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Analytic conditions for three-neutrino resonant oscillations in matter
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Exact conditions for resonant oscillations of three neutrinos are derived analytically. These are
obtained by demanding maximal mixing between states in v, at resonance in analogy with the
two-generation case. The criteria for the adiabatic approximation in the present case are pro-
posed.

I. INTRODUCTION

The neutrino oscillations have been thought of as a
possible solution' to account for the suppression of the
solar-neutrino counting rate in the Cl experiment, the
so-called solar-neutrino puzzle. The pattern of these os-
cillations in matter could be very different from that in
vacuum when the interaction of v, with matter is taken
into account. It was pointed out by Mikheyev and Smir-
nov and later by Bethe that this matter-induced effect
could be significant and can under certain conditions
lead to a complete conversion of v, to v„accounting for
the suppressed counting rate in the 3 Cl experiment.
This conversion is brought about by the resonant
amplification of even a tiny mixing angle in vacuum be-
tween two generations of neutrinos into a maximal mix-
ing.

In the realistic case with three generations of neutri-
nos, extracting resonance conditions seems to be very
difficult even though formal solutions exist. This has
led to numerical studies by various authors. ' In this
paper we report on an analytic study of the three-
generation neutrino oscillations in matter and derive
conditions for the resonance to occur in direct analogy
with the two-generation problem. But unlike the two-
generation case, there are more parameters in the three-
generation problem such as mixing angles and masses in
vacuum. Since these mixing angles undergo a correlated
variation in the presence of matter, the occurrence of a
resonance is not automatic, but demands certain initial
conditions which lead to constraints on vacuum parame-
ters. Interestingly, therefore, the resonance may not
occur in arbitrary models even when the magnitudes of
the vacuum mixing angles and the mass differences are
in conformity with what is needed in the two-generation
case.

For the purpose of analysis we divide the three-
generation problem into two cases. First we discuss con-
ditions under which a three-generation problem
effectively reduces to that of two generations with one
mass remaining constant. Most of the cases studied nu-
merically in the literature fall approximately under this
category. Next we discuss a genuine three-generation
case in which the resonance occurs simultaneously be-
tween all the three generations. This case, as far as we
know, has not been studied in the literature as yet. The
conditions (often referred to with the prefix adiabatic)

under which a complete conversion of v, to v„ takes
place are obtained in the latter case. In the former case
these are identical to the two-generation case and no
separate discussion seems to be necessary.

II. A SPECIAL CASE

y)
(2.1)

where the parameters x; and y; determine the vacuum
mixing matrix ( A =0) U„and p; through

2 0p)
M„= Uv 2 Uv0 p2

(2.2)

The interaction of v„of energy E, with electrons in
matter gives rise to an additional contribution to the
mass matrix given by

A =2&2GFN, E,
where X, is the electron density in rnatter and GF is the
Fermi coupling. Since the matter density is not con-
stant, A changes as v, produced near the core travels to
the surface. At any given A, M~ can be diagonalized by
a unitary matrix U~,

U~Mq Uq ——Mo,2 2 (2.3)

where Mo is a diagonal matrix with A-dependent masses
m, and mz. In particular, we shall assume U~ to be
real, which amounts to setting the CP-violating phase to
zero in the three-generation analysis. Thus, for two gen-
erations,

cosp„sinp„
p (2.4)

with

Before proceeding with the three-generation problem,
let us recapitulate the Mikheyev-Smirnov-Wolfenstein
(MSW) mechanism for two generations. We shall put it
in a form which is more amenable to the analysis of the
three-generation MSW mechanism. The evolution of the
states inside the Sun is governed by ' the appropriate
mass matrix which in the Aavor basis can be
pararnetrized as

x&+A y&
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52, sin2P,

A —5 2P

where P„ is the vacuum mixing angle and 521 p——3 p—1 is
the mass difference in vacuum. Differentiating Mo in

Eq. (2.3) with respect to A, we obtain

0 T A 2 T A

dA U„„,M,' =U „U„,dA
(2.5)

where Uz(dU„/d A ) is an antisymmetric matrix given

by

dP„ /d A

0

Consider now the extension to three generations. Un-
like the two-generation case where the maximal mixing
between two generations can be uniquely fixed for reso-
nance, in the three-generation case we could either
choose maximal mixing between any two or all three
mass eigenstates in v, . We shall first show that the
former case trivially reduces to the two-generation prob-
lem with one mass eigenstate completely decoupled.
Later we shall consider the latter case, which is what we
would like to refer to as the genuine three-generation
problem. If we interpret the MSW mechanism purely in
terms of maximal mixing alone, these two cases exhaust
all the possibilities.

