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The Bethe-Salpeter (BS) equation for a qqq system is formulated in the null-plane approximation
(NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated for-
malism developed earlier for qq systems. The confinement kernel is assumed vector type (y„"'y„' ')

for both qq and qq pairs, with identical harmonic structures, and with the spring constant propor-
tional, among other things, to the running coupling constant a, (for an explicit QCD motivation).
The harmonic kernel is given a suitable Lorentz-invariant definition [not Cl~54(q}], which is amen-
able to NPA reduction in a covariant form. The reduced qqq equation in NPA is solved algebrai-
cally in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2, 1) algebra
interlinked with S3 symmetry. The results on the nonstrange baryon mass spectra agree well with
the data all the way up to N =6, thus confirming the asymptotic prediction M-N characteris-
tic of vector confinement in HO form. There are no extra parameters beyond the three basic con-
stants (mo, CD, m„d) which were earlier found to provide excellent fits to meson spectra (qq3.

I. INTRODUCTION AND SUMMARY

The two- and three-quark problems for hadron dy-
namics are perhaps more closely related st this subhad-
ronic (quark) level than are the corresponding two- and
three-body problems at the successively outer (nuclear,
atomic) levels of compositeness. For this reason (whose
source can be traced to color and confinement) the suc-
cess of any form of quark dynamics must be judged by
its simultaneous performances on both fronts (qq and
qqq), and this must be particularly true of QCD which is
believed to be the natural language of strong interac-
tions. However, pending its formal capacity to account
for confinement in a sufficiently realistic and practical
form, any hadronic application of a QCD-oriented dy-
namics must continue to rely heavily on an "effective"
confinement program; and the close physical connection
between qq and qqq systems offers a more comprehensive
testing ground for any such confinement ansatz than
would be the case if these systems were to be considered
independently.

There is good evidence of rich dividends from such
simultaneous studies in the past, based on the
Schrodinger equation' or its relativistic adaptations.
The usual wisdom has been to consider an effective sca-
lar confinement for both qq and qq pair interactions,
with a short-range Fermi-Breit term playing the crucial
role of mass splittings. ' There are two difficulties with
this kind of approach. (i) While a Schrodinger form of
dynamics is justified for heavy-quark systems, its adapta-
tion to light-quark systems, albeit with relativistic adap-
tations such as the Todorov equation or similar vari-
ants, ' would be less appealing than a more natural
dynamical framework such as the Bethe-Salpeter equa-

tion, especially if one has to live with such an
"effective" form of dynamics until such time as a practi-
cal form of the confinement emerges from the QCD La-
grangian. (ii) Secondly a "scalar" confinement changes
sign as between qq and qq pairs, unlike a "vector"
confinement which preserves the same sign, and is
therefore unsuitable for an integrated approach to both
qq and qqq systems at the same time. A Bethe-Salpeter
(BS) framework for qq and qqq systems with a vector
confinement would seem to meet both these objections a
prlorL

Now the BS equation at the quark level has had a long
history. 9'o In particular, its O(4)-like character yields
the hyperspherical angular momentum K, which turns
out to be "one quantum number too many" for a mean-
ingful contact with the data" which continues to respect
an SU(6}XO(3)-like classification' after two decades of
quark physics. The instantaneous approximation (IA)
was applied in this context, ' but applied mostly to
heavy quarkonia (where its need is limited), and with
"scalar" confinement.

Keeping these issues in view, a somewhat less ortho-
dox, QCD-motivated, BS formalism with vector
confinement (kernel proportional to the usual —,'1(,

&
—,'A.z

for color, but y„'"y„' ' for spin) was proposed some years
ago' for an integrated understanding of both qq and qqq
spectra on the one hand' and applications to various
transition amplitudes involving hadron-hadron and
photon-hadron couplings on the other. ' This required
a two tier approa-ch: viz. , (a} a three-dimensional (IA)
reduction of the BSE's for qq and qqq states (for contact
with spectroscopic data) which suppresses the role of
virtual qq, etc. , effects (or higher Fock states in a three-
dimensional description, much like Tamm-Dancoff am-
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Then we effect a three-dimensional reduction through
the null-plane approximation (NPA), thus automatical-
ly ensuring "null-plane covariance" of the three-
dimensional BSE. [It may be noted that (1.1) is not the
usual four-diinensional HO kernel' Cl 5 (p —p'). ] To
overcome limitations (b) and (c) which are of a physical
nature, an ansatz has been proposed on the flavor varia-
tion of the spring constant, '

(b) co~~ =4@,zcopa„p, z rn, mz(m, +m——z)
2 2 —1 (1.2)

and a corresponding modification on the NPA form (r )

of the. HO ke, rnel,

(c) r ~r (1+Apmlwzr ) Cpcpp (1.3)

where r must be read covariantly in the NPA
language (viz. , the third component A3 of any NPA
three-vector A should read 3 3

= 3 + M/P+ ). The an-
satz (1.2), involving the running coupling constant a„
offers an explicit @CD motivation for the entire kernel,
and the postulated constancy of cop (=158 MeV) over all
flavors checks extremely well with the data" on all
meson sectors (qq, Qq, QQ), in conjunction with (1.3).
The additive constant Cp (=0.296) in (1.3) plays its in-
tended role by filling the ZPE shortfalls rather precisely
for all quarkonia. ' Finally the smallness of the con-
stant Ap (=0.0283) in (1.3) ensures a smooth transition
from a (continued) harmonic confinement in uds sectors
(small m

& m z ) to an effectively linear one for the heaviest

plitudes developed in the 1950s), and (b) a prior recon-
struction of the four di-mensional BS wave function
(which would help identify the hadron quark vertex
function) to restore the neglected qq, etc., effects on
different transition amplitudes perturbatively through
Feynman diagrams. '

The fact that such an approach yielded a fairly good
overlap with the spectral data' ' would seem to suggest
that the effect of higher Fock states' on the spectral cal-
culations is presumably not large, thus a fortiori justify-
ing their perturbative inclusion for the evaluation of cer-
tain transition amplitudes (which also turned out to be
in fair agreement' ' with several data). In retrospect,
however, this formulation had certain drawbacks: (a) its
reliance on the IA limited its applicability to slow-
moving hadrons; (b) the harmonic-oscillator (HO) ker-
nels gave too-large spacings for cc and bb systems to
match their data; and (c) the vacuum structures were ill

defined, leading to varying amounts of zero-point-energy
(ZPE) shortfalls in the predicted masses. '

