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The Bethe-Salpeter (BS) equation for a ggq system is formulated in the null-plane approximation
(NPA) for the BS wave function, as a direct generalization of a corresponding QCD-motivated for-
malism developed earlier for g7 systems. The confinement kernel is assumed vector type ('yL1 ’yf’)
for both g7 and gq pairs, with identical harmonic structures, and with the spring constant propor-
tional, among other things, to the running coupling constant a, (for an explicit QCD motivation).
The harmonic kernel is given a suitable Lorentz-invariant definition [rot [1?6%(g)], which is amen-
able to NPA reduction in a covariant form. The reduced ggqq equation in NPA is solved algebrai-
cally in a six-dimensional harmonic-oscillator (HO) basis, using the techniques of SO(2,1) algebra
interlinked with §; symmetry. The results on the nonstrange baryon mass spectra agree well with
the data all the way up to N =6, thus confirming the asymptotic prediction M ~ N33 characteris-
tic of vector confinement in HO form. There are no extra parameters beyond the three basic con-

stants (wy, Cy,m,4) which were earlier found to provide excellent fits to meson spectra (¢g).

I. INTRODUCTION AND SUMMARY

The two- and three-quark problems for hadron dy-
namics are perhaps more closely related at this subhad-
ronic (quark) level than are the corresponding two- and
three-body problems at the successively outer (nuclear,
atomic) levels of compositeness. For this reason (whose
source can be traced to color and confinement) the suc-
cess of any form of quark dynamics must be judged by
its simultaneous performances on both fronts (q§ and
qq9q), and this must be particularly true of QCD which is
believed to be the natural language of strong interac-
tions. However, pending its formal capacity to account
for confinement in a sufficiently realistic and practical
form, any hadronic application of a QCD-oriented dy-
namics must continue to rely heavily on an “effective”
confinement program; and the close physical connection
between g7 and gqq systems offers a more comprehensive
testing ground for any such confinement ansatz than
would be the case if these systems were to be considered
independently.

There is good evidence of rich dividends from such
simultaneous studies in the past, based on the
Schrédinger equation! or its relativistic adaptations.?
The usual wisdom has been to consider an effective sca-
lar confinement for both gg and gq pair interactions,
with a short-range Fermi-Breit term® playing the crucial
role of mass splittings.! There are two difficulties with
this kind of approach. (i) While a Schréodinger form of
dynamics is justified for heavy-quark systems, its adapta-
tion to light-quark systems, albeit with relativistic adap-
tations such as the Todorov equation* or similar vari-
ants,™® would be less appealing than a more natural
dynamical framework such as the Bethe-Salpeter equa-
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tion,” especially if one has to live with such an
“effective” form of dynamics until such time as a practi-
cal form of the confinement emerges from the QCD La-
grangian. (ii) Secondly a “scalar” confinement changes
sign® as between gg¢ and g7 pairs, unlike a “vector”
confinement which preserves the same sign,® and is
therefore unsuitable for an integrated approach to both
qq and gqq systems at the same time. A Bethe-Salpeter
(BS) framework for gg and gqq systems with a vector
confinement would seem to meet both these objections a
priori.

Now the BS equation at the quark level has had a long
history.®!° In particular, its O(4)-like character yields
the hyperspherical angular momentum K, which turns
out to be “one quantum number too many” for a mean-
ingful contact with the data!! which continues to respect
an SU(6) X O(3)-like classification!? after two decades of
quark physics. The instantaneous approximation (IA)
was applied in this context,!3 but applied mostly to
heavy quarkonia (where its need is limited), and with
“scalar” confinement.

Keeping these issues in view, a somewhat less ortho-
dox, QCD-motivated, BS formalism with wvector
confinement (kernel proportional to the usual 1A,-1A,
for color, but y|’y?’ for spin) was proposed some years
ago'® for an integrated understanding of both ¢7 and gqq
spectra on the one hand'® and applications to various
transition amplitudes involving hadron-hadron and
photon-hadron couplings on the other.!® This required
a two-tier approach: viz., (a) a three-dimensional (IA)
reduction of the BSE’s for ¢qg and gqqq states (for contact
with spectroscopic data) which suppresses the role of
virtual ¢g, etc., effects (or higher Fock states in a three-
dimensional description, much like Tamm-Dancoff am-
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plitudes developed in the 1950s), and (b) a prior recon-
struction of the four-dimensional BS wave function
(which would help identify the hadron quark vertex
function) to restore the neglected g, etc., effects on
different transition amplitudes perturbatively through
Feynman diagrams. '

The fact that such an approach yielded a fairly good
overlap with the spectral data!>!” would seem to suggest
that the effect of higher Fock states'® on the spectral cal-
culations is presumably not large, thus a fortiori justify-
ing their perturbative inclusion for the evaluation of cer-
tain transition amplitudes (which also turned out to be
in fair agreement'®!® with several data). In retrospect,
however, this formulation had certain drawbacks: (a) its
reliance on the IA limited its applicability to slow-
moving hadrons; (b) the harmonic-oscillator (HO) ker-
nels gave too-large spacings for ¢¢ and bb systems to
match their data; and (c) the vacuum structures were ill
defined, leading to varying amounts of zero-point-energy
(ZPE) shortfalls in the predicted masses. !’

These shortcomings have since been remove in
two respects. The formal limitation (a) arising from the
IA was overcome through the following Lorentz-
invariant generalization?® of the scalar function V
(coefficient of 7;'y,?) (Ref. 14), representing the HO
kernel for a gg or gq pair interaction in the full four-
dimensional BSE:

d20,21

, N &
(Vg )=31rw§q"1llgmoa

2 1 \271—-1
m3[m +(gq,—q,)17".

(1.1

Then we effect a three-dimensional reduction through
the null-plane approximation??> (NPA), thus automatical-
ly ensuring ‘“null-plane covariance” of the three-
dimensional BSE. [It may be noted that (1.1) is not the
usual four-dimensional HO kernel'® (0%8%p —p’).] To
overcome limitations (b) and (c) which are of a physical
nature, an ansatz has been proposed on the flavor varia-
tion of the spring constant, !