The mixing at resonance when A =A+ in the ideal
case of any two states resonating is described by

The matrix equation (2.5) can be explicitly written as

Gm) A —52, cos2P„

[( A —53,cos2p„) +(53, sin2p, )2]'~2
R

1/3/2
—c, /3/2

s3/&2

1/3/2 0

c3/3 2 $3

—s, /&2 c,
(2.10)

dm 2

dA
1 A —521 cos2P„

[(A —52,cos2P„) +(52, sin2P„)2]'~

(2.6)

where c3 = cos(P3„) and s3 =sin(P3„). We could have
R R

chosen ( U„),3——0 instead of the (U„),3, but that is im-

material for what follows. We now demand that U„ in

Eq. (2.10) diagonalizes M„given by
dP„sin2P„

2(m 2
—m1)

52,sin2P,

2[(A —52, cos2p„) +(52, sin2p„) ]'

x&+ A y& y2

x2

y2

(2.11)

Note that the right-hand sides in Eqs. (2.6) are entirely
given in terms of the vacuum mixing angles and masses
whose values fix the mode1. Consider now the situation
when the two mass eigenstates are maximally mixed in

v, . The U„ is then given by

1/3/2 1/v'2
—I /3/2 I /3/2 (2.7)

We now demand that at resonance the (mass) matrix
given by (2. 1) be diagonalized by the U„given above.
Equivalently, the mixing angle at resonance, i.e., when
A = A„, is P„=n./4. It then immediately follows that

A R =521 cos2p„.

Thus it follows from Eqs. (2.6) that

dm1 dm 2

dA dA 2' dA

(2.8)

(2.9)

which implies that the mass difference becomes an ex-
tremum at resonance. Note that this is also sufhcient to
determine U„(dU„ /d A ) at resonance since
dp„/dA =1/2b, 2, . Equation (2.8) is in fact the reso-
nance condition derived by Bethe" for the two-
generation case. Conversely, we could have started by
demanding that the mass difference be a minimum and
obtained the rnaxirnal mixing between two mass eigen-
states in v, at resonance.

when A = Az. Thus the various columns of U„are
eigenstates of M„with eigenvalues m, (i =1,2, 3). Writ-
ing these eigenvalue equations and eliminating m; from
them we obtain the conditions

y2 y&
x2+ y3 ——x3+ y3, (2.12a)

y2
Az ——x2 —x&+ y3,

tan(p3x ) = —yz/y

(2.12b)

(2.12c)

(~21)R 2(3 1+3 2 )

(~32)R (3 1+3 2) — (y1+y2 )
2 2 1/2 y3 2 2

(2.13a)

(2.13b)

where 6;.=m; —m .2 2

Thus the maximal mixing between only two states can
occur in a class of models satisfying Eq. (2.12a). This
condition has a simple interpretation. It follows by re-
quiring that U, 3 (or U, 2) be zero at resonance; but by
virtue of its A independence U, 3 is forced to remain zero

Note that the condition (2.12a) is independent of A and
hence imposes constraints on x; and y; which in turn
can be expressed in terms of vacuum mixing angles and
masses. Also by virtue of Eq. (2.12c) P3 „always
remains independent of A and, therefore, p3„=p3„.
Condition (2.12b) determines the value of A at reso-
nance. The mass differences at resonance are given by
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for all A and even in vacuum. Once this is satisfied in

any model the present case completely reduces to the
two-generation case. The unitary matrix Uz then has
the following parametrization for all A: U„=R„(Pz„)Ry(Pz„)R,(P,„) (3.2)

at A =A&. A general orthogonal matrix in three di-
mensions can be written as

C1 $1

Ug = —$1C3 C1C3 $3

$1$3 —$3cl C3

(2.14)

in terms of rotations along x, y, and z axes. Imposing
the maximal-mixing condition, as given by Eq. (3.1),
fixes p, „=m./4 and pz„——n. /6 at resonance. Explicitly,

where, as before, cz ——cos(P& „},etc., and Pz „ is indePen-
dent of A given by Eq. (2.12c}. The parameters x; and

y; can be expressed in terms of p, „, pz, and the masses

p, in vacuum using the parametrization for U„given
above at A =0. Substituting them in Eq. (2.12b) we find