These shortcomings have since been removed ' ' in
two respects. The formal limitation (a) arising from the
IA was overcome through the following I.orentz-
inUariant generalization of the scalar function V
(coefficient of y„"'y„'') (Ref. 14), representing the HO
kernel for a qq or qq pair interaction in the full four-
dimensional BSE:

3

(q
~

V
~

q') =3mcpqz lim [m +(q„—q„') ]m~0 Qpyg

bb sector (large m, mz ), and has Played a major role in

unifying the spectroscopic data on all the sectors. '

This experimental success on the qq front of the above
structure of the BS dynamics has led us to examine its
effect on the (dual) qqq system, in keeping with the inter-
linked nature of the physics that governs the two sys-
tems. In this paper we restrict our attention to equal-
mass kinematics (mi ——mz=m3) only, which amounts
essentially to the ud sector. Furthermore, the unlikeli-
hood of data on QQQ systems in the foreseeable future
warrants the assumption Ap=0 in (1.3) at the outset.
The central question is whether or not the qqq problem
of ud quarks with Uector interaction for qq pairs can be
understood in terms of the three basic constants (cop Cp,
and m„d ) already determined from the meson spectra, '

so that no independent freedom of parametrization exists
for the qqq system. Our results strongly suggest that
this is indeed the case, thus bearing out the expectation
that a parallel treatment of the qq and qqq within a com-
mon BS framework gives consistent results.

The paper is organized as follows. In Sec. II we rap-
idly recapitulate the main sequence of steps leading from
the four-dimensional BSE for a qqq system to a three-
dimensional covariant NPA form, Eq. (2.22),
representing the focal theme of this paper. Section III
describes an algebraic solution of Eq. (2.22), first by re-
ducing it to the form (3.16) which formally resembles a
six-dimensional HO equation in two independent inter-
nal variables (g, g) (see Sec. III) but has its different
terms appearing with nonlinearly (M, N) dependent
coefficients, where M is the baryon mass and N is the to-
tal HO quantum number in the six-dimensional space
(g, zI ). This is achieved through a generous use of the
techniques of SO(2, 1) algebra in conjunction with S3
symmetry, which characterizes three identical particles,
as outlined in Appendix A. The final form of the qqq
equation, Eq. (3.29), after the inclusion of one-gluon-
exchange effects (summarized in Appendix B), represents
an algebraic solution in the form Fs(M)=%+3, where

Fz is a known, nonlinear, function of (M, N). Section IV
gives a limited comparison with a representative collec-
tion of experimental data, " directly in terms of the
above form of the solution (without attempting to invert
it). The possibility of mixing between different qqq states
arising from the vector nature of the confinement (as dis-
tinct frotn one-gluon-exchange effects ) is indicated in
Appendix C through the structure of certain spin-
dependent correction terms that appear in this model
and illustrated for the case of P'»(1440) and P",i(1710)
mixing. Apart from good agreement with the data for
most individual cases, the comparison also shows strong
support from the qqq data trends (up to %=6) for the
asymptotic prediction M-N (as with light qq sys-
tems '), a feature that bears directly on vector
confinement for both systems.

II. COVARIANT qqq EQUATION IN NPA FORM

The BSE for a qqq system with pairwise qq interaction
under vector (y„'"y„' ') confinement was first written
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down in I (Ref. 14) and reduced to a three-dimensional
form in the instantaneous approximation (IA). After a
Lorentz-invariant generalization for the harmonic ker-
nel, Eq. (1.1), was achieved, a corresponding derivation
of a covariant three-dimensional form in the null-plane
approximation (NPA) was given in II (Ref. 20) in close

I

parallel to the qq treatment. While referring the in-
terested reader to the details in I and II, including most
notations, we recapitulate for easy reference the main se-
quence of steps leading to the final form of the covariant
NPA equation for qqq. The four-dimensional BSE for
m1 ——m 2

——m 3 =—mq reads after a Gordon reduction as'

~i&2~3q'(pipzp3)= g ———.~3(2~} ' f d'qiz(qiz I
V

I qiz &T»q'(p'pzp3»
123 3

P1,2 12—q12 P 1,2 12—q 12

P3 P1 P2 = 12

12 ( 12 ('q12+q12 ~l + 2 )q12'q12+ 12(~2 +1 }('q 12 'q 12 )+~1 +2 ('f 12 'q12 )(qtz q12

b, ;=m~+p; (i =1,2, 3) .

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

For any four-vector A„, the null-plane components are

A ~ =—A*=AD+A„Ai= A =( A„, Ay ) . (2.6)

The NPA form 1( of the BS wave function ql is defined
as"

and so on. Thus on carrying out the limit m ~0 after m
differentiation in (1.1), the function V= Viz reduces to
the form

V12 V( q1 2 q12 }

f(plpzp3) = f —,'dq, z—,'dp3 %(p lpzp3 ), (2.7) =—'co (2n') Viz+ z
5 (q» —q»)

0

600
(2.14)

P3 ———P1 (2.8)

where the cyclic symmetry of dq;. dpk ensures the valid-
ity of (2.7) for all the three terms of (2.1). To specify T,z

and V = V, 2 under NPA conditions, we make the specta-
tor assumption' for the "tirnelike" component of p~3 in
NPA language:

after employing the replacement (1.3), where all three-
vectors must be read in the sense A 3 =MA+ /P+ for
the longitudinal component. The form (2.14) for Viz
now permits a rapid simplification of Eq. (2.1) when the
NPA ansatz (2.7) for the wave function is introduced,
remembering that L-invariant element:

In the NPA limit, the relative momentum q =q12 be-
comes

d q'=d qidq+ ,'dq' =P+M—'dq' ,'dq'—(2.15)

q = q+L+, L+—=(m +qi)/p, p
—2 —2 2 2 (2.9)

where the Lorentz factor L+ reduces, on the mass shell
of the subsystem (12), to

L 12 12/MI2& M12 12 12 ( 12} (2.10)

A consistent use of (2.8) under
I q+ I ((Miz permits a

deduction of a more symmetric form of L 1+2.

Thus the integration on the right-hand side (RHS) over
d q', 2 gives

f d q', 2T,2V,214('= D,zg, — (2.16)

where D,2 is the differential operator

C0
D 12

——M, z V,z+. 2 +Q, z
—8J,2 S,z+ 12

C00

L+:L,+2 =L 3+, Lz+3—P+ /M——, —— (2.11) 21 (o, ——crz) P,2XV, 2 (2.17}

which is consistent with the IA result' (P+ =M) but is
no longer restricted to a slowly moving baryon. As in
the qq case, the Lorentz factor L+ P+ /M allows on——e
to define any three-vector A covariantly under NPA as
( Ai, A 3 ), where A 3

——A +M /P+, so that the various
four-momenta appearing in Viz, Eq. (1.1), and Tlz, Eq.
(2.4), can be simplified with the identifications

with

and

Q12 =4'q12V12+ 8q12' V12+ 62 2

P, z
——P, +Pz ———P3 (in the c.m. frame) .