(b) w;q:4,u12w(2)as, ,u12=m1m2(m1+m2)_1 (12)

and a corresponding modification on the NPA form (r2)
of the HO kernel, !

(C) r2—>r2(1+Aomlmzrz)—l/z_Coa)o_z y (1.3)

where r? must be read covariantly in the NPA

language® (viz., the third component A4; of any NPA
three-vector A should read 4;=4 M /P_). The an-
satz (1.2), involving the running coupling constant a.,
offers an explicit QCD motivation for the entire kernel,
and the postulated constancy of o, (=158 MeV) over all
flavors checks extremely well with the data!! on all
meson sectors (g7, QF, QQ), in conjunction with (1.3).
The additive constant C, (=0.296) in (1.3) plays its in-
tended role by filling the ZPE shortfalls rather precisely
for all quarkonia.?! Finally the smallness of the con-
stant A, (=0.0283) in (1.3) ensures a smooth transition
from a (continued) harmonic confinement in uds sectors
(small mm,) to an effectively linear one for the heaviest

bb sector (large m m,), and has played a major role in
unifying the spectroscopic data on all the sectors. !

This experimental success on the g7 front of the above
structure of the BS dynamics has led us to examine its
effect on the (dual) gqq system, in keeping with the inter-
linked nature of the physics that governs the two sys-
tems. In this paper we restrict our attention to equal-
mass kinematics (m;=m,=m;) only, which amounts
essentially to the ud sector. Furthermore, the unlikeli-
hood of data on QQQ systems in the foreseeable future
warrants the assumption A4,=0 in (1.3) at the outset.
The central question is whether or not the ggq problem
of ud quarks with vector interaction for gq pairs can be
understood in terms of the three basic constants (o, C,
and m,,) already determined from the meson spectra, *!
so that no independent freedom of parametrization exists
for the qqq system. Our results strongly suggest that
this is indeed the case, thus bearing out the expectation
that a parallel treatment of the gg and ggq within a com-
mon BS framework gives consistent results.

The paper is organized as follows. In Sec. II we rap-
idly recapitulate the main sequence of steps leading from
the four-dimensional BSE for a ggqq system to a three-
dimensional covariant NPA form,?° Eq. (2.22),
representing the focal theme of this paper. Section III
describes an algebraic solution of Eq. (2.22), first by re-
ducing it to the form (3.16) which formally resembles a
six-dimensional HO equation in two independent inter-
nal variables (&,7) (see Sec. III) but has its different
terms appearing with nonlinearly (M,N) dependent
coefficients, where M is the baryon mass and N is the to-
tal HO quantum number in the six-dimensional space
(€,m). This is achieved through a generous use of the
techniques of SO(2,1) algebra in conjunction with S
symmetry, which characterizes three identical particles,
as outlined in Appendix A. The final form of the gqq
equation, Eq. (3.29), after the inclusion of one-gluon-
exchange effects (summarized in Appendix B), represents
an algebraic solution in the form Fz(M)=N +3, where
Fy is a known, nonlinear, function of (M,N). Section IV
gives a limited comparison with a representative collec-
tion of experimental data,!! directly in terms of the
above form of the solution (without attempting to invert
it). The possibility of mixing between different ggq states
arising from the vector nature of the confinement (as dis-
tinct from one-gluon-exchange effects!) is indicated in
Appendix C through the structure of certain spin-
dependent correction terms that appear in this model
and illustrated for the case of P{,(1440) and P}}(1710)
mixing. Apart from good agreement with the data for
most individual cases, the comparison also shows strong
support from the gqq data trends (up to N=6) for the
asymptotic prediction M ~N?/3 (as with light g7 sys-
tems?!), a feature that bears directly on vector
confinement for both systems.

II. COVARIANT ggqq EQUATION IN NPA FORM

The BSE for a gqq system with pairwise gq interaction

under vector (y,'y2)) confinement was first written
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down in I (Ref. 14) and reduced to a three-dimensional parallel to the gg treatment.?’ While referring the in-

form in the instantaneous approximation (IA). After a  terested reader to the details in I and II, including most
Lorentz-invariant generalization for the harmonic ker-  notations, we recapitulate for easy reference the main se-
nel, Eq. (1.1), was achieved,?® a corresponding derivation  quence of steps leading to the final form of the covariant
of a covariant three-dimensional form in the null-plane =~ NPA equation for ggq. The four-dimensional BSE for

approximation (NPA) was given in II (Ref. 20) in close =~ m,=m,=mj;=m, reads after a Gordon reduction as’

|
2 1 — ’ ! ’ ’
A18,8;¥(p1pyp3)= 3, 3 7‘33(277) ¢ f d*q (g |V 140 T ¥(pipips) 2.1)
123
P12=3Pntqy, pl=3Pntqh, 2.2)
p3=P—p,—p,=P—Py,, (2.3)
Ty =P — (gt +q1)*=2i (a}"+05")ghhq s +iPH (05 — ok )g T, — g3 + o ok Mg, —g 3 g —gth) . (2.4)
Aj=m2+4p? (i=1,23). 2.5)
[
For any four-vector A4, the null-plane components are and so on. Thus on carrying out the limit m —O0 after m
differentiation in (1.1), the function V =V, reduces to
— gt — Al_ ’ 12
Ar=A"=A40t4,, A\=A"=(4,,4)). 2.6)  he form

The NPA f B fi i i & ,
aszg orm ¢ of the BS wave function ¥ is defined V= P(Q1,—q),)

Co
V%z"‘ 2
@o

¥(p\pp3)= [ tdqintdps ¥(pipyps) 2.7) =2}, (2m) 8%(q;,—q),) (2.14)

where the cyclic symmetry of dg,; dp, ensures the valid- .
ity of (2.7) for all the three terms of (2.1). To specify T, after employing the replacement (1.3), where all three-

and ¥V =V, under NPA conditions, we make the specta- vectors must be read in the sense A;=M4, /P, for
tor assumption'® for the “timelike” component of p¥ in the longitudinal component. The form (2.14) for V,,