AR ——5zi cos(2p, ), 5zi P2
——P i—

and

C3 $3
UA A~—

$3 C3

vp vg

1/&3
C3 $3

V2 v'6

1/+3

&2/3s,

$3 C3
V2/3c,

(3.3)

5z,sin(2P, „)
tan(2Pi „)=—

where cz [sz] is, as usual, cos(P&„) [sin(Pz„}]. As in

the two-generation case [see Eq. (2.9)] this immediately
implies, using Eq. (2.5},

which are identical to the two-generation case, see, for
example, Eq. (2.8). Two of the eigenvalues m i and mz
are identical to those in the two-generation case, while

2
O Q ~2

dA
L,J = 1,2, 3 (3.4)

2= 2
m3 ——P3 (2.15)

and is totally decoupled from the other two mass eigen-
states. This constant eigenvalue can equal one of the
A-dependent eigenvalues at

31 32
A =.A~ ——

sin p,„53i+cos pi 53z
(2.16)

III. A GENUINE THREE-GENERATION CASK

However, in the limit U, &
(or U, z} being zero this cannot

be interpreted as resonance since m 3 is totally decoupled
from the rest. This would be the consequence if the
MSW mechanism is interpreted literally as correspond-
ing to maximal mixing and there exists a unique value of
A = Az at which the resonance occurs. As a result the
adiabatic condition which results in complete conversion
of v, into v„(when U,z=0) or to v, (when U, z

—0) is
identical to the one derived by Bethe.

If, on the other hand, U, 3 is nonzero but small then
the crossing at A = Az does not occur and one gets a
resonancelike behavior a second time with approximate-
ly equal mixing between the states which are crossing at
A = Az as, for example, found in the numerical study
by Kuo and Pantaleone.

It is interesting to note that if two of the masses are
exactly degenerate, then one could always choose the
basis in which U, 2 or U, 3 is zero for all A apd the condi-
tion (2.12a) is automatically satisfied, reducing the prob-
lem to the two-generation case.

that is, the maximal mixing corresponds to a situation
where all the (mass) differences attain an extremum at
resonance. In the trivial three-generation case con-
sidered earlier in Sec. II this was true only for 5,2. In
this sense the maximal mixing between all three genera-
tions is a more direct generalization of the MSW mecha-
nism of two generations. In fact, later we shall see that
this is true for any arbitrary number of generations.

As a result of the form given in (3.3) v, could resonate
with both v, and v, for the same value of A =A&.
Again using the antisymmetry of U„(dU„ /d A ), we find

dU 1

dA lJ
lJ lJ

(3.5)

at resonance. Notice that this is identical to the two-
generation case except for the fact that the factor —,

' has
been replaced by —,'. If we now demand the Uz at
A = A„diagonalize M„, we obtain the conditions

and

yi+»=-,'(xz —xz }'+2yz (3.6)

AR =—(xz+xz }—xi (3.7)

The first condition is independent of A and imposes a re-
striction on the vacuum parameters, which should be
satisfied in order to have resonance in the sense implied
by Eq. (3.3), while the second condition fixes the value of
A at resonance in terms of vacuum parameters. The an-
gle Pz„ is, in general, dePendent on A and at resonance
it is given by

We shall now consider the maximal mixing between
all three mass states in v, . This requires

yi(xz —xz }—2yzy3
tan(3Pz„) =

yz(xz x3 ) —2y, y3
(3.8)

2 2 2
Ue1 —U~2 —U, 3

——— (3.1) The (mass) differences at A = A„are given by
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(621)R = 6(3 2$3 —Plc3),