(2.18)

(2.19)

(P~iz) = —Miz ——4M —p3,

(q„—q„') =(q —q')

0.„A„B =cr. A&(B,

(2.12)

(2.13)

Finally, the integration over dq, z on the RHS of (2.1}
yields the characteristic NPA denominator function D 1+2

for the (12) pair,

2n.i(D,+2) '= f ,'dq»h, 'b, z ', — (2.20)



37 NULL-PLANE FORMULATION OF BETHE-SALPETER qqq. . . 1271

leading to

D,+~ =2P,+~(m +qii —,'M—+,'p—3+R,i), (2.21)

'(('(Pip2P3) Q + p~qqD120(Pip2P3) &

i2 Di+2' " (2.22)

where R&2 is a small correction term specified later in

Eq. (3.15). Collecting all these results gives rise to the
NPA equation for qqq in the covariant form

Here (R ) is the S3-symmetrized form of the small R,"
term in (2.21), with a balance 6R; which is neglected
hereafter, while (R ) is specified in Eq. (3.15).

When (3.4) is substituted in Eq. (2.22), one can identify
two distinct parts, each separately S3 symmetric, viz. , (i)
the main part, proportional to D, ', and (ii) a correction
term proportional to D, , when the three different
pieces D; on the RHS of (2.22) are brought together.
The coefficients of D, ' sum up to

where the Lorentz factors L,~+ are given by (2.11).

III. SOLUTION OF THE qqq EQUATION (2.22)

Co
D, = ,'M'-(V~&+V'„)+, (-', M'+6/'+6q')

COO

+Qii —8J S+ 18 (3.8)
Equation (2.22) represents the starting point of this in-

vestigation of qqq spectra, where the spring constant Nqq

is defined by Eq. (1.2), and Co stands for the effect of the
vacuum structure. These inputs have the same values as
in the corresponding qq investigation, ' viz. ,

coo ——158 MeV, Co ——0.296,

m =270 MeV,
(3.1)

while the structure of a, is also in close parallel to the

qq pattern, ' but commensurate with a three-body dy-
narnics for confinement, viz. ,

—1

12m 9mq
a, (3m )= ln (3.2)

A
A=250 MeV .

V3g= Pi —Pz, 3' = —2P i+pi+ p3 (3.3)

However, we shall now employ a considerably more
refined technique than attempted earlier' ' by taking a
more conscious account of S3 symmetry in respect to the
denominator functions D;~+ as well as the operators Q,~

in Eqs. (2.18)—(2.21). The basic strategy lies first in ex-
pressing the D'j functions in terms of an S3-symmetric
function D„plus a balance 6;& which can be taken per-
turbatively. (This is very closely related to the corre-
sponding method of a "large-n expansion, " n=6, in a
hyperspherical coordinate basis, though differing great-
ly in details. ) Thus we have

D,, '=D, '+D, 'h, ,D, ', (3.4)

D = (
~

g + ii g +mq 9i M + (—R ) ) (3.5)

4M 1 2 2 &3
iz, i3= (4' —9 )— 4'''q+ iz, ii (3.6)

~23 ~12 ~31 (3.7)

The strong-Coulomb term is treated perturbatively,
again as in the qq case, ' with a, (M) substituting for
a, (3m~). This term does not yet appear in the kernel of
Eq. (2.22), but can be included in a simple way through
an appropriate addition to the final results, Eq. (3.22),
leading to Eq. (3.29); see I.

For a reduction of Eq. (2.22) in the overall c.m. frame
(P+ ——M) it is necessary to use the relative coordinates f
and g defined by'

in conformity with a very similar structure obtained in I,
revealing an explicit J S structure for the spin depen-
dence. The purely momentum-dependent effects are
contained in

Qa =Q(+Q„+Qg„,

Qg =4)'Br+8/ 8~+6,

Qq ——4g Bv+8rl 8„+6,

(3 9)

(3.10)

Q,„=4g a,+4~ a„+8g ~a, a„+6. (3.1 1)

The b, ; terms in (3.4) similarly add up to another
operator D, hH, where

(3.12)

& "'=4(g' —~')(a,' —a'„)+16' ~a, a„, (3.13)

,', Q,"'= ,'(g—' q')(g —a,—q—a„) g~—(q a, +—g a„)

+(g' —3''g gB(.B„—(g iI)'(3&'„+Bg)

+ —,'(g —il )[g B„+(il —2g )B~],

—,', S' '= ——,'(g —g ) ——,'(2g g)—:8M (R ) .

(3.14)

(3.15)

Equation (3.15) now formally specifies (R ) of (3.5). Fi-
nally, the spin-dependent correction terms, SDT, are list-
ed in Appendix C. The "master" equation (2.22) now
reads

D, P= ,'co (Do+D, 'hH—)Q . (3.16)

It may be checked that each of the operators making
up hH is separately S3 invariant. These quantities
represent important corrections, but as they stand they
offer little hope of solution for Eq. (3.16). To this end
we adopt a strategy similar to, but more refined than,
that employed in I, viz. , to express the major effects of
AH in terms of the principal quantum number N in a
six-dimensional HO basis, after noting that the main
terms of D, and Do are indeed quadratic in (g, g) and
their derivatives. Such a reduction requires an extensive
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use of the techniques of SO(2, 1) algebra, in conjunc-
tion with S3 symmetry, involving successively quadratic,
biquadratic, and sextic combinations of the HO opera-
tors a&, a„, and their Hermitian conjugates. These are
brieAy outlined in Appendix A, yielding the following
approximate eigenvalues for the different operators of
hH in a six-dimensional HO representation character-
ized by the total quantum number N =N&+N„:

QN = ', cr~ —2—(N+3) —18—2r~,

KQ =20 ~ —4i(2)

(3.17)

(3.18)

o tq
——2(N +3 ) —8u ( u + 1 ), rtq , N +———'c—r~ —2,

(3.21)u(u+1)= —,
' (even N), 2 (odd N) .

p is a dimensional quantity, ' Eq. (3.24), which governs
the momentum scales of (g, q)) in accordance with the
HO wave function f, Eq. (3.26).

A more compact treatment than that given in Appen-
dix A is possible with a complex representation of S3
symmetry, which was recently employed for some q q
systems, but the meaning of the total quantum number
N ( =N&+N„) is less transparent in terms of its complex
constituents (N„N,') than in terms of the real (N&, N„}
representation, and, therefore, is not yet suitable for con-
tact with data for excited baryon states (which are tradi-
tionally classified in the real representation).