NPA | 20 now permits a rapid simplification of Eq. (2.1) when the
anguage NPA ansatz (2.7) for the wave function is introduced,
py =iP_ . (2.8) remembering that L-invariant element:
In the NPA limit, the relative momentum g _ =g, be- d*q'=d’q 1dq’, 3dq"_ =P+M—ld 3‘Il%dql— - 219)
20
comes
5 = I Thus the integration on the right-hand side (RHS) over
g9-=—q L3 Li"=0mg+q)/pipye s 29 g3g0 gives
where the Lorentz factor L, reduces, on the mass shell f d3q,TVpt'=—D v, (2.16)
of the subsystem (12), to* 5
where D, is the differential operator
Liy=P#/M,,, M%=P}HP5;—(PL,). (2.10) 2 c P
A consistent use of (2.8) under |g, | <<M,, permits a D,=M}, V%ﬁ-—% +0,, 87,8, +12
deduction® of a more symmetric form of L f;: “o

L, =L=Lji=L$=P /M, .11 —2i(0,—0,)PX V), 2.17)

which is consistent with the IA result'* (P, ~M) but is
no longer restricted to a slowly moving baryon. As in with

the g7 case,?° the Lorentz factor L , =P _ /M allows one A 292

to define any three-vector A covar+iantly+under NPA as 012=4412Vi2+8012° V12 +6 2.18)

(A, A43), where A3;=A, M/P_, so that the various  and

four-momenta appearing in V,, Eq. (1.1), and T,,, Eq. .

(2.4), can be simplified with the identifications P,=p;+p,=—p; (in the c.m. frame) . (2.19)
(PH )2=—M%2=§M2—p§ , 2.12) Finally, the integration over dqi; on the RHS of (2.1)

yields the characteristic NPA denominator function D {;

(9.—9,)=(q—q), for the (12) pair,?

(2.13)
0uA,B,—0-AXB, i (D)= § LdgpAT'ATY, (2.20)



leading to

D, =2P{(m ‘th—‘*Mz 4P§+R12) , (2.21)

where R, is a small correction term specified later in

Eq. (3.15). Collecting all these results gives rise to the
NPA equation for gqq in the covariant form
L 1*2 1,
Y(pipop3) = D2 D, ¥(ppap3) (2.22)
123 P2

where the Lorentz factors L;} are given by (2.11).

III. SOLUTION OF THE gqqq EQUATION (2.22)

Equation (2.22) represents the starting point of this in-
vestigation of qqq spectra, where the spring constant co;q
is defined by Eq. (1.2), and C, stands for the effect of the
vacuum structure. These inputs have the same values as
in the corresponding ¢g investigation,?! viz.,

w,=158 MeV, C;=0.296,
m, =270 MeV ,

(3.1

while the structure of a; is also in close parallel to the
g7 pattern,?' but commensurate with a three-body dy-
namics for confinement, viz.,

—1

, A=250 MeV .

9m?

127 q

33_2f

a,(3m,)= (3.2)

The strong-Coulomb term is treated perturbatively,
again as in the g7 case,?' with a (M) substituting for
a,(3m,). This term does not yet appear in the kernel of
Eq. (2.22), but can be included in a simple way through
an appropriate addition to the final results, Eq. (3.22),
leading to Eq. (3.29); see 1.

For a reduction of Eq. (2.22) in the overall c.m. frame
(P, =M) it is necessary to use the relative coordinates £
and 7 defined by'

V3E=p;—py 3n=—2p,+p,+p; - (3.3)

However, we shall now employ a considerably more
refined technique than attempted earlier'*!” by taking a
more conscious account of S; symmetry in respect to the
denominator functions D,]+ as well as the operators Q,-j
in Egs. (2.18)-(2.21). The basic strategy lies first in ex-
pressing the D;; functions in terms of an §;-symmetric
function D, plus a balance A;; which can be taken per-
turbatively. (This is very closely related to the corre-
sponding method of a ‘“large-n expansion,” n=6, in a
hyperspherical coordinate basis,?* though differing great-
ly in details.) Thus we have

D;'=D7'+D7'A;D!, (3.4)
4
D=L 1g 4 It mI— M4 (R)) (3.5)
aM | 1 V3
A12,13=‘3_‘ g(gz—"lz)iTzé"’I“*'SRlz,ls , (3.6)
Apy=—A,—A4y . (3.7)
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Here (R ) is the S;-symmetrized form of the small R
term in (2.21), with a balance 8R;; which is neglected
hereafter, while (R ) is specified in Eq (3.15).

When (3.4) is substituted in Eq. (2.22), one can identify
two distinct parts, each separately S; symmetric, viz., (i)
the main part, proportional to D, !, and (ii) a correction
term proportional to D72, when the three different
pieces D on the RHS of (2.22) are brought together.
The coeﬁicwnts of D,”! sum up to

c
Do = MAVE+V])+ — (4M 7466+ 6n°)
@o

+0;—87-S+18 (3.8)

in conformity with a very similar structure obtained in I,
revealing an explicit J-S structure for the spin depen-
dence. The purely momentum-dependent effects are
contained in

QB=Q§+Qn +Q§7, ’ (39)
Q. =470} +8£-9,+6 ,
~ rms (3.10)
Q,,=411 a,,+81]~a,7+6 R
Oy =4£-3;+47°3,+8E79,-9,+6 . (3.11)

The A;; terms in (3.4) similarly add up to another

ij

operator DS'ZAH, where
Iap—1 1 2’*(2) LA 1 Co (2)
M~ AH =— MK —6Q 16w —S?48DT,
o (3.12)
R P=4(82—7*)(32—32)+ 166993, , (3.13)

Qg)z_%(gl_q,z)(g-ag—n-a,?)—3§-n(n-a§+§-a”)

al=

+(§2—31))E- 13,3, — (£-1)X(382+32)

+HE - )+ (n*—2£7)37] , (3.14)

ll_és(2)=_%(§2_112)2_

Equation (3.15) now formally specifies (R ) of (3.5). Fi-
nally, the spin-dependent correction terms, SDT, are list-
ed in Appendix C. The ‘“master” equation (2.22) now
reads

D=1l (Dy+D,'AHW .