(~32)R (3~ 2)(J 1 3+3 2c3 )

+&3/2(&2$3 J 1 3

(3.9)

(3.10)

I8-

If the vacuum parameters are such that any of (b, ;J )R

is zero, then the conditions given above do not describe
a resonance any longer. This follows from the fact that
U„ is then arbitrary up to a rotation and the criteria

R

for maximal mixing are no longer meaningful.
The conditions described above can be written in

terms of vacuum masses and mixing angles. In particu-
lar,

l2

lo

2
M~

AR 2 I521P(U )lt 11+532' 1 3(U )13)l

This condition has signi6cantly different implications for
models of the neutrino masses than the corresponding
condition in the case of two generations. The numerical
value of AR is fixed by the parameters of the Sun and by
requiring the —,

' reduction of solar v, flux on the Earth.
From this Bethe estimated Az to be approximately
6&10 eV . Suppose the vacuum mixing angles are
small, then, from Eq. (3.11),

AR -—521+532~2 (3.12)

Depending on the value of 53& this allows considerable
latitude in 52, . For 532&2AR the resonance can occur
even when pz&@&, unlike in the two-generation case
where 52, &0 and of the order of AR. If both 52, and

532 are positive then each has to be & 10 eV in order
to satisfy (3.12).

In order to study the implications of (3.6), let us con-
sider the theoretically interesting case of small and
hierarchical mixing between neutrinos. Consider

U„=R„(P3,)R (P2„)R,(Pi„)

and let

p2U =e ~ p3u =e3 2

be vacuum mixing angles for e small. This hierarchy in
mixing angles is analogous to what is found in the quark
mixing. With this U, condition (3.6) can be satisfied
provided

53, ——+&2521+0(e'),
consistent with the expected pattern p& &p2 ~ p3 for
masses, but requiring p2/p3=1. Once the masses follow
this relation, all initially small mixing angles become
large at resonance.

The approximate equality of p2 and p3 is a general
feature imposed by Eq. (3.6) if the mixing angles are
small. This equality does not occur in the currently pop-
ular models based on the "seesaw" mechanism which
typically predict pz&&p3. The maximal mixing cannot
be attained in such models if mixing angles are small. In
contrast, in models with a pseudo-Dirac neutrino, ' the
two masses are nearly degenerate and maximal mixing
can be achieved.

I

4 8 l2 I6 20

FIG. 1. Variation of M; and 5;, as a function of A in the
theoretically interesting case of small but hierarchical mixing
of neutrinos. The vacuum mixing angles are P,„=e, P2„e', ——

P3„——e with @=0.3 and tu1=0. 001, iu2=10, and p3 is fixed

through the condition (3.6). The number along the A axis
should be scaled by a factor 1.02. The arrow indicates the
value of A at resonance.

(3.13)

The second term tends to mix various adiabatic states
and can make the passage of v, nonadiabatic. Using the
antisyrnmetry of U&dU„/dA we have already seen that
it can be parametrized in terms of X,. [see Eq. (3.5)].
For two generations at resonance,

»2 =1~(2~21 )R (3.14)

Figure 1 displays the neutrino (mass) (m; ) and
(mass) differences (b; ) as a function of A for @=0.3.
We have chosen @1=0.001 and pz 10.0 and fi—xed 1M3

using the condition (3.6). At the value of A = A„=10.2
given by Eq. (3.7) all b, ; attain extremum. The b,2, has
a local maximum at A =A& unlike the two-generation
case. This is obvious once the second derivative
d Mold A is evaluated at A = AR.

The resonance condition (3.6) itself is not sufficient to
ensure (almost) complete conversion of v, that passes
through resonance into v„or v, . This can happen if the
passage of v, through resonance is adiabatic. We now

try to formulate conditions for adiabatic passage in anal-

ogy with the two-generation case. Adiabatic approxima-
tion assumes that the mass eigenstates of the instantane-
ous Hamiltonian evolve independently inside the Sun.
In general, these eigenstates satisfy the evolution equa-
tion
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which describes the inverse width of the resonance layer.
The second term in Eq. (3.13) corresponds to the inverse
length of the resonance layer, (r,2) ', and the adiabatic
approximation is good if

