviously, Fujikawa’s prescription for cut-
ting off the large eigenvalues is equivalent to using the
Breit-Gupta-Zaks regularized version of the noise-noise
correlation function. Hence the stochastic quantization
scheme leads to the same anomaly as the path-integral
or {-function method. This gives further support to the
assumption that the stochastic method correctly repro-
duces all anomalies associated with continuous sym-
metries.

V. CONCLUSIONS

Using various independent methods, we have estab-
lished the Euclidean analogue of relation (1.2) for any ar-
bitrary 4n-dimensional space-time. The result (2.37)
differs from the Minkowski-space version of the anomaly
equation by the zero-mode terms. Their presence allows
the anomalous divergence equation to be interpreted as a
local version of the signature index theorem. In the
path-integral formalism the anomaly manifests itself in a

A; /A%
e

=207

Je (4.16)

nontrivial Jacobian for the duality transformations. This
result has been established within the second-order for-
mulation of the quantum theory, where duality transfor-
mations are defined by (3.1). We also found that the
anomaly is correctly reproduced by the stochastic quant-
ization procedure and that the stochastic regulator a, is
equivalent to Fujikawa’s prescription. All these proper-
ties of the duality, or chiral anomalies of antisymmetric
tensor fields are very similar to those of spinor fields.

To close, let us ask for possible physical applications
of (1.2) or its generalizations. An example of a metric
for which the pseudoscalar €,,,,R"*”gR aBp does not
vanish is the metric of a rotating mass distribution, a ro-
tating star, say. This means that such a star permanent-
ly creates photons and thereby reduces its angular
momentum in very much the same way as a dyon pro-
duces fermion pairs via (1.3) and thereby reduces its
electric charge.’ It is important to note that this radia-
tion has nothing to do with the familiar Hawking radia-
tion or the gravitational particle creation in expanding
universes.”> These phenomena have their origin in a
nontrivial Bogoliubov transformation between the
creation and annihilation operators used by different ob-
servers: the vacuum of one observer can correspond to a
state with a nonzero particle number for another ob-
server. On the other hand, the (pseudo)scalar
€uvpoe R R @fpo which is responsible for the anomalous
photon creation, cannot be arranged to vanish by em-
ploying a particular vacuum state; it is the same for any
observer.
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