3(26-m)?=8M*R) . (3.15)

(3.16)

It may be checked that each of the operators making
up AH is separately S; invariant. These quantities
represent important corrections, but as they stand they
offer little hope of solution for Eq. (3.16). To this end
we adopt a strategy similar to, but more refined than,
that employed in I, viz., to express the major effects of
AH in terms of the principal quantum number N in a
six-dimensional HO basis, after noting that the main
terms of D, and D, are indeed quadratic in (£,7) and
their derivatives. Such a reduction requires an extensive
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use of the techniques of SO(2,1) algebra,?*~2¢ in conjunc-

tion with S; symmetry, involving successively quadratic,
biquadratic, and sextic combinations of the HO opera-
tors a;, a,, and their Hermitian conjugates. These are
briefly outlined in Appendix A, yielding the following
approximate eigenvalues for the different operators of
AH in a six-dimensional HO representation character-
ized by the total quantum number N =N +N:

Oy=320y—2N+3)—18-27y, (3.17)
K =20y —4ry (3.18)
SP=—6B%oy+27y)=128M*R )y , (3.19)
B2 =2(N 4+3)(oy +6ry+24)—4Noy . (3.20)

Here

on=2N+37?—8u(u+1), 7y=4N+Lloy—2,

ul(u +1)=% (even N), 2 (Odd N) . (3.21)

B is a dimensional quantity,'* Eq. (3.24), which governs
the momentum scales of (£,1) in accordance with the
HO wave function ¢, Eq. (3.26).

A more compact treatment than that given in Appen-
dix A is possible with a complex®’ representation of S,
symmetry, which was recently employed for some q%G*
systems, ?® but the meaning of the total quantum number
N (=N¢+N,) is less transparent in terms of its complex
constituents (N,,N;*) than in terms of the real (N¢,N,)
representation, and, therefore, is not yet suitable for con-
tact with data for excited baryon states (which are tradi-
tionally classified in the real representation).

With the substitutions (3.17)-(3.21) for the various
operators, anticipating that N retains its ‘“diagonal”
significance for the reduced Eq. (3.16), these correction
terms may be treated as constants in the N representa-
tion, after a similar substitution has been made for the
factor D,”! multiplying AH; see below in Eq. (3.27). Un-
der these conditions Eq. (3.16) takes the form of a stan-
dard six-dimensional HO whose solution may be ex-
pressed as'*

Fuo+8Fuo=N;+N,+3=N+3, (3.22)
B3 Fuo=+M?*—m2—(R )y

+ 10l [MCoy 2 +3M ~(Qy —8]-8+18)],

(3.23)

Y§=1—%w$qcowJZ, B4=%Mw¢21q71;2 ’ (3.24)
16822 8F 2 [ 1 2)_ap2p @) Co )
B Y 50F o = 30g, D—s N —3M Ky +a)_(2)SN

(3.25)

The physical significance of B* is most succinctly seen
from the form of the ground-state wave function

Yo=exp[ — 1B~ HE +7M)] .

Finally the value of (D,”!) in the correction term 8F

(3.26)
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is governed by the following considerations. First we
note that this term is in general quite small ( < 10%) and
its relative effect decreases rapidly with M. Now, for
large M, the operator D~ ! is far away from its singulari-
ties and it should be reasonable, as a first approximation,
to replace its variable part &24+m% by (&2+7?)
=f%N +3), leading to the form (D,)~'. A more accu-
rate formula, which holds all the way down to N=1, is
given by

(D, 'y =—(Dy)'exp[2MBXN +3){Dy) '], (.27
where
(Do) =4M(IM*—m]}—(R)y) . (3.28)

As for the N=0 cases (N, A), the smaller values of (Do)
tend to overestimate the exponential factor, necessitating
more careful considerations, which effectively amounts
to its replacement by its zeroth-order and first-order
terms in its expansion for N and A cases, respectively.
This completes the solution of (3.16) in the form (3.22).

For contact with the data on baryon spectra, Eq.
(3.22) must be augmented by the effect of one-gluon ex-
change, including the Fermi-Breit term.’> As explained
in the original formulation,'* and substantiated for in
the gg systems with the present refinements,?! it is ade-
quate to consider this effect perturbatively for light (uds)
hadrons only. The procedure, which has been described
in I, consists of adding this extra contribution to the
LHS of (3.22) which would now read

where the two extra terms represent the strong Coulomb
and Fermi-Breit contributions, respectively, in the same
relative normalization as defines the principal term Fyg.
This gives, for the Coulomb term in coordinate space,

Fsc=B7%5> 3 M asc{Miy') , (3.30)
123

where M2, is given by (2.12) as an operator in coordinate
space, and agc is the strong-Coulomb coupling constant
given by (3.2), but with 9mg?—M?2. As to the shorter-
range Fermi-Breit corrections, their full effect had been
considered in I and found to be small. However, there
are certain formal differences between the complete ex-
pressions'* based on our Gordon reduction method and
the traditional structure® based on reduction in terms of
large and small components of the wave function. Be-
cause of their intrinsic smallness we have considered
here only the terms ~o;-0; which agree exactly for
both methods of reduction. These give

8Fpp=—B"y5’M 'asc 3, <—43101-0283(r12)> .

123

(3.31)

Evaluation of (3.30) and (3.31) must be made in the
coordinate-space representations of the ggg wave func-
tions whose momentum-space form is illustrated in Eq.
(3.26) for the ground state (N=0). The higher (N,L)
wave functions, including complete normalizations for



arbitrary excitations, are described in an earlier paper,'’
the results of which are used in Appendix B for a short
listing of Coulomb contributions from the relevant types
(56,70) of SU(6)xO(3) states needed for the present
analysis. The FB term (3.31), in particular, can be com-
pactly represented as
32

[4S(S+1)=91Wy, ,

8Fpp=—1B"2v5 M ~lagc

(3.32)

where S =1 or 3 for d or ¢q states, '? respectively, and
Wy is a geometrical weight factor depending on the
(N,L) values of the state only. It is given by formula

(B15) of Appendix B.