With the substitutions (3.17)—(3.21} for the various
operators, anticipating that N retains its "diagonal"
significance for the reduced Eq. (3.16), these correction
terms may be treated as constants in the N representa-
tion, after a similar substitution has been made for the
factor D, ' multiplying AH; see below in Eq. (3.27). Un-

der these conditions Eq. (3.16) takes the form of a stan-
dard six-dimensional HO whose solution may be ex-
pressed as'

Ho+5FHo =N&+N„+ 3=N +3,
P yeFHo= —,'M —mq —(R )~

(3.22)

+ —,'to [MCotoo +—', M '(Qg —8J.S+ 18)],

(3.23)

qq p p ~ P =3 qqVB (3.24)

16P ye5FHo ——2toqq Q~ ———', M K~ + 2 S~2 2 l 2 (2) 4 2 (2) (2)

S COp

(3.25)

The physical significance of P is most succinctly seen
from the form of the ground-state wave function

No=exp[ ——,'p '(k'+n')] . (3.26)

Finally the value of (D, ') in the correction term 5F

S~~'= —6P (o~+.2r~)=128M (R )~, (3.19)

p Qtq' 2(N+——3)(o~+6rtq+24) —
4, Notq . (3.20)

Here

(Do ) =—', M( —,'M —m —(R )z) . (3.28)

As for the N=O cases (N, A), the smaller values of (Do )
tend to overestimate the exponential factor, necessitating
more careful considerations, which effectively amounts
to its replacement by its zeroth-order and first-order
terms in its expansion for N and 6 cases, respectively.
This completes the solution of (3.16) in the form (3.22).

For contact with the data on baryon spectra, Eq.
(3.22) must be augmented by the effect of one-gluon ex-

change, including the Fermi-Breit term. As explained
in the original formulation, ' and substantiated for in
the qq systems with the present refinements, ' it is ade-
quate to consider this effect perturbatively for light (uds)
hadrons only. The procedure, which has been described
in I, consists of adding this extra contribution to the
LHS of (3.22} which would now read

Fq(M) =FHO+5FHo+Fsc+5F„a =N+3, (3.29)

where the two extra terms represent the strong Coulomb
and Fermi-Breit contributions, respectively, in the same
relative normalization as defines the principal term FHp.
This gives, for the Coulomb term in coordinate space,

Fsc=P ya X —,'M asc(M, 2r, z' ),
123

(3.30)

where M f2 is given by (2.12) as an operator in coordinate
space, and asc is the strong-Coulomb coupling constant
given by (3.2), but with 9mq ~M . As to the shorter-
range Fermi-Breit corrections, their full effect had been
considered in I and found to be small. However, there
are certain formal differences between the complete ex-
pressions' based on our Gordon reduction method and
the traditional structure based on reduction in terms of
large and small components of the wave function. Be-
cause of their intrinsic smallness we have considered
here only the terms -cr;.crj which agree exactly for
both methods of reduction. These give

~FBB 8 7B I BBCX Bl B2~ ~ l2I)
—2 —2 —1 4m

123

(3.31)

Evaluation of (3.30) and (3.31) must be made in the
coordinate-space representations of the qqq wave func-
tions whose momentum-space form is illustrated in Eq.
(3.26) for the ground state (N=O). The higher (N, L)
wave functions, including complete normalizations for

is governed by the following considerations. First we
note that this term is in general quite small ( 5 10%) and
its relative effect decreases rapidly with M. Now, for
large M, the operator D, is far away from its singulari-
ties and it should be reasonable, as a first approximation,
to replace its variable part g +7ri by (g +ql )
=p2(N+3), leading to the form (D, ) '. A more accu-
rate formula, which holds all the way down to N= 1, is
given by

(D, ') = —(Do) 'exp[ —', MP (N+3}(DO) '], (3.27)

where
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arbitrary excitations, are described in an earlier paper, '

the results of which are used in Appendix B for a short
listing of Coulomb contributions from the relevant types
(56,70) of SU(6}X O(3) states needed for the present
analysis. The FB term (3.31), in particular, can be com-
pactly represented as

3/232
fiF~s= 2&——'ra'M '&sc [4S(S+1)—9]W~L,

IV. RESULTS AND DISCUSSION

As noted at the outset our object in this paper is not
so much to make a detailed comparison with the data as
to provide a more consistent relativistic framework for
an integrated view of both qq and qqq systems, with com-
mon values employed for the basic constants
(coo, Co, m~). To that end we shall consider a sufficiently
representative sample of baryon states, which should
provide a fair number of "check points" to warrant
meaningful conclusions about the theoretical predictions
vis-a-vis the experimental trends, without going into too
many fine-grained details. These presumably require an
elaborate mixing program for states, as has been success-
fully carried out in the past, ' using the dynamical mech-
anism of one-gluon exchange. We have little to add to
this aspect of the problem beyond the assertion that the
same facility formally exists within our BS framework,
and indeed was found to be quite important for heavy
quarkonia ' where the mixing of several radial states via
the Coloumb term was crucial ' for a successful fit to
these types of data. " Apart from the Coulomb term,
the present formalism also facilitates mixing between
states due to several types of spin-dependent corrections
arising froin the uector

confinement

(as distinct from the
short-range effects of one-gluon exchange). These are
listed as the SDT's of hH, in Appendix C. However, in
keeping with the basic objective of not putting too much
emphasis on details in this paper, we have not made any
elaborate use of these terms, except to illustrate their
possibilities with the help of one example: the mixing of
P'„(1440) and P", , (1710) as members of (56, 0&+) and

(70,0+) supermultiplets, respectively (see below for re-
sults).