4mE
r12 +&~12= (g )21 R

(3.15)

A, ,2 being the wavelength of oscillation at resonance. In
the three-generation case under consideration, X;~ are
given by Eq. (3.5) at resonance. These define three (two
of which are independent) characteristic distances
representing mixing of various adiabatic states at reso-
nance. Even though the resonance occurs at the same
value of A, these distances are different at the resonance.
Likewise there are three wavelengths,

IV. POSSIBLE GENERALIZATION
AND COMMENTS

~
v, &=(

~
v, &+

~
v, &+ +

~
v„&)/&n, (4.1)

where n is the number of generations, and using Eq. (2.5)
it immediately follows that

and

d(hj)R/dA =0 (4.2)

In principle the analysis we have carried out in Sec.
III can be extended to an arbitrary number of genera-
tions. Even though explicit calculations become tedious,
some general features can be easily derived. Demanding
maximal mixing of states in v, at resonance, i.e.,

4n.E
(&;, )R

(3.16) T dUq

dA " n(h j)R
for i &j . (4.3)

at resonance. We speculate that the adiabatic condition
is good if the smallest of the distances r; is much larger
than the largest of the wavelengths. A11 the terms
describing the mixing of adiabatic states in Eq. (3.13) are
expected to be suppressed under this approximation.

Noting from Eq. (3.13) that

AR 1 dp
'j '" 3

( ~ji )R, min & (3.17)

the above requirement corresponds to

(& ) , min 4m d 1 =1.067 l0oo
3 d

X (3.18)

( b 32)R / AR ——16.8 X 10

Thus the adiabatic condition is automatically satisfied.
In general, when the adiabatic conditions are satisfied,

the probability P„. can be given (when appropriatee' e

averages are performed') for v, produced in the core by

P .„=
~
(U„)„(U,)„~

where U„(U, ) defines the mixing matrix in vacuum
(core). This probability is given by the square of (U„),3
and is very small if in the core v, coincides with the
highest mass state v3.

where a= AR /E, p„E,(p, ) is the critical energy (densi-
ty) defined by Bethe, and r is the distance from the core.
In the relevant region of the Sun, d(lip)ldr varies be-
tween (0.8—2) X10 cm /g. The higher of these values
gives the number quoted in Eq. (3.18). The (6,")R
can be obtained from Eqs. (3.9) and (3.10) in any general
model and the above conditions can be checked. For ex-
ample, in Fig. 1, (532)R corresponds to the minimum of
(mass) difFerences at resonance and

The value of A at resonance is then given by

(n —1)AR = g x, —x, ,
l =2

(4.4)

ACKNOWLEDGMENTS

We thank G. Rajasekaran for suggesting the problem,
many helpful discussions, and patiently going through
the manuscript. Our thanks are also due to S. Rindani
and U. Sarkar for going through the manuscript and
many suggestions.

where x;, i =1, . . . , n denote the diagonal matrix ele-
ments of the (mass) matrix in the absence of A in flavor
basis. In addition there are (n —2) sufFiciency condi-
tions, similar to Eq. (3.6), to be satisfied. Notice that
Eqs. (4.3) and (4.4) reduce to Bethe's conditions for two
generations and to the analysis of Sec. III for three gen-
erations. In this sense, the maximal mixing of all mass
eigenstates in v, constitutes a generalized MSW mecha-
nism for arbitrary generations. This does not completely
exhaust all the possibilities since maximal mixing could
occur with a subset of mass eigenstates in v, such as the
one considered in Sec. II, for example. These cases,
however, lead to different sets of sufficiency conditions.

In conclusion, we have given analytic conditions for
resonance to occur in the case of three generations. In a
sense the cases considered here represent two extreme
situations corresponding to maximal mixing between
three and two mass eigenstates. Each of these cases re-
quires some sufficiency conditions to be satisfied by the
vacuum parameters. If they are not satisfied, one will
not get resonance in the sense implied by the MSW
mechanism for two generations. In practice, it is possi-
ble that the conditions for neither of the cases con-
sidered here may be realized exactly. Nevertheless, they
allow us to infer which of the two possibilities are ap-
proximately realized.
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