IV. RESULTS AND DISCUSSION

As noted at the outset our object in this paper is not
so much to make a detailed comparison with the data as
to provide a more consistent relativistic framework for
an integrated view of both gg and gqq systems, with com-
mon values employed for the basic constants
(wq, Co,mq ). To that end we shall consider a sufficiently
representative sample of baryon states, which should
provide a fair number of ‘“check points” to warrant
meaningful conclusions about the theoretical predictions
vis-a-vis the experimental trends, without going into too
many fine-grained details. These presumably require an
elaborate mixing program for states, as has been success-
fully carried out in the past,! using the dynamical mech-
anism of one-gluon exchange. We have little to add to
this aspect of the problem beyond the assertion that the
same facility formally exists within our BS framework,
and indeed was found to be quite important for heavy
quarkonia?! where the mixing of several radial states via
the Coloumb term was crucial’! for a successful fit to
these types of data.!! Apart from the Coulomb term,
the present formalism also facilitates mixing between
states due to several types of spin-dependent corrections
arising from the vector confinement (as distinct from the
short-range effects of one-gluon exchange). These are
listed as the SDT’s of AH, in Appendix C. However, in
keeping with the basic objective of not putting too much
emphasis on details in this paper, we have not made any
elaborate use of these terms, except to illustrate their
possibilities with the help of one example: the mixing of
P},(1440) and PY|(1710) as members of (56,0;) and
(70,07) supermultiplets, respectively (see below for re-
sults).

Before presenting the numerical results it is useful to
make some general comments on the specific role of vec-
tor confinement, apart from the crucial one of providing
the same sign for gg and ¢7 interactions® (unlike scalar
confinement). First, the asymptotic behavior of M with
respect to N is easily deduced, after necessary substitu-
tions in Eq. (3.23), to be M ~N?3 aresult which is rem-
iniscent of a linear potential operative within a nonrela-
tivistic (NR) (Schrédinger) framework,?’ even though we
have employed a harmonic kernel (within a BS frame-
work). This would seem to suggest that, to the extent
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that the present HO formalism fits the data for ¢g sys-
tems®! as well as for ggg systems (as we see below), a cor-
responding BS treatment with an effectively /inear kernel
for such light-quark systems would give too-narrow
spacings between successive N-excitations and, therefore,
is in disagreement with observations, as was indeed
found sometime ago.3° Further, within the same BS
framework, a scalar confinement with a harmonic BS
kernel can be shown to give an asymptotic behavior®!
M ~N?/3 and a still smaller power with a linear kernel.
The same results are of course true of gg systems as
well.'#2!  Second, vector confinement produces some
characteristic momentum and spin-dependent terms, as
may be seen from Eq. (3.23) in the form of Qy and 2J-S,
with additional diagonal corrections arising from 8Fyq,
Eq. (3.25). [Spin-dependent corrections (nondiagonal)
contributing to mixing between states of different N, L, S
values are listed in Appendix C.]

Table I depicts the results for the mass spectra of a
representative cross section of baryon states (non-
strange), and may be regarded as the ggq analog of the
corresponding results?! for a wider list of meson states,
within a common QCD-oriented framework with identi-
cal parameters (3.1). To bring out the role of the Qy,
2J-S, etc., terms more naturally, especially for higher-N
states, it is useful to employ the same artifice as in ear-
lier publications,'*!” viz., to list the Fp values of the
LHS of Eq. (3.29) for the experimental masses'' of the
baryons concerned and check against their “theoretical”
values N +3 on the RHS. And since the vacuum struc-
ture is now hopefully simulated by the “known” con-
stant C,, (determined from g7 spectra®!), a comparison of
the two columns will offer a direct test of whether, and
to what extent, the zero-point-energy shortfalls'*!” for
qqq states are filled in this (new) form of the theory.
(They just get filled for ¢7 systems.?!)

Table I does indeed show that the large ZPE shortfall
of as much as two units (which had plagued the earlier
formulation'*) is almost completely filled up, as seen
from a comparison of the theoretically expected values
N +3 of Fg(M). Considering the fact that there are no
adjustable parameters, this feature must be regarded as a
nontrivial test of the relativistic three-body equation
(3.16) which, despite its superficial similarity to a six-
dimensional HO form, goes far beyond the Schrodinger
description, in view of the rich (M, N) dependence of the
various terms. These features are somewhat akin to
those of the Todorov equation* or allied formulations, ®
but differ in theoretical assumptions as well as formula-
tion details.

Next, the unit-step variations of F (M) with N that are
revealed through this comparison suggest that F (M) is
almost an SU(6) X SU(3)yp-invariant quantity, depending
only on the total quantum number N, as expected from
the theory. The relatively small scatters that are visible
in the N=2 region are mainly from states which are
most likely to be affected by mixing between like”
states in 56 and 70, as is known to be important from
earlier studies,! and facilitated by the “SDT’s” of AH in
this paper. For the relatively unmixed states we do find
that the scatter is indeed small, thus collectively reveal-
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TABLE 1. Baryon mass spectra: test of F5(M)=N + 3 against data (Ref. 8).