Before presenting the numerical results it is useful to
make some general comments on the specific role of vec-
tor confinement, apart from the crucial one of providing
the same sign for qq and qq interactions (unlike scalar
confinement). First, the asymptotic behavior of M with
respect to N is easily deduced, after necessary substitu-
tions in Eq. (3.23}, to be M -N, a result which is rem-
iniscent of a linear potential operative within a nonrela-
tivistic (NR) (Schrodinger) framework, even though we
have employed a harmonic kernel (within a BS frame-
work). This would seem to suggest that, to the extent

(3.32)

where S =—,
' or —,

' for d or q states, ' respectively, and

8'&L is a geometrical weight factor depending on the
(N, L) values of the state only. It is giveri by formula
(815}of Appendix B.

that the present HO formalism fits the data for qq sys-
tems ' as well as for qqq systems (as we see below), a cor-
responding BS treatment with an effectively linear kernel
for such light-quark systems would give too-narrow
spacings between successive ¹xcitations and, therefore,
is in disagreement with observations, as was indeed
found sometime ago. Further, within the same BS
framework, a scalar confinement with a harmonic BS
kernel can be shown to give an asymptotic behavior '

M-N and a still smaller power with a linear kernel.
The same results are of course true of qq systems as
well. ' ' ' Second, vector confinement produces some
characteristic momentum and spin-dependent terms, as
may be seen from Eq. (3.23) in the form of Qz and 2J S,
with additional diagonal corrections arising from 5FHO,
Eq. (3.25). [Spin-dependent corrections (nondiagonal)
contributing to mixing between states of different N, L, S
values are listed in Appendix C.]

Table I depicts the results for the mass spectra of a
representative cross section of baryon states (non-
strange), and may be regarded as the qqq analog of the
corresponding results ' for a wider list of meson states,
within a common QCD-oriented framework with identi-
cal parameters (3.1). To bring out the role of the Q~,
2J S, etc. , terms more naturally, especially for higher-N
states, it is useful to employ the same artifice as in ear-
lier publications, ' ' viz. , to list the Fz values of the
LHS of Eq. (3.29) for the experimental masses" of the
baryons concerned and check against their "theoretical"
values N+3 on the RHS. And since the vacuum struc-
ture is now hopefully simulated by the "known" con-
stant Co (determined from qq spectra '), a comparison of
the two columns will offer a direct test of whether, and
to what extent, the zero-point-energy shortfalls' ' for
qqq states are filled in this (new) form of the theory.
(They just get filled for qq systems. ')

Table I does indeed show that the large ZPE shortfall
of as much as two units (which had plagued the earlier
formulation' } is almost completely filled up, as seen
from a comparison of the theoretically expected values
N+ 3 of Fs(M}. Considering the fact that there are no
adjustable parameters, this feature must be regarded as a
nontrivial test of the relativistic three-body equation
(3.16) which, despite its superficial similarity to a six-
dirnensional HO form, goes far beyond the Schrodinger
description, in view of the rich (M, N) dependence of the
various terms. These features are somewhat akin to
those of the Todorov equation or allied formulations,
but differ in theoretical assumptions as well as forrnula-
tion details.

Next, the unit step variations of F-(M) with N that are
revealed through this comparison suggest that F(M) is
almost an SU(6) X SU(3)Ho-invariant quantity, depending
only on the total quantum number N, as expected from
the theory. The relatively small scatters that are visible
in the N=2 region are mainly from states which are
most likely to be affected by mixing between "like"
states in 56 and 70, as is known to be important from
earlier studies, ' and facilitated by the "SDT's" of hH in
this paper. For the relatively unmixed states we do find
that the scatter is indeed small, thus collectively reveal-
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TABLE I. Baryon mass spectra: test of F&(M) =N +3 against data (Ref. 8).

State

N(938)
6(1236)

D 1 3 ( 1520)
D 1 s(1675)
P",

,(1~)
P3'3(1600)

F1s(1680)
P 1'1(1710)
P 13(1720)
P 3'3(1920)

F3s (1905)
F37(1950)
F17(1990)
G17(2190)
G 19(2250)
H 19(2250)

H3 11(2420)
I1 11(2600)

E3 1s(2950)

SU(6): NJLS

(56): 01/201/2
(56): 03/203/2

13/211/2
(70): 1s/213/2
( 56, 70): 21/201/2

( 56' 70 ) 23/203 /2

(56): 2s/221/2
(70): 21/201/2

23/203/2

( 56' 70) 23/203/2

(56,70): 2s/223/2

( 56): 27/223/2
(70): 27/223/2

37/231/2

39/233/2

49/241/2

411/243/2

511/251/2
( 56): 61s/263/2

FHO +5FHO

1.769
1.920
2.968
2.865
3.247
3.276
3.876
4.126
3.714
4.452
4.462
4.199
4.362
5.513
5.168
5.883
6.075
7.308
8.134

Fsc+&FFB

1.203
0.899
1.011
0.933
1.123
0.872
1.136
0.895
0.744
0.834
0.817
0.829
0.878
0.855
0.831
0.763
0.753
0.771
0.733

Total Fq

2.972
2.819
3.979
3.798
4.370'
4.148'
5.012
5.021'
4.488'
5.286'
5 279'
5.028
5.240
6.368
5.999
6.646
6.828
8.079
8.846

Expected (N +3)

'Possibly mixtures of 70,56 states.

ing the role of the "diagonal" correction terms Qiv, 2J S
and the pieces of bH. This is particularly manifest when
one compares the pairs

N5, D)3,D)5, F)5)F37, H)9H3 )), (4.1)

the near equality of the Fz values for these pair implying
that their huge (mass) differences are actually "under-
stood" in this model.

To illustrate the possibilities of 56, 70 mixing within
this model, Appendix C also sketches a calculation of
this effect, employing the L =0 term of the SDT, for one
of the "bad" pairs in Table I, viz. , PIi(1440) and

Pi'i(1710). The resulting corrections 5F to their unmixed

Ftt values are shown in (C9), the inclusion of which leads
to the following corrected values (F ) for these states:

F(Pii )=5.045, F(Pi'1 )=4.955, (4.2)

in excellent agreement with the "expected" value of
5.00.

For a more direct comparison of the mass predictions
with the data, and also to test the sensitivity of the func-
tion Fs(M) to the actual mass M, we have also provided
a second table (Table II) depicting the predicted masses
through a numerical inversion of the equation
F (M) =N +3 for the "appropriate" values of N. This
has been rapidly facilitated by the observation that the
M dependence of F (M) is of the form

~3/2+ ~—3/2+b ~1/2+g ~—1/2

where (ao, a, ) pertain to the confinement interaction and

(bo, b i ) to the one-gluon-exchange effect (Coulomb
+Fermi-Breit). The comparison between the theoretical
and experimental masses does indeed show a good over-
lap for most cases, except for the cases labeled with (a)
or (b} which have already been recognized at the F~(M)

TABLE II. Theoretical values of the masses (in MeV units)

obtained from Fit(M}=N+3 [Eq. (3.29)] compared with the
experimental data (Ref. 8) for the various baryon states.
5M =M(th) —M(expt); hF(M) =F(M) —N —3 is deduced from
Table I.

