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Model for light-cone quark confinement dynamics
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In the framework of the light-cone formalism it is shown that the recent relativistic model, based
on nonstatic spin-wave functions that are approximate eigenstates of J, can be derived from a sca-
lar separable confinement interaction, both for the m. and p mesons and the N and 6 baryons.

Since the 1960s the nonrelativistic quark model (NQM)
has been successful in describing hadrons as bound states
of constituent quarks with an efFective mass mq

——m„
=md-mtt/3 moving independently in a scalar, e.g.,
harmonic-oscillator, confinement potential. ' In the 1970s
the model was improved by including a color hyperfine
(chf) interaction motivated by the short-range one-gluon
exchange of perturbative QCD generating appropriate
hadron mass splittings.

For several years now relativistic constituent-quark
models (RCQM) formulated in the light-cone Fock ap-
proach are being developed, both for mesons and
baryons, whose momentum distributions are relativistic
generalizations of the usual harmonic-oscillator model.
Recently the approach has been refined to meet the re-
quirement that such light-cone wave functions be, at least
approximately, eigenstates of J (called the Melosh case
hereafter ).

En this work we use quark confinement dynamics in
terms of a scalar separable interaction in the equation of
motion for the meson and baryon to determine their
momentum wave functions and the composition of their
spin-wave functions. We find that the dynamics allows
for wave functions of the Melosh type.

We start with the light-meson case and assume that the
and p states are dominated by the valence-

quark —antiquark configuration. A consistent framework
for a description of intrinsically relativistic light-quark
motion is provided by the light-cone formalism. With
this valence-quark dominance assumption any meson
state with momentum

in terms of the I.orentz-invariant spinor amplitudes

I& ——m u&y5v2, I2 ——u&Py'5v2, (2a)

I ) =Pl 9 )Ap, I2 =0 )PA)q (2b)

where we denote P=P„y", etc., while u~, v~ are the
light-cone spinors of quarks and antiquarks, and e„ is the
polarization vector of the p meson. The momentum dis-
tributions P„ in (1) can be obtained from the equation of
motion

(mH M)g(x—, k~)= I fdx'd k )jVQ( xkI ),
where mH is the eigenvalue and

2

M = g (k~;+m }/x;

(3)

(4)

Us = —(u tu ) )Uq( v 2U2 )

and comment on the vector qq interaction

is the invariant qq mass squared.
In spite of the common belief that quantum chromo-

dynamics is the correct theory of strong interactions we
are far from knowing the structure of the quark-quark
forces. The usual assumption has been to consider a
Lorentz-scalar confining potential together with a short-
range Fermi-Breit interaction playing the crucial role of
mass splittings. While a vector interaction preserves
chiral invariance, it is known not to confine quarks prop-
erly. ' Thus, we will consider here mainly the scalar qq
interaction

P"=(P+,P, P~) =(P +P, (mH +Pj )/P+, Pt) Uy=(u 11' u I }VU(V 21' U2 ) (6)

is described by the light-cone wave function P(x, kj, 1I, },
the probability amplitude for finding its constituents with
helicity k, and momentum p,

+ =x,P+, p~, =x;. Py+kg;,
so that g x; =1 and g k~; =0. It is invariant under all
kinematical Lorentz transformations that contain the
I.orentz boost along the three-direction.

In general, the ground states of the vr and p mesons, P,
may be expanded,

Q(x, k, A, )= g $„(xk)I„(x, ki),, , ,

n=1

only briefly.
Following Ref. 6 we make a separable ansatz

v =U"'f(M')f(M') .

As a consequence, Eq. (3) admits solutions P with
momentum distributions

(M ) =cHf (M )/(m —M )

For the scalar potential, the coeScients c„obey the
linear equations
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cH U(0)(R(2)cH+R(0)cH)Ci — S H Cl H C2

c H U(0)(R (0)c H +R (2)cH )C2 — g H C) H C2

dxd ktf (M )

RH' 16m x 1 —x mH —M

x (1—x)mH+m
X q

(m~mH)
(10)

is neglected, i.e., p ~x PH. A typical term U~I &
for the

pion involves

g u, u', vzv2IP =m u, (P ', +m~)y, (P ', —m, )v,

= —m u&(x'&p+m )(m +x2p)y&v2

= —(x',x2m„+m )I, —m m I2 .

Since Eqs. (9) for the pion and p meson are identical for
the scalar interaction (5), as expected, there is no mass
splitting, i.e., m =m . The resulting solution
x =x—:xisgivenby

U(0)R (0) 1 U(0)R (2)
S S
U(o)R (2) U(o)R (o)

S S

C)

C2

in conjunction with the determinantal constraint
Us

' ——(R' '+R' ') ' &0. [Note that c, = —c2 leads to
Us(0) ——(R' ' —R"')&0 and is thereby excluded. ] Now,
we use (11), (8), and (1) to obtain

Equation (9) follows from (3) when the terms UsI' that
occur in (3) are expanded in terms of the independent in-
variants I„. For (10) to hold, the relative momentum q'
of the p in the spin sums

g u'u '=p '+m~, g v'v '=p ' —m~

This nonstatic-relativistic spin-wave function g is identi-
cal to the Melosh solution studied elsewhere by one of
us. Thus the separable ansatz (7) provides a dynamical
rationale for such wave-function models. However, the
Melosh states are degenerate because the two invariants
in (1) imply a doubling of eigenstates.

Had we now chosen the vector confining interaction (6)
instead of (5), the resulting linear equations for the rr and

p coefficients

c"=4U' '(R' 'c +R' 'c")
V 77. Ci 7J' C2

2U(0)(R (0) ir +R (2) rr
)2

——
V 77. C

1 71 C2

c~) 2Up——'(R' 'ctt'+R' 'ct2), ct2 ——0

would lead to unphysical constraints on the strength
Uv '. A separable form of the vector interaction as a rela-
tivistic model of confinement seems to be ruled out being
in contradiction with the Melosh solution, which is
known to give reasonable descriptions of the low- and
high-energy hadron properties.

The nucleon and 5 cases can be analyzed in a similar
way. It is easy to show that the corresponding equations
of motion for X and 5 are identical and lead to the
Melosh solutions of Ref. 11 when the separable scalar
confining interaction has three-body character,

Us ——Us 'f(M )f(M' )(u&u &)(u2u2)(u3 3) .

We conclude that a class of separable relativistic
confinement interactions leads to wave-function solu-
tions, which are a product of a potential-dependent
momentum distribution and a Lorentz-invariant spinor
amplitude. The latter is the nonstatic spin-wave function
used in recent phenomenological analyses of low- and
high-Q hadron structure. Such models provide a basis
for more refined studies, which would include a short-
range vector interaction for mass splittings.

ttt (x,kt, A. )=ttp(x, kt)X (x,k~, A, ),
f(M )

m —M

I (x,k, A, )=I, +I

(12)
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