State SU(6): NJLS Fyo+6Fyo Fyc +8Fgg Total Fp Expected (N +3)

N(938) (56): 0,,,0, 5 1.769 1.203 2972 3

A(1236) (56): 05,505, 1.920 0.899 2.819 3
D ,5(1520) (70): 1,1, 2.968 1.011 3.979 4
D 5(1675) (70): 15,15, 2.865 0.933 3.798 4
P ,(1440) (56,70): 2, ,,0,, 3.247 1.123 4.370° 5
P%,(1600) (56,70): 25,05, 3.276 0.872 4.148° 5
F5(1680) (56): 25,21, 3.876 1.136 5.012 5
P (1710) (70): 2,,,0,,, 4.126 0.895 5.021° 5
P3(1720) (70): 25,0, 3.714 0.744 4.488° 5
P}1(1920) (56,70):  2;,,05,, 4.452 0.834 5.286* 5
F35(1905) (56,70): 25,23, 4.462 0.817 5.279° 5
F1,(1950) (56): 25,22, 4.199 0.829 5.028 5
F,,(1990) (70): 2,25, 4.362 0.878 5.240 5
G,,(2190) (70); 35,23, 5.513 0.855 6.368 6
G 15(2250) (70): 34,235, 5.168 0.831 5.999 6
H 4(2250) (56): 49,,4,, 5.883 0.763 6.646 7
Hj ,,(2420) (56): 41,24, 6.075 0.753 6.828 7
1,,1(2600) (70): 5,,,25:2 7.308 0.771 8.079 8
K3 15(2950) (56): 645,263, 8.134 0.733 8.846 9

2Possibly mixtures of 70, 56 states.

ing the role of the “diagonal” correction terms Q, 2J-S
and the pieces of AH. This is particularly manifest when
one compares the pairs

N,A, Dy3,Dys, Fis5,Fy, Hyg,Hyyy s (4.1)

the near equality of the Fj values for these pair implying
that their huge (mass)? differences are actually “under-
stood” in this model.

To illustrate the possibilities of 56,70 mixing within
this model, Appendix C also sketches a calculation of
this effect, employing the L=0 term of the SDT, for one
of the “bad” pairs in Table I, viz., P},(1440) and
PY,(1710). The resulting corrections 8F to their unmixed
Fy values are shown in (C9), the inclusion of which leads
to the following corrected values (F) for these states:

F(P},)=5.045, F(P})=4.955, 4.2)

in excellent agreement with the ‘“expected” value of
5.00.

For a more direct comparison of the mass predictions
with the data, and also to test the sensitivity of the func-
tion Fg(M) to the actual mass M, we have also provided
a second table (Table II) depicting the predicted masses
through a numerical inversion of the equation
F(M)=N +3 for the ‘“appropriate” values of N. This
has been rapidly facilitated by the observation that the
M dependence of F(M) is of the form

aoM3/2+alM-3/2+b0M1/2+bIM—1/2 ,

where (ay,a;) pertain to the confinement interaction and
(bg,b;) to the one-gluon-exchange effect (Coulomb
+ Fermi-Breit). The comparison between the theoretical
and experimental masses does indeed show a good over-
lap for most cases, except for the cases labeled with (a)
or (b) which have already been recognized at the Fz(M)

level, Table I, to be affected by “mixing” within N-super
multiplets. The sensitivity of F(M) to M is reflected in
the comparison of the columns 8M =M(th) —M(expt) vs
AF(M)=F(M)—N —3, deduced from Table I. This
comparison suggests that the F (M) representation is

TABLE II. Theoretical values of the masses (in MeV units)
obtained from Fz(M)=N +3 [Eq. (3.29)] compared with the
experimental data (Ref. 8) for the various baryon states.
SM = M(th) — M(expt); AF (M)=F(M)—N —3 is deduced from
Table I.

State M(expt) M(th) M AF (M)
N 938 944 +6 —0.028
Ay 1236 1264 +28 —0.181
Dy 1520 1524 +4 —0.021
D 1675 1707 +32 —0.202
P}, 1440 1551° +110 —0.630

1432% -3 + 0.045
Py 1600 1737° + 137 —0.852
Fis 1680 1678 -2 +0.012
P}, 1710 1706 —4 +0.021

1718° +8 —0.045
P, 1720 1804* +84 —0.512
P, 1920 1872 —48 +0.286
Fis 1905 18582 —47 +0.279
Fy, 1950 1945 -5 +0.028
Fp, 1990 1950 —40 +0.240
Gy 2190 2128 —62 +0.368
G 2250 2250 +0.2 —0.001
Hy 2250 2304 +54 —0.354
H; 2420 2447 +27 —0.172
I 2600 2587 —13 +0.079
Kiis 2950 2973 +23 —0.154

2Values obtained without taking mixing into account (see text).
®Values obtained after taking mixing into account (see text) by
using the corrected values (F) of Fp(M) from Eq. (4.2).
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conservative enough to “magnify,” if anything, the actu-
al extent of the difference between the experimental and
predicted masses. Further, for the P,;(1440) and
P1,(1710) states, their mixing has already been found to
result in a dramatic improvement in their F (M) values,
as evidenced by Eq. (4.2). The same is reflected in the
actual mass predictions as well as M in Table II, before
(a) and after (b) their mixing is taken into account.

For a more global view of these mass patterns, mani-
festing through their Fy values, we have plotted them in
Fig. 1 as functions of N. The straight line with unit
slope is seen to pass through most of these points with
very little scatter, all the way up to N=6, thus suggest-
ing strongly that the asymptotic prediction M ~N?/3 is
rather well satisfied by the data. This may be regarded
as an observational test of the vector confinement which
predicts this feature within the BS framework. A similar
formulation with unequal-mass kinematics and corre-
sponding results on (A, 2X) states are under preparation.

We conclude with a few remarks on the two unrelated
issues of (i) Gordon reduction prior to the NPA and (ii)
vector versus scalar confinement. First, Gordon reduc-
tion, which makes sense only on the mass shell, seems to
be a rather natural step in the present context of NPA in
which the mass shell condition essentially defines the
component p_ in terms p, and p;,. And the extent of
simplification achieved through this device with respect
to the traditional Salpeter-type reduction in terms of
(££+) components of the gqq wave function may be
gauged by a comparison of Eq. (2.22) with a recent
derivation by Kopaleishvili et al.’? of a coupled set of
equations (three pages) connecting these various com-
ponents in the traditional (Salpeter-type) approach. The
second point concerns the perspectives on the question
of vector vs scalar confinment. Since the very concept is
phenomenological, in the absence of a formal solution to
the QCD Lagrangian problem, neither vector nor scalar
confinement can be the whole story anyway, as has been
recognized earlier by other authors®* as well. Further,
as explained in Ref. 14 of Ref. 21, the fine-structure
splittings in *P, states of CC are only sensitive to the
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FIG. 1. Plot of the function Fz(M) as a function of the total
HO quantum number N, using experimental values of the
baryon masses M. The expected line is Fp(M)=N +3. For a
definition of Fp(M)=F (M,N) see text.
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higher-order (a?) corrections to the short-range one-
gluon-exchange term, but not much to the structure of
the long-range confinement term. On the other hand,
the spectra of g states?! as well as of gqq states found
here seem to favor the asymptotic variation M ~N?/3
(vector) to M ~N?2/% (scalar), within the BS dynamical
framework. At a more fundamental level, only a vector
confinement (not scalar) seems to offer the possibility of
a common sign for the long-range qq and gq interactions,
thus justifying a common parametrization for them,
which represents a major theme of this investigation
aiming to unify the spectra of ¢ and gqqg states. Other
tests will be clearly desirable.
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APPENDIX A