State

D
D1s
P11

F1s
pit11

F3s
F
F17

G19
H19
H3, 11

+3, 1S

M(expt)

938
1236
1520
1675
1440

1600
1680
1710

1720
1920
1905
1950
1990
2190
2250
2250
2420
2600
2950

M(th)

944
1264
1524
1707
1551'
1432
1737'
1678
1706'
1718
1804'
1872'
1858'
1945
1950
2128
2250
2304
2447
2587
2973

+6
+28
+4

+ 32
+ 110

—8

+ 137
—2
—4
+8

+84
—48
—47
—5

—40
—62
+ 0.2

+ 54
+ 27
—13
+23

EF(M)

—0.028
—0.181
—0.021
—0.202
—0.630
+ 0.045
—0.852
+ 0.012
+ 0.021
—0.045
—0.512
+ 0.286
+ 0.279
+ 0.028
+ 0.240
+ 0.368
—0.001
—0.354
—0.172
+ 0.079
—0.154

'Values obtained without taking mixing into account (see text).
~Values obtained after taking mixing into account (see text) by
using the corrected values (F) of F&(M) from Eq. (4.2).

level, Table I, to be affected by "mixing" within N-super
multiplets. The sensitivity of F(M} to M is reflected in
the comparison of the columns 5M =M(th) —M(expt) vs
AF (M) =F(M) N —3, d—educed from Table I. This
comparison suggests that the F(M) representation is
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conservative enough to "magnify, " if anything, the actu-
al extent of the difference between the experimental and
predicted masses. Further, for the P „(1440) and
P'«(1710) states, their mixing has already been found to
result in a dramatic improvement in their F(M) values,
as evidenced by Eq. (4.2). The same is reflected in the
actual mass predictions as well as 5M in Table II, before
(a) and after (b) their mixing is taken into account.

For a more global view of these mass patterns, mani-
festing through their F& values, we have plotted them in

Fig. 1 as functions of N. The straight line with unit
slope is seen to pass through most of these points with
very little scatter, all the way up to N=6, thus suggest-
ing strongly that the asymptotic prediction M -N is
rather well satisfied by the data. This may be regarded
as an observational test of the vector confinement which
predicts this feature within the BS framework. A similar
formulation with unequal-mass kinematics and corre-
sponding results on (A, X) states are under preparation.

We conclude with a few remarks on the two unrelated
issues of (i) Gordon reduction prior to the NPA and (ii)
vector versus scalar confinement. First, Gordon reduc-
tion, which makes sense only on the mass shell, seems to
be a rather natural step in the present context of NPA in
which the mass shell condition essentially defines the
component p in terms p+ and p~. And the extent of
simplification achieved through this device with respect
to the traditional Salpeter-type reduction in terms of
(+++) components of the qqq wave function may be
gauged by a comparison of Eq. (2.22) with a recent
derivation by Kopaleishvili et al. of a coup/ed set of
equations (three pages) connecting these various com-
ponents in the traditional (Salpeter-type) approach. The
second point concerns the perspectives on the question
of vector vs scalar confinment. Since the very concept is
phenomenologica1, in the absence of a formal solution to
the QCD Lagrangian problem, neither vector nor scalar
confinement can be the whole story anyway, as has been
recognized earlier by other authors as well. Further,
as explained in Ref. 14 of Ref. 21, the fine-structure
splittings in PJ states of CC are only sensitive to the

10

higher-order (a, ) corrections to the short-range one-

gluon-exchange term, but not much to the structure of
the long-range confinement term. On the other hand,
the spectra of qq states ' as well as of qqq states found
here seem to favor the asymptotic variation M-N
(vector) to M-N ~ (scalar), within the BS dynamical
framework. At a more fundamental level, only a vector
confinement (not scalar) seems to offer the possibility of
a common sign for the long-range qq and qq interactions,
thus justifying a common parametrization for them,
which represents a major theme of this investigation
aiming to unify the spectra of qq and qqq states. Other
tests will be clearly desirable.
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APPENDIX A

We briefly outline here a practical method based on an

interplay of SO(2, 1) algebra and S, symmetry for the ei-

genvalues of certain g- and g-dependent operators Qs
listed in Sec. III. Define two sets of HO operators' '

a&, , a„;, and a &;, a „; through

&2g;P '=a&;+I2&, , &2PB&, ——a& —a&;, (Al)

with an identical set for g. Similarly define the following
scalar operators quadratic in the a, 's through

N& ——a&;a&;, N„=a„;a„;,
A& ——a&;a&;, A

&

——a&;a&;,

=a a
TJ YJl 'yjl & g 'gl 7/f

8 =a&;a„;, B =a&, a„, ,

C=C =a&;a„;+a„;a&, .

(A2)

(A3)

(A4)

(A5)

(A6)
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Dr. O. Pene for their endorsement of a common sign for
qq(1) and qq(3') interactions for a vector-type
confinement (not scalar). He also wishes to acknowledge
the hospitality of Professor A. Pagnamenta, and the
Department of Physics at the University of Illinois at
Chicago where this work was performed.

The basic commutation relations for the a, 's,

[a(, ,a (i ]=5J ——[a~;,a ~J ], (A7)

0 I I I I I I I I I I I I I I I I I I I I I

0 2 4 6

FIG. 1. Plot of the function F&(M) as a function of the total
HO quantum number N, using experimental values of the
baryon masses M. The expected line is F~(M)=N+3. For a
definition of F~ (M) =F(M, N) see text.

with all other pairs commuting, lead to the following re-
sults for the various quadratic operators:

[A~, N~]=2A~, [A ~,Ng]= —2A ~, (A8)

[A„,N„]=2A„, [A„,N„]=—2A„, (A9)

while pure g and pure g operators commute.
Now the two sets (A&, A&, N&) and (A„,A„,N„)

represent the generators of two independent SO(2, 1)
algebras, any one of which is exactly the type that
proved adequate for the derivation of the eigenvalues' '

of the operator Q appearing in the corresponding qq
problem. In the present qqq problem, on the other hand,
these two sets are also accompanied by "mixed" terms
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B, B, C thus considerably enlarging the algebra. For a
systematic treatment consistent with S3 symmetry, it is
convenient to introduce the following combinations
which have the desired permutation syrnrnetries for a
three-body system:

IC (2) [ A i+ A it]2+ [ A ii+ A ii)']2

4—(N'+N")+ 8( A,t —A, ),
f3 S"'=—3(A'+ A' +2N')'

(A19)

N=—N'=N&+N„, N'=a&;a„, —a„;a&;,

C —=N'=a &;a„;+a„;a&,, N" =N& —N„,
2B = A'=2a&, a„,, A"= A& —A„,
A, =A(+A„, A, =A(+A~ .