We briefly outline here a practical method based on an
interplay of SO(2,1) algebra and S; symmetry for the fi'
genvalues of certain §- and 7-dependent operators Qp
listed in Sec. III. Define two sets of HO operators”’26
ag, Ay, and az,-, a:g, through

V2B '=ag+al;, V2Pd,=ay—al;, (A1)

with an identical set for 7. Similarly define the following
scalar operators quadratic in the a,’s through

N§=a;,-a§,-, N,,:a;ia,,i , (A2)
Ag=agayg, A2=a;a; , (A3)
A,=a,a,, AI,:a:'?,-a:,,- , (A4)
B =aga,,, BTza;-aTﬁ , (AS5)
C=CT=a§,aj7,-+a,,iaz,- . (A6)
The basic commutation relations for the a;’s,
[agnali]=8;=[ay,a};], (A7)

with all other pairs commuting, lead to the following re-
sults for the various quadratic operators:

[N ]=24,, [A],N;]=—-24],
_ t _ T
[4,,N,]1=24,, [A] N ]=—24],

(A8)
(A9)

while pure £ and pure 1 operators commute.

Now the two sets (Ag,Az,Ng) and (An,Aj,,N,,)
represent the generators of two independent SO(2,1)
algebras, any one of which is exactly the type that
proved adequate for the derivation of the eigenvalues'*2
of the operator Q, appearing in the corresponding ¢g
problem. In the present ggq problem, on the other hand,
these two sets are also accompanied by “mixed” terms
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B, B, C thus considerably enlarging the algebra. For a
systematic treatment consistent with S; symmetry, it is
convenient to introduce the following combinations
which have the desired permutation symmetries for a
three-body system:

N=N°=N.+N,, N°=ala,—ala,,  (A10

C=N'=ala, +alay, N'=N.—N,, (Alla)

2B=A'=2aga,, A"=A;—A,, (Al1b)
t

A=A+ A, Al=4al+al. (A12)

Using the commutation relations (A8) and (A9) one ob-
tains the following sets of commutators:

[4',N]=24", [A" N]=—24", (A13a)
[4",N]=24", [4"T N]=-24"", (A13b)
[N',N]=[N",N]=[N%N]=0, (A14)
[4,,N]=[A",N"]=[A',N']=24, ,

(A15)

[A,N1=[4"",N"]=[4"",N']=—24]},
[4,,Af]=[4", 4"T]=[4", 4"1=4N +12, (A16)
[4',4"1=[4,,N,]1=[4],N,1=0,
[AI’AIIT]=_4NG ,

[N',N,]1=2N", [N",N,]=—2N",

[A’,Na]=2A” y

(A17)

[4",N,]=—24", [AT,N,]=24"",
(4", N,]=—24".

One thus finds several distinct sets of coupled SO(2,1)
algebras, closing on an algebra as big as SO(m,n) where
m +n=10, thus greatly reducing the practical value of
this method, but for the observation that the operator
chiefly responsible for the couplings is N,, a totally an-
tisymmetric object.

In SU(6) parlance, this operator makes it first nontrivi-
al appearance (with a nonzero eigenvalues) for a 20 state
whose totally antisymmetric spatial structure does not
easily allow it to mix with the 56 and 70 states, as a
consequence of which its identity is still not experimen-
tally established. Taking advantage of this circumstance
it is perhaps not unreasonable to drop the operator N,
from the list (A10)-(A17), which vastly simplifies the re-
sulting algebra to an almost decoupled set of distinct
SO(2,1) algebras. Before writing down the Casimir
operators it is useful to express the operators (3.9)-(3.15)
of the text in terms of the above quantities so as to ex-
hibit their S; symmetry structure more explicitly. These
give

Op=1{A,+ AP+ A+ ATP+1[a"+ 4]

—2N'2_2N"*_2(N +3)*—18, (A18)
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k(2):[AI+AIT]2+[AII+AIIT]2

—4(N?4+N"*)+8(4/—4,), (A19)
B4SP=_3(4"+ 4" +2N")?
_3(A11+A11T+2Nu)2 , (A20)

and a similar but more unwieldly expression for Q %),
which we omit for brevity.

These operators still involve nondiagonal terms, but
which, as in the g7 case,?® connect states differing by as
much as AN=4, so that ignoring their effects is not like-
ly to introduce any serious error. The diagonal terms
are then almost expressible in terms of the following
three SO(2,1) sets:

L4, 4"\ N +3), 4", 4" N +3),
+
LA, AT, N+3),

all of which have identical Casimir operators, U(U +1),
with a rising spectrum!”

(N +3)=—u+k, k=0,1,2,... (A21)

1

2
leading to the two classes of u values defined in Eq.
(3.21) of the text. The only additional combination
occurring in (A 18)—(A20) which is not directly amenable
to these quantum numbers is N'>++N"'2, which requires a
more careful treatment involving the use of tensor opera-
tors (Aij,A,-j- )..., with A4,=A4;, leading to the
identification

N24N"?=AA;+2N . (A22)

Since, on the other hand, tensor operators are beyond
the jurisdiction of our algebra (A10)-(A17), we must
make the replacement A4 i}A,-j—>§AfAS to obtain
(without serious error) the approximate result

N 4N =7y=4N -2+ LN +3)"—4u(u +1) (A23)

in terms of the Casimir operator of the simpler SO(2,1).
The resulting expressions are as listed in Egs.
(3.17)-(3.21) of the text.

APPENDIX B

We collect here the results of perturbative calculations
of the strong Coulomb effects in coordinate space. Us-
ing the vectors u, v, which are conjugate to §, 7 (u=i9,,
etc.) the quantities r;; =x; —x; are given by

x=X—2v, x;=X+ivF (1), (B1)

1
3

It is necessary to consider L excitations in a general way,
but radial excitations of n=1 are adequate for our pur-
poses. The possible states are of the types!!”!?

(56,21%); (70,21 +17),
(70,21 +2), 1=0,1,2,...,

of which only their spatial parts in their maximally
stretched forms are needed, since the Coulomb interac-
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tion is spin independent. The 56 states are fully sym-

metric:!’
32
¥y (u,v)= il(u++v+)[ B } B
x exp[ — 14wl +v?)], (B2)
Ny =un-"t. (B3)

The (70,2/ + 1) states ¢, ¥'’ are of the form
Wor %51 =No 1 (Bu 3By W3 /N, (B4)
Ny =Ny[2/(0+1)]72 . (BS)
Finally the (70,2/ 4-2) states are of the form
—vi Wy /Ny,

(B6)
Ny =N5[2/(0+ 10 +2)]'% . (B7)

’ Lt AT 2 v 2
Vo4 25¥2 42=Ny 2B 2u v ;u’

The radially excited functions are relevant for P},(1440),
P’;(1600), and possibly higher ones.!'! Their general
construction has been described in Ref. 17 but here we
need only the case of n=1, for which the normalized
wave function is

¥ =37) 72 [BHul+v?) —3]exp[ — LB (u+v?)] .

(B8)

Analogous to n=1 of 56 states, there are possible
(70,0%) states PY,, P13, etc.,!” whose corresponding
wave functions are

(Y59,

=(373) 128} 2u-v;u?—v?]
xexp[—%ﬁz(uz—kvz)] . (B9)
Calculation of the Coulomb contributions, Eq. (3.30), for
these different cases is a straightforward, though

lengthy, procedure. The results are expressible in the
general form

Fsc(L)=3V3a,MB~ 'y N}27¥

1 2
><r§:;0 [5] 2r)fp[4—BM ~2(2r +3)]

x T2l =2r + DL 7N20 —2r +3),
(B10)
where f;, =1 for (56,2/ ) states and
(70,21 +1): fRY¥=1[2r 4 14+(2] —2r +1)?
x (21 =2r +3)7'], (B11)

(70,21 +2): fLrem=1(2r +1)(2r +2)

L l@i-2r+1) 221 —2r +2)°
8 (2 —=2r+3)N2l -2r+3%)
2
1 (2r+1)(21 —2r +1) (B12)
2 21 —2r+3

N} is the normalizer, listed above, appropriate to the
state under consideration. For the n=1 cases we have
1/2

FSC(56;n=1)=% 2| Mag By 52— 2M
(B13)
1 3 172
Fsc(70;0+)=5 . MasoB™ 'y 55— RB°M
(B14)

Finally the weight factor Wy, , Eq. (3.32), for orbitally
excited 56,70 states in the L convention defined above, is
given by the simple formula

Wy =21 =1/ .

Iy

(B15)

In addition, for (56,n=1) and (70,0") states this quanti-
ty is 3 and 3, respectively.

APPENDIX C

We list here the spin-dependent terms (SDT) appear-
ing in Eq. (3.12) of the text.

SDT=—3(&2—9*)3; - 392, (C1)

+13-[(2—n*)L" +2&9L'] (C2)
+3L-[(E2—nH)Z" +2£92'] (C3)
+3L, - [(E*—nH)Z' —2&92"] (C4)
—3(&—n?)[L-3'—L"-3"]
—3&9[L'-Z"+L"-2']. (Cs)
Here

iL;iL, =€X9,tnXd,,

iL;iL"=£§X93,tn X3, ,

2=0,+0,t0;,

V3¥'=o0,—0,,

33'=—-20,40,+0;,

V3s,=0,(0,—0;),

33/=-20,0;+0,0,+0,0;.

The S; symmetry of SDT is explicit. As an illustra-
tion of the use of these terms, we consider the effect of
the L=0 term (Cl) which mixes the 56 radial state
P},(1440) and the (70,0%) state P}}(1710). Using the
reduction method of Appendix A, and dropping the non-
diagonal terms in N, we have
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26-9B % (E2—n*)B~*=L[N;N"],
so that
(SDT), _o=—3B[N'3S,+N"3/] .

(C6)

Inserting this term in (3.16) modifies it to two coupled
equations involving the 56 radial and (70,0%) states
whose SU(6)-cum-spatial structures (see Appendix B) are

VaWs=9(x'¢" +x"9") ,
2\1/70=(¢'xll+¢llxl)¢l+(lplxl ——lpllxll )¢Il ,
where (X,¢) are the notations for spin and isospin func-
tions.!” Elimination of the spin and isospin structures is
straightforward after the operation of (C6) on (C7). The

result is a set of three coupled equations in (y*,¢',¢'")
which are self-consistent with the identification

¢,=N'¢s, ¢’,=NI'¢S R

(oy))

(C8)

D. S. KULSHRESHTHA AND A. N. MITRA 37

¢, being a single S;-symmetric function associated with
the (70,0%) state. Following the reduction technique of
Sec. III, the two coupled equations in (¢, ) become

(N +3—F) W +a(N*+N"*)¢$, =0,
dayf+(N +3—FNé, =0,

where

- 2 —1y .
= A
see Eq. (3.27).

Using the result of (A23), and writing Fp =FJ +§F,
where FJ is the unmixed value of Fy for the state con-
cerned, one immediately finds the mixing corrections §F

to the respective states from a quadratic equation in x.
The results for the states P},(1440) and P{,(1710) are

8F(P},)=+0.675, 8F(P’,)=—0.066 . (C9)
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