(A10)

(Al la)

(A 1 lb)

(A12)

Using the commutation relations (A8) and (A9) one ob-
tains the following sets of commutators:

—3( A "+A "t+2N")', (A20)

2)and a similar but more unwieldly expression for Q
' ',

which we omit for brevity.
These operators still involve nondiagonal terms, but

which, as in the qq case, connect states differing by as
much as AN=4, so that ignoring their effects is not like-

ly to introduce any serious error. The diagonal terms
are then almost expressible in terms of the following
three SO(2, 1) sets:

[A', N)=2A', [A', N]= —2A'

[A",N]=2A", [A",N]= —2A "t,
[N', N] = [N",N] = [N', N] =0,
[A„N]= [A ",N" ]= [A ', N'] =2 A, ,

[A, , N]=[A",N"]=[A't, N']= —2At,

(A13a)

(A13b)

(A14)

(A15)

—,
'

( A ', A 't, N + 3 ), —,
'

( A ",A ",N +3),
—,'( A„A, ,N +3),

—'(N+3)= —u+k, k =0, 1,2, (A21)

all of which have identical Casimir operators, U( U+1),
with a rising spectrum'

[A„A, ]=[A",A" ]=[A', A' ]=4N+12, (A16)

[A', A "]=[A„N,]=[A, , N, ]=0,
[A', A" ]= 4N, , —

[N', N, ]=2N", [N",N, ]= 2N', —

[A', N, ]=2A",
[A",N, ]=—2A', [A', N, ]=2A"

[A",N, ]=—2A'

(A17)

Qg = —,'[A, + A, ) + —,'[A'+ A' t] i —,'[A "+A "t]~

One thus finds several distinct sets of coupled SO(2, 1)
algebras, closing on an algebra as big as SO(m, n) where
m +n= 1.0, thus greatly reducing the practical value of
this method, but for the observation that the operator
chieQy responsible for the couplings is N„a totally an-
tisymmetric object,

In SU(6) parlance, this operator makes it first nontrivi-
al appearance (with a nonzero eigenvalues) for a 20 state
whose totally antisymrnetric spatial structure does not
easily allow it to mix with the 56 and 70 states, as a
consequence of which its identity is still not experimen-
tally established. Taking advantage of this circumstance
it is perhaps not unreasonable to drop the operator N,
from the list (A10)—(A17), which vastly simplifies the re-
sulting algebra to an almost decoupled set of distinct
SO(2, 1) algebras. Before writing down the Casimir
operators it is useful to express the operators (3.9)—(3.15)
of the text in terms of the above quantities so as to ex-
hibit their S3 symmetry structure more explicitly. These
give

leading to the two classes of u values defined in Eq.
(3.21) of the text. The only additional combination
occurring in (A18)—(A20) which is not directly amenable
to these quantum numbers is N' +N", which requires a
more careful treatment involving the use of tensor opera-
tors ( A;, A;J ). . . , with A, = A;;, leading to the
identification

N' +N" = A ~ A" +2N .ij &J
(A22)

APPENDIX B

We collect here the results of perturbative calculations
of the strong Coulomb effects in coordinate space. Us-
ing the vectors u, v, which are conjugate to g, g (u=iB&,
etc.} the quantities r,~

=x, —x are given by

xi =X—3v, x2 3:X+ v+( —) u . (Bl)

It is necessary to consider I excitations in a general way,
but radial excitations of n=1 are adequate for our pur-
poses. The possible states are of the types" '

(56,21+ ); (70,21 + 1 ),
(70,21 +2), l =0, 1,2, . . . ,

Since, on the other hand, tensor operators are beyond
the jurisdiction of our algebra (A10)—(A17), we must
make the replacement A, . A, .~—,

' A, A, to obtain

(without serious error) the approximate result

N'2+N" =rN 4N —2+ —,'(N——+3) —~4u (u +1) (A23)

in terms of the Casimir operator of the simpler SO(2, 1).
The resulting expressions are as listed in Eqs.
(3.17)—(3.21) of the text.

—2N' —2N" —2(N +3 } —18, (A18)
of which only their spatial parts in their maximally
stretched forms are needed, since the Coulomb interac-
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Xexp[ ——,'p (u +v )], (82)

¹21——(1!) (83)

tion is spin independent. The 56 states are fully sym-
metric

' 3/2

1(i&1(u,v)=NzI(u++U+ )' p '

(70,21 +2): fl'„"'"= ,'(—2r+1)(2r +2)

1 (21 2—r + 1 ) (21 —2r +2 )+
8 (21 —2r +—', )(2l —2r + —,

' }

1 (2r + 1)(21 2—r + 1)+
2 2l —2r +—',

(812)

NL is the normalizer, listed above, appropriate to the
state under consideration. For the n =1 cases we have

' 1/2

The (70,21+ 1) states 1)'I', g" are of the form

~21+1&~21+1 2l+1(~ + ~~U+ 4'21/N2l

N2I +1 N2I [——2/(1 + 1)]'

Finally the (70,21+2) states are of the form

(84)

(85)

(813)
' 1/2

F (700+)=——1 3

2
L

Mascp 'y2I ( —,", —+06'P M ) .

42I+2&42!+2 N21+21 (2~ + U+ &~ + U+ }P2I/N2I
(814)

N2I+, N', I [2/—(—1+1)(l+2)]' ' .

(86)

(87)

Finally the weight factor WlvL, Eq. (3.32), for orbitally
excited 56, 70 states in the L, convention defined above, is

given by the simple formula

The radially excited functions are relevant for PII(1440),
P33( 1600), and possibly higher ones. ' ' Their general
construction has been described in Ref. 17 but here we
need only the case of n=1, for which the normalized
wave function is

, =(31r )
' [p (u +v ) —3]exp[ ——,'p (u +v )] .

(88)

WlvL
——(21 —1)!!/(2'1! ) .

In addition, for (56,n = 1) and (70,0+ } states this quanti-

ty is —,
' and —'„respectively.

APPENDIX C

We list here the spin-dependent terms (SDT) appear-
ing in Eq. (3.12) of the text.

Analogous to n = 1 of 56 states, there are possible
(70,0+ ) states P 1'„P",3, etc. , ' whose corresponding
wave functions are

(f', P")„1 (3n )
'——P [2u v;u —v ]

Xexp[ ——,'p (u +v )] . (89)

Fsc(L)= —,'&3a, MP 'ys NI 2

1 I, 2

X g (2r!)fl„[—', —p M (2r + —,')]
r=0

X I (21 2r + 1 )I '(2l——2r + —,
' ),

(810)

Calculation of the Coulomb contributions, Eq. (3.30), for
these diferent cases is a straightforward, though
lengthy, procedure. The results are expressible in the
general form

SDT= ——', (g —g }X,
"—3g gXI

+-,'X [(k' —n'}L"+20 nL']

+ —,'L [(g2 —r12)X"+2/ gX']

+-', L. [(0—~')X' —2C ~X"]
——,'(g —rl )[L' X' —L" X"]

—-'g g[L' X"+L" X'] .

Here

iL', iL, —:/X'„+2IXB&,

i L;i L"—=gXB&+gXB„,
~= i +CT 2 +ET3,
&3X'=cr3 —o 2,
3X"—:—Zcr, +cr, +~, ,

3/3XI =a1.(o 2
—sr 3),

3r —2~, .~,+~ .~ +~ .~

(Cl}

(C2)

(C3)

(C4)

(C5)

where fl, ——1 for (56,21+ ) states and

(7(),21+1): fl'„——,
' [2r + 1+(21—2r + 1)

X (21 2r + —,
'

) ']—, (811)

The S3 symmetry of SOT is explicit. As an illustra-
tion of the use of these terms, we consider the effect of
the L=O term (Cl) which mixes the 56 radial state
P'11(1440) and the (70,0+} state P'1'1(1710). Using the
reduction method of Appendix A, and dropping the non-
diagonal terms in N, we have
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2g riP ', (g' r—i )P ,'[N—';N"],
so that (C6)

P, being a single S3-symmetric function associated with
the (70,0+) state. Following the reduction technique of
Sec. III, the two coupled equations in (1(t„p, ) become

&2+s6= g'(x 'P'+x "P"),
2%7o (g'x——"+g"x'

)P'+ ( P'x ' P"x—")P", (C7)

where (X,P) are the notations for spin and isospin func-
tions. ' Elimination of the spin and isospin structures is
straightforward after the operation of (C6} on (C7}. The
result is a set of three coupled equations in (g', f', P")
which are self consis-tent with the identification

(SDT)L o
————,'p [N'X', +N"X'('] .

Inserting this term in (3.16) modifies it to two coupled
equations involving the 56 radial and (70,0+} states
whose SU(6)-curn-spatial structures (see Appendix B) are

(N+3 F&—)P'+a(N' +N" )P, =0,
4ag+ (N +3—Ft't')P, =0,

where

see Eq. (3.27).
Using the result of (A23), and writing Ftt F&——+5F,

where Ftt is the unmixed value of F~ for the state con-
cerned, one immediately finds the mixing corrections 5F
to the respective states from a quadratic equation in x.
The results for the states P'»(1440) and P t'&(1710) are

(C&) 5F(PI, )=+0.675, 5F(P'i'i )= —0.066 . (C9)

'N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978); 19, 2653
(1979).

For a recent review of qq systems, see D. B. Lichtenberg, Int.
J. Mod. Phys. A (to be published).

A. De Rujula, H. Georgi, and S. L. Glashow, Phys. Rev. D
12, 147 (1975).

4I. T. Todorov, Phys. Rev. D 3, 2351 (1971); Ann. Inst. Henri
Poincare 28, 207 (1978).

5H. W. Crater and P. Van Alstine, Phys. Rev. D 30, 2585
(1984).

H. Sazdjian, Phys. Rev. D 33, 3401 (1986).
7E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
A. Le Yaouanc et al. , Phys. Rev. D 29, 1233 (1984).
M. K. Sundaresan and P. Watson, Ann. Phys. (N.Y.) 59, 375

(1970); P. Narayanaswamy and A. Pagnamenta, Nuovo
Cimento 53A, 635 (1968).

M. Bohm et al. , Acta Phys. Austriaca Suppl. XI, 3 (1973); R.
F. Meyer, Nucl. Phys. B71, 226 (1974), and references
therein.

"Particle Data Group, Wohl et al. , Rev. Mod. Phys. 56, S1
(1984).

R. H. Dalitz, in Proceedings of the XIII HEP International
Conference, Berkeley, 1966 (University of California Press,
Berkeley, 1967).

' A. Henrique et al. , Phys. Lett. 64B, 85 (1976); W. Celmaster
and F. S. Henyey, Phys. Rev. D 17, 3268 (1978); J. R. Hen-

ley, ibid. 20, 2532 (1979).
A. N. Mitra, Z. Phys. C 8, 25 (1981),hereafter called I.
A. N. Mitra and I. Santhanam, Z. Phys. C 8, 33 (1981);A. N.
Mitra and I. Santhanam, Phys. Lett. 104B, 62 (1981).
A. N. Mitra and D. S. Kulshreshtha, Phys. Rev. D 26, 3123

(1982); 28, 588 (1983).
' D. S. Kulshreshtha et al. , Phys. Rev. D 26, 3131 (1982).
' See, e.g., S. Brodsky and G. P. Lepage, in Particles and

Fields-2, edited by A. Capri and A. N. Kamal (Plenum, New

York, 1983).
A. N. Mitra and A. Mittal, Phys. Rev. D 29, 1399 (1984); 29,
1408 (1984).

N. N. Singh, Y. K. Mathur, and A. N. , Mitra, Few-Body
Systems 1, 47 (1986), hereafter called II.

2 A. Mittal and A. N. Mitra, Phys. Rev. Lett. 57, 290 (1986).
J. B. Kogut and D. Soper, Phys. Rev. D 1, 2901 (1970);J. D.
Bjorken et al. , ibid. 3, 1382 (1971).
For example, M. F. de la Repelle, Phys. Lett. 135B, 5 (1984),
and references therein.
W. Miller, Symmetry Groups and Their Applications
(Academic, New York, 1972).
G. Ghirardi et al. , Nuovo Cimento 3A, 807 (1971).
A. N. Mitra and A. Mittal, Pramana 22, 221 (1984).

27Yu A. Simonov, Yad. Fiz. 3, 630 (1966) [Sov. J. Nucl. Phys.
3, 461 (1966)];A. N. Mitra, Phys. Rev. D 28, 1745 (1983).
J. T. Londergan and A. N. Mitra, Few-Body Systems 2, 55
(1987).

29C. Quigg and J. Rosner, Phys. Rep. 56, 167 (1979).
B. Ram, Lett. Nuovo Cimento 40, 305 (1984).
See also, A. Faessler et al. , Nucl. Phys. A466, 445 (1987).
T. Kopaleishvili et al. , Report No. ITP-85-131E, 1985 (un-

published).
For example, L. C. Hostler and W. W. Repko, Ann. Phys.
(N.Y.) 130, 329 (1980); B. Durand and L. Durand, Phys.
Rev. D 30, 1904 (